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The Phenomena of Self-organization of Traffic Flow Complex System: 
Investigation and Application (II) 
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摘要 

 
每日之車流變化型態具有相似但又不完全重複之特性，針對此種複雜系統，如能找出其規則性，將

會有相當之應用價值。惟此種車流變化酷似隨機，很難有一套準確又有效之方法檢測其混沌性。本

研究嘗試發展一套有效檢測混沌時間序列之簡潔步驟，第一步引用最大李亞譜諾夫指數以排除趨於

定點數列或週期數列，第二步利用頻譜分析進一步排除準週期數列，第三步再比較原始數列與替代

（打亂次序）數列之反覆函數系統圖，以篩除隨機數列，依此簡潔步驟即可檢測一數列是否為混沌。

經利用已知數列驗證，發現本簡潔步驟確實有效，最後應用本簡潔步驟檢測高速公路尖峰時段每分

鐘交通量，結果發現具有混沌現象。 
 
關鍵字：混沌、車流、時間數列、簡潔檢測步驟、替代數列 
 

Abstract 
 
For a complicated system such as traffic flow dynamics that is characterized with similar patterns but not 
exactly reproducible from day to day, we might be curious about whether there exist a simple underlying 
determinism. With only a single sequence of measurements for the traffic flow time series data, however, it 
is difficult to make distinction between deterministic chaos and nondeterministic randomness because both 
look very alike. It is argued that testing for chaos is an art rather than a science; nonetheless, this study 
attempts to develop a parsimony procedure to test for chaos in time series. The first step is to employ the 
largest Lyapunov exponent to rule out the fixed points or periodic motions. The second step is to use power 
spectra to further rule out the possibility of quasi-periodic data. The final step is to compare the iterated 
function system (IFS) clumpiness maps between the original and surrogate data, once we already know that 
they are not fixed points or periodic or quasi-periodic motions. Our proposed parsimony procedure is 
validated by some well known time series data generators. It is then applied for testing the existence of 
chaotic structures in the nature of freeway one-minute flow time series. 
 
Keywords: Chaos; Traffic flow; Time series data; Parsimony testing procedure; Surrogate data 
 

1. Introduction 
 
A time series is a dynamical system that evolves in time. It can be regular predictable or regular 
unpredictable. It can be chaos of various classes ranging from transient, intermittent, narrow-band, 
broad-band low-dimensional, to broad-band high-dimensional chaos. It can also be correlated (colored) 
noise or random noise. Most real-world systems often exhibit a combination of the above dynamical 
behaviors or in between the two extremes, the regular predictable and the random noise. When we observe 
complicated systems in nature such as traffic flow variations, we might be curious about whether there exist 
a simple underlying cause or intrinsic rule that governs the determinism of flow dynamics. With only a 
single sequence of measurements at successive times (a time series), for instance, we might ask whether the 
dynamics are deterministic and chaotic or nondeterministic and random. If the time series exhibits a hidden 
determinism, we can take the advantages of determinism to make prediction, to extract deterministic signals 
from a noisy background (noise reduction), or to control the system using small perturbations to alter its 
outcome [29, 30]. 
 
Chaotic systems have several important features: (1) they are aperiodic, namely trajectories or orbits never 
repeat; (2) they exhibit sensitive dependence on initial conditions (SDIC), hence they are unpredictable in 
the long run; (3) they are governed by one or more control parameters, a small change in which can cause 
the chaos to appear or disappear; and (4) their governing equations are nonlinear [1]. Chaos is part of the 
broader field of dynamical systems, which can be stochastic or deterministic. A stochastic system will 
change with time according to some random processes. A deterministic system, by contrast, will evolve 
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under some deterministic rules (or mathematical equations) such that the present state can be determined by 
the past states. Such deterministic chaos can only occur when the governing rules or equations are 
nonlinear. 
 
