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Abstract

This project is devoted to the existence and
physical mechanisms of optical pulses
propagating in a nonlinear fiber grating
doped uniformly with two-level atoms. For
such a doped photonic bandgap structure, we
establish a theoretical model for the fist time.
We further show that the distortionless pulse
train and self-induced transparency soliton
coexisting with Bragg soliton can propagate
through the nonlinear fiber grating doped
with resonant atoms.

Keywords: Fiber Grating, Photonic Bandgap

Structure, Bragg soliton, Self-
Induced Transparency
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The photonic bandgap (PBG) material has

forbidden band for optical energy. The
simplest PBG structure is fiber Bragg grating,
which has been widely applied in the
practical lightwave communication systems.
Although such a one-dimensional PBG
material has a photon bandgap, the material
nonlinearity can render the PBG
“transparency”  for  nonlinear  optical
propagation. For example, gap solitons refer
to solitary localization and solitary
propagation of electromagnetic waves in a
nonlinear PBG structure [2,3]. The central
frequency of a gap soliton is inside the
forbidden gap. On the basis of the nonlinear
coupled-mode equations, Sipe and Winful
first showed that a nonlinear PBG medium
can support solitons of the nonlinear
Schrédinger (NLS) equation [4]. Such a
soliton is called a Bragg soliton [5-7,16].
Bragg solitons result from the material
nonlinearity balancing with the quadratic
grating dispersion. The central frequency of a
Bragg soliton is outside the PBG but near the
bandgap edge. Bragg solitons have been
successfully observed in fiber Bragg gratings.

Another example of nonlinear optical
pulse propagating through a bandgap material
is the self-induced transparency (SIT) soliton
in a doped PBG medium. The SIT results
from the continuous absorption and
reemission of electromagnetic radiation from
the resonant atoms. The energy of resonant
atoms periodically oscillating between the
ground state and upper state leads to the



pulse-train  propagation. Such coherent
propagation is described by the Maxwell-
Bloch equations, which have distortionless
pulse-train solutions given by the Jacobi
elliptic functions [8-10]. In particular, when
the Jacobi elliptic modulus is unity, the
pulse-train solution is reduced to a single-
pulse solution of the hyperbolic secant
function. This single pulse solution is called
a SIT soliton. Both SIT solitons and periodic
pulse trains have been experimentally
observed in the materials without PBG
structure. For the SIT in a PBG medium,
Kozhekin and Kurizki [11-12] first showed
that doping periodic thin layers of resonant
atoms inside a nonlinear PBG structure can
create a traveling “defect” in the forbidden
band of this PBG structure. Hence a
periodically doped PBG structure allows the
SIT soliton propagating at the bandgap
frequencies. Nevertheless, from a practical
viewpoint, such a periodically doped PBG
structure is difficult to realize. Therefore,
Akozbek and John investigated the
fundamental work on SIT solitary waves in
PBG materials doped uniformly with
resonant atoms [13]. However, the
existence of the SIT analytic solution suitably
for general frequency detuning and general
phase modulation in a uniformly doped PBG
medium has not been clarified, and even the
SIT soliton with its central frequency being
deep inside the forbidden gap have not yet
been found.

In this project, we study the SIT in a
uniformly doped PBG structure without
using the slowly varying envelope
approximation (SVEA). It is shown that the
Maxwell-Bloch equations can be reduced to
effective nonlinear coupled-mode equations
(NLCMEs). Analytic distortionless pulse-
train solutions and SIT-Bragg solitary
solutions to these effective NLCMEs are
obtained for the first time.
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In this paper, we study the SIT in a
nonlinear PBG structure doped uniformly
with inhomogeneously broadening two-level
atoms. It is shown that the Maxwell-Bloch

equations can be reduced to -effective
NLCME. An exact analytic pulse-train
solution to these effective coupled-mode
equations is obtained. Such a distortionless
pulse-train solution is given by the sinusoidal
function with a DC background and a
modulated phase. In this project, we adopt
the uniformly doped PBG model to study SIT
pulse-train propagation. In contrast with Ref.
[13], our model is more general than that in
Ref. [13]: (i) In our uniformly doped PBG
model, we derive the Maxwell-Bloch
equation without using the slowly varying
envelope approximation. The formation of
the SIT effects require ultrashort pulses with
their pulse widths being shorter than the
relaxation times of the resonant atoms, but
the SVEA is not valid for a ultrashort pulse.
Thus we use the model without making the
SVEA. Moreover, in Ref. [13], the authors
emphasize that they have neglected the linear
contribution to the dispersion relation arising
from the two-level atoms. Hence the allowed
concentration of dopant atoms are limited for
their SVEA model. In Ref. [10], it has been
found that SIT could induce an additional
negative dispersion of which it has not been
predicted by the SIT theory under SVEA.
Since the Maxwell-Bloch equation without
using the SVEA can reduce to Bloch-

NLCMEs, these effective = NLCMEs
completely involve the SIT-induced negative
dispersion and the effective grating

dispersion. (i1) The phase functions of the
forward and Bragg scattering field are
assumed to be identical in Ref. [13]. On the
contrary, we consider general phase functions.
This general consideration of the phase
functions result in the demonstration that the
phase modulation effects of the forward and
Bragg scattering field both satisfy the general
SIT chirping equation. Notice that the Jacobi
elliptic pulse-train solutions to the Maxwell-
Bloch equations for a resonance medium
without PBG  structure have  been
theoretically studied [8-9]. However, our
model involves considering a resonance
medium whose resonant atoms embedded in
a PBG structure. It is well known that a PBG
structure has a forbidden band for optical
energy, but the SIT provide a mechanism to



make it possible that an optical pulse train
can pass through the PBG medium.