There are several definitions of chaos in use. A definition similar to the following is commonly found in the 
literature (for instance, [10]; [11]; [12]; [13]). The series  has a chaotic explanation if there exists a 

system where , 
ta

) , ,( 0xFh )( tt xha = )(1 tt xFx =+ ,  is the initial condition at , and where h 

maps the n-dimensional phase space, 
0x 0=t

nR  to 1R  and  maps F nR  to nR . It is also required that all 
trajectories  lie on an attractor A and nearby trajectories diverge so that the system never reaches 
equilibrium (i.e., not eventually locating at fixed points) nor exactly repeats its path (i.e., it is aperiodic). 
For the chaotic time series, if one knows  and could measure  without error, one could forecast 

 and thus  perfectly. With the divergence property and attractor A, in order that F generates 
stochastic-looking behavior, nearby trajectories must diverge (repel) exponentially. Moreover, in order that 
F generates deterministic behavior, locally diverging trajectories must eventually fold back (attract) on 
themselves. The attractors may be thought of as a subset of the phase space towards which sufficiently close 
trajectories are asymptotically attracted. 
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Chaos theory has proven that random input is not the only source of irregular outputs for a nonlinear system. 
A chaotic time series, which appears stochastic, is in effect governed by deterministic rules. However, it is 
difficult to make distinction between stochasticity and chaoticity because both have very similar irregularity. 
To elucidate this feature, we deliberately generate two chaotic time series data and two stochastic time 
series data as follows. The Henon time series (2000 iterates) generated by eq. (1) and the Lorenz time series 
(2000 data points at an interval of ) generated by eq. (2) are well-known chaotic time series. The 
Gaussian white noise time series generated by eq. (3) and the random time series generated by eq. (4) are 
well-known stochastic time series. The Henon and Lorenz time series data with parameters given in eqs. (1) 
and (2) have been proven as deterministic chaotic systems [14, 15]; while the Gaussian white noise and 
random time series given in eqs. (3) and (4) have been proven as stochastic systems [16]. 

1.0=∆t

 
Xn+1=1-1.4Xn

2+Yn; Yn=0.3Xn                                                             (1) 
 
dX/dt=10(Y-X); dY/dt=28X-Y-XZ; dZ/dt=XY-8Z/3                                            (2) 
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2
1)( XeXP −

π
                                                                  (3) 

 
Xn+1=AXn+B(modC)                                                                   (4) 
                                                        
For the one-dimensional (trace) plots, x(t) versus t, we notice that Henon and Lorenz chaotic time series 
(Figures 1(a) and 1(b)) are almost indistinguishable from a Gaussian white noise (Figure 1(c)) and a random 
data (Figure 1(d)). Namely, it is almost impossible to distinguish, by visualization method, between a 
chaotic system and a stochastic system because both have very similar irregularity. However, we already 
know that the simplest determinism of chaotic time series has each value dependent solely on its immediate 
predecessor; thus, through the reconstruction of the state space, some of its geometric plots might reveal 
very unique patterns, which can be served for the distinction purposes. 
 
If we reconstruct these time series in higher dimensional state spaces, we would look for the difference. For 
instance, Figure 2 presents the corresponding two-dimensional plots, x(t) versus x(t-n), where n is the 
appropriate delay time; and Figure 3 shows the three-dimensional plots, x(t) versus x(t-n) versus x(t-2n). 
Notice that both chaotic systems have shown discernible structures (Figures 2(a) and 2(b); Figures 3(a) and 
3(b)), in which the trajectories are governed by intrinsically deterministic rules. In contrast, the random 
system does not reveal any structure at all, which plots just fill up the entire plane in a two-dimensional 
state space (Figure 2(c) and 2(d)) and look like a “fuzzy ball” or scatter uniformly in a three-dimensional 
state space (Figure 3(c) and 3(d)). 
 
As pointed out by Sprott [1], a stochastic system with a non-uniform power spectrum can masquerade for 
chaos. Therefore, it may be necessary to further compare the properties between an original time series and 
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its surrogates, which are designed to mimic the statistical properties of the original data, but with the 
determinism removed. The surrogate data can be easily generated by randomly shuffling the original data. 
The shuffling can be done quickly by stepping through the time series, swapping each values with one 
chosen randomly from anywhere in the series. On average, each point being moved twice will essentially 
guarantee randomness and this method does require keeping the whole time series in memory. While 
shuffling the sequences will preserve the same probability distribution as the original data, the surrogates do 
not preserve the same power spectrum and correlation function [27]. In other words, the surrogates for any 
original time series data are random. 
 
To generate the surrogate time series with the same power spectrum as the original time series , we 

use the following equations to find first and then to construct with the same Fourier amplitudes but 
with random phases. 
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where G(k) is autocorrelation function, K is the maximum of k, which usually appears to be about N/4. 

are N/2 uniform random numbers chosen from mr 10 <≤ mr . N is the number of data [19]. 
 
The iterated-function system (IFS) clumpiness maps between the original and surrogate data for the four 
known time series generators are used for illustration. The IFS clumpiness is a useful plot to present the 
determinism of the data [24]. For instance, white noise is a space-filled uncorrelated process that uniformly 
fills its space of representation. Brown noise accumulates over the diagonals and some of the sides of the 
square leaving most of the representation space empty. Pink noise produces self-similar repeating triangular 
structure of different sizes and accumulates, albeit in a dispersed way, near the diagonals [1]. Figures 4 and 
5 compare the original and surrogate IFS clumpiness maps of Henon, Lorenz, white noise, and random time 
series data, respectively. We notice that the original chaotic data, particularly for the Lorenz, and its 
surrogate data have apparently dissimilar IFS clumps; in contrast, the original random data have very 
similar IFS clumps to its surrogates. 
 
The above illustrations with four known examples provides good evidences that a very simple deterministic 
time series, which is essentially a chaotic system, can reveal very irregular trace similar to a random system. 
The illustrated plots have suggested that it is easy to incorrectly think a random system as chaos or a chaotic 
system as random by only judging their trace plots because they are very much alike. Through the state 
space reconstruction, however, one can easily distinguish a chaotic system from a random system. 
Moreover, the comparison of IFS clumpiness maps between the original and surrogate data can provide 
another useful tool for the distinction purpose. Many previous researches have devoted to develop methods 
for testing or searching for chaos in time series of various areas (for instance, [18, 19, 22, 27, 4, 11, 8, 6, 
13]). However, it is still argued that testing for chaos is more artistic than scientific and that no recipe will 
guarantee success for every case and even going through a battery of tests, the conclusions are seldom 
definitive [1]. Nonetheless, it is always challenging to gain better insight and understanding of the 
underlying dynamics and it would help if one could develop simple methods to test for chaos in time series. 
The main objective of this study is to develop a parsimony procedure to test for chaos by using as few 
effective indexes as possible. 
 

2. Developmet of parsimony testing procedure 
 
The above illustrations by Eqs. (1) through (4) have suggested that it is easy to incorrectly think a random 
system as chaos or a chaotic system as random by only judging their one-dimensional (trace) plots because 
they are very much alike. Therefore, we must attempt other indexes that could make more distinction. We 
already know that the simplest determinism of chaotic time series has each value dependent solely on its 
immediate predecessor; thus, through the reconstruction of the state space, some of its geometric plots 
would reveal very unique patterns, which can be served for the distinction purposes. The two- and 
three-dimensional state space plots in Figs. 2 and 3 are good examples of such geometric plots. Other 
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known geometric plots in chaos and time series literatures include return maps (plots of each local 
maximum versus the previous maximum), phase-space plots (slopes of the trajectories), Poincare maps (or 
Poincare movies), iterated function system (IFS) clumpiness maps, autocorrelation function plots, 
probability distributions, and power spectra. The known statistics include the largest Lyapunov exponent, 
Kolmogorov entropy, Hurst exponent, relative complexity, capacity dimension, embedding dimension, 
correlation dimension, and delay time. By investigating the characteristics of the above-mentioned 
geometric plots and statistics, we attempt to establish a “parsimony” testing procedure (Fig. 6) that includes 
as few geometric plots or statistics as possible. Details of the parsimony testing procedure are narrated as 
follows: 
 
Step 1. Examine the largest Lyapunov exponent (LE) for the original data 
 
If the LE is negative, the time series will converge toward a stable sink (or equilibrium fixed points, see for 
instance [15]). If the LE is zero, the time series is periodic in the sense that the trajectories will converge to 
a period-k sink (k is greater or equal to 2). If the LE is positive, the time series can be quasi-periodic, 
chaotic or stochastic, then we go to step 2. 
 
Step 2. Examine the power spectrum of the original data 
 
If the power spectrum is narrow and has only few (two or three) dominant sharp peaks, it must be 
quasi-periodic. In case that it is a broadband spectrum, it can be chaotic or stochastic, then we go further to 
step 3. 
 
Step 3. Compare the IFS clumpiness between the original and surrogate data 
 
If the IFS clumpiness map of the original data visually differs from the surrogates, then we have evidences 
(but not proof) that the time series is not stochastic [22]. In this case, we can probably say that the original 
time series exhibits chaotic structures. 
 
In sum, the first step is to rule out the fixed points or periodic time series. The second step further rules out 
the possibility of quasi-periodic data. The final step is to make distinction between chaoticity and 
stochasticity once we already know that they are not fixed points, periodic, or quasi-periodic. 
 

3. Validations 
 
To validate our proposed parsimony testing procedure, we make use of nine well-known time series data 
generators: FIX.DAT is fixed-point time series generated by Eq. (7). Both FEIGEN.DAT and SINE.DAT are 
periodic time series generated by Eqs. (8) and (9). Both TWOSINE.DAT and THREESIN.DAT are 
quasi-periodic time series generated by Eqs. (10) and (11). Both NOISE.DAT and RANDOM.DAT are 
stochastic time series generated by Eqs. (3) and (12). Both HENON.DAT and LORENZXZ.DAT are chaotic 
time series generated by Eqs. (1) and (2). We produce 2,000 iterates for each of the nine time series 
generators by using the chaos data analyzer [28] and then examine the largest Lyapunov exponents in the 
first step, look for the power spectra in the second step and compare the IFS clumpiness between original 
and surrogate data in the final step. 
 
Xn=constant                                                                          (7) 
 
Xn+1=3.5699456Xn(1-Xn)                                                                (8) 
 
Sin (t/10)                                                                            (9) 
where t is an integer value from 0 to 1999. 
 
Sin (t/2)+cos(gt/2)                                                                    (10) 
where t is an integer value from 0 to 1999,g= 2/)15( −  
 
Sin (t/2)+cos(gt/2)+sin(ht/2+π/4)                                                        (11) 
where t is an integer value from 0 to 1999, g= 2/)15( −  
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Table 1 reports the largest Lyapunov exponents of these nine generators. As what we anticipated, the first 
step has successfully identified the FIX.DAT (LE<0) as an equilibrium fixed-point time series and 
SINE.DAT (LE=0) and FEIGEN.DAT (LE=0) as periodic time series. Therefore, we go to step two by 
further examining the power spectra for the remaining time series data as presented in Fig. 7. We find that 
only TWOSINE.DAT (Fig. 7 (a)) and THREESIN.DAT (Fig. 7 (b)) have spectra with few dominant peaks, 
which are strong evidences for quasi-periodic time series, consistent with what we anticipated. Finally, we 
go to step three to further distinguish chaoticity from stochasticity for the remaining time series by 
comparing the IFS clumpiness maps between the original and surrogate data. We find that the original data 
of NOISE.DAT and RANDOM.DAT (Fig. 8(a) and (c)) do not differ their IFS clumpiness from the 
surrogates (Fig. 18 (b) and (d)), indicating that NOISE.DAT and RANDOM.DAT are stochastic data. By 
contrast, the original data (Fig. 8(e) and (g)) obviously differ their IFS clumpiness from the surrogates (Fig. 
8(f) and (h)), supporting that HENON.DAT and LORENZXZ.DAT are chaotic data. These IFS clumpiness 
tests also agree to the known properties of the remaining time series. In other words, all the nine time series 
data generators have successfully validate our proposed parsimony testing procedure. 
 

4. Applications and Discussions 
 
After having the proposed parsimony procedure validated by the known time series data generators, we 
further apply it to test some selected eight stations of the I-35 Freeway whether or not chaotic structures 
also exhibit in their one-minute flow dynamics. Table 2 reports the positive LE values for all stations, which 
rule out the traffic dynamics being fixed points or periodic in the first-step test. The power spectra for the 
eight stations are all broadband, which rule out the flow time series being quasi-periodic in the second-step 
test. Fig. 9 illustrates the power spectrum for station 32. The IFS clumpiness maps for the eight stations all 
reveal apparent differences between the original and surrogate data (Fig. 10), which further rule out the 
flow time series data being stochastic in the third-step test. As a consequence, we can conclude that all the 
one-minute flow dynamics for the remaining eight stations on the I-35 Freeway’s morning rush hours also 
exhibit chaotic structures. 
 
The word “chaos” was introduced by Li and Yorke (1975) to designate the nonlinear systems that have 
aperiodic behavior more complicated than equilibrium (fixed points) and periodic or quasiperiodic motions. 
In fact, a related concept of chaos -- the “strange attractor” was introduced by Ruelle and Takens (1971) 
who emphasized more the complicated geometry of the attractor in phase space than the complicated nature 
of the motion itself. The theoretical works by these mathematicians supplied many of the ideas and 
approaches that were late applied in physics, celestial mechanics, chemistry, biology, and other fields 
(Robinson, 2004). In traffic flow study, Disbro and Frame (1989) utilized chaos theory to describe the 
traffic flow phenomena. Dendrinos (1994), Iokibe, et al (1995), Frison and Abarbanel (1997), Zhang and 
Jarrett (1998) and Lan, et al (2003) also found that the short-term traffic flows have nonlinear chaotic 
phenomena. Addison and Low (1996, 1998) found that some specific parameter values of the GM 
car-following models exist in chaotic dynamics. The application of our parsimony procedure to test the 
chaoticity for I-35 Freeway one-minute traffic flow time series supports the previous chaotic traffic flow 
studies. 
 
Our proposed parsimony testing procedure only employs three indexes, largest Lyapunov exponent, power 
spectra and IFS clumpiness maps. Some known time series data generators are used to validate the 
proposed procedure, which is then further applied to testing for chaotic traffic phenomena. The results 
reveal that chaotic structures exist in the nature of one-minute flow time series. Note that such conclusions 
are based on the empirical analysis of the morning rush-hour one-minute flows, drawn from some 8 stations 
of the United States I-35 Freeway. In order to have more general and robust conclusions, traffic data from 
different roadways (including surface roads) require further exploration. Moreover, traffic data from other 
periods to cover very low (e.g., midnight) to moderate (e.g., off-peak hours) flow conditions also deserve 
further investigation. Finally, the one-minute flow data can be summed up and converted to longer-term 
flow dynamics (e.g., five-minute, ten-minute, etc.). It is interesting to test if the chaotic structures still exist 
in such longer-term flow dynamics. 
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   (a) Henon         (b) Lorenz         (c) White noise      (d) Random 

Figure 1. One-dimensional state-space plots for four known time series generators 

 
(a) Henon         (b) Lorenz         (c) White noise      (d) Random 

Figure 2. Two-dimensional state-space plots for four known time series generators 

 
(a) Henon          (b) Lorenz         (c) White noise      (d) Random 

Figure 3. Three-dimensional state-space plots for four known time series generators 

 
(a) Henon          (b) Lorenz        (c) White noise     (d) Random 

Figure 4. IFS clumpiness maps for four known time series generators (Original data) 

 
(a) Henon          (b) Lorenz         (c) White noise      (d) Random 

Figure 5. IFS clumpiness maps for known time series generators (Surrogate data) 
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Fig. 6. The proposed parsimony testing procedure 

  
(a) TWOSINE.DAT    (b) THREESIN.DAT 

  
(c) NOISE.DAT        (d) RANDOM.DAT 

   
(e) LORENZXZ.DAT      (f) HENON.DAT 

Fig. 7. Power spectra for known time series generators 
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(a) Original data (NOISE.DAT)  (b) Surrogate data (NOISE.DAT) 

    
(c) Original data (RANDOM.DAT) (d) Surrogate data (RANDOM.DAT) 

 
(e) Original data (HENON.DAT)  (f) Surrogate data (HENON.DAT) 

   
(g) Original data (LORENZXZ.DAT) (h) Surrogate data (LORENZXZ.DAT) 

Fig. 8. IFS clumpiness maps for known time series generators 

 
Fig. 9. Power spectrum for one-minute flow time series at station 32 
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(a) Original data             (b) Surrogate data 

Fig. 10. IFS clumpiness maps for one-minute flow time series at station 32 
 

Table 1. Largest Lyapunov exponents for known time series generators 
Time series generator Known property Largest Lyapunov exponent (LE) 

FIX.DAT Fixed point -0.1 
SINE.DAT Periodic 0.0 

FEIGEN.DAT Periodic 0.0 
TWOSINE.DAT Quasi-periodic 0.5 
THREESIN.DAT Quasi-periodic 0.5 

NOISE.DAT Stochastic 0.5 
RANDOM.DAT Stochastic 0.7 

LORENZXZ.DAT Chaotic 0.1 
HENON.DAT Chaotic 0.6 

 
Table 2. Largest Lyapunov exponents for one-minute flow time series in US I-35 Freeway 

Station no. Average lane-flow 
(veh./min) 

Largest Lyapunov exponent (LE) 

32 16.8 0.6 
45 23.7 0.7 
44 24.8 0.7 
43 28.9 0.7 
41 29.9 0.7 
52 31.9 0.3 
53 32.5 0.4 
56 33.2 0.4 

 

 10