By using the multiple-scale analysis under
the slow-velocity limit, the effective
NLCMEs can be further reduced to an
effective NLSE. The quadratic dispersion of

this NLSE involves quadratic grating
dispersion and the linear contribution from
the resonant atoms; moreover, the

nonlinearity of this NLSE includes the
material Kerr-nonlinearity and resonant
enhanced nonlinearity. The soliton solution
to this NLSE indicates the coexistence of a
SIT soliton and a Bragg soliton. Such a
mixed state is called a SIT-Bragg soliton.
Consequently, many of the results known for
the NLS soliton and Bragg soliton can be
easily applied to clarify the characteristics of
a SIT-Bragg soliton. Furthermore, it is also
shown that the SIT-Bragg soliton has to obey
the general SIT phase modulation effect.
Hence a SIT-Bragg soliton cannot exhibit
chirping. The chirped SIT has to be a pulse
train given by the Jacobi elliptic function or
the above mentioned sinusoidal functions. It
is found that even if the carrier frequency of
the SIT soliton and SIT pulse train is deep
inside the forbidden band, the optical pulse
can propagate through the PBG structure and
obey the general SIT phase modulation effect.
Numerical examples of the SIT pulse train
and the SIT-Bragg soliton in a PBG structure
doped uniformly with Lorentzian line-shape
two-level atoms are demonstrated [14-15].
Because both SIT and Bragg scattering slow
down the light, the group velocity of the SIT
in a doped PBG medium can be substantially
less than the speed of light in a bare
nonlinear medium.
g~ FHERRET
The results of this project include
(1))We establish the effective NLCMEs to
model the SIT in a doped PBG structure.
Consequently, many of the results known
for the NLCMEs can be easily applied to
clarify the existence of the SIT in a
nonlinear doped PBG structure.
(i1)Exact analytic pulse-train solutions to the
effective NLCMEs are obtained.

(ii1)A single pulse solution indicating the SIT-
Bragg soliton is obtained.

(iv)We also show that the SIT effects in a
doped PBG structure obey the general SIT
chirping relation.

These results are all obtained for the first
time. They explicitly describe the existence
and physical mechanisms of optical pulses
propagating in a nonlinear fiber grating
doped uniformly with two-level atoms.

Since the PBG medium is transparent for
the SIT, such research has attracted much
interest. It has been suggested that a doped
nonlinear PBG structure could be applied to
high sensitivity optical filter, pulse reshaping,
and optical switching devices for optical
computing, optical interconnection and
optical communication system [13]. It is our
hope that our general model can accurately
estimate the associated medium parameters
and the initial condition of the input optical
field for designing such a device. These
subjects would lead to practical applications
of uniformly doped PBG structures in the
vast area of lightwave systems.
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Coexistence of Self-induced Transparency Soliton and Bragg Soliton

Sien Chi and Hong-Yih Tseng
Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu, Taiwan, 300, R.O.C

We show that a nonlinear photonic bandgap medium doped uniformly with inhomogeneously broadening two-level atoms can
support solitons of the nonlinear Schrédinger equation. Such a self-induced transparency (SIT) soliton can propagate through the
nonlinear doped PBG medium even if its central frequency is deep inside the forbidden band. The physical mechanisms of a SIT

soliton deep inside the gap are presented and numerically studied.

Gap solitons refer to solitary localization and solitary
propagation of electromagnetic waves in a nonlinear
photonic bandgap (PBG) structure [1,2]. The central
frequency of a gap soliton is inside the forbidden gap. On
the basis of the nonlinear coupled-mode equations, Sipe and
Winful first showed that a nonlincar PBG medium can
support solitons of the nonlinear Schrodinger (NLS)
equation [3]. Such a soliton is called a Bragg soliton [4-6].
Bragg solitons result from the material nonlinearity
balancing with the quadratic grating dispersion. The central
frequency of a Bragg soliton is outside the PBG but near the
bandgap edge. Bragg solitons have been successfully
observed in fiber Bragg gratings. The experimental results
agree well with the NLS model.

More recently, the self-induced transparency (SIT) soliton
in a nonlinear PBG structure doped with resonant atoms has
drawn considerable attention [7-9]. SIT solitons are coherent
optical pulses propagating through resonant medium without
loss and distortion. Such coherent propagation is described
by the Maxwell-Bloch equations [10-12]. For the SIT in a
uniformly doped nonlinear PBG structure, Akdzbek and
John investigated the fundamental work on soliton solutions
for frequency detuned near the PBG edge and called them
SIT-gap solitons [9]. Because the dopant density and the
atomic detuning frequency dramatically change the
characteristics of a SIT-gap soliton, it has been suggested
that applying such solitary propagation may be very useful
in optical telecommunications and optical computing.
However, the physical mechanisms of a SIT soliton with its
central frequency being deep inside the forbidden gap have
not yet been clarified, and even its existence has not been
proven.

In this letter, we show that a NLS soliton deep inside the
bandgap can exist in a uniformly doped nonlinear PBG
medium. Such a soliton is called a SIT-Bragg soliton.
Numerical examples of the SIT-Bragg solitons in an As,S;-
based PBG structure doped uniformly with Lorentzian line-
shape two-level atoms are presented.

We consider a one-dimensional Bragg grating formed in a
host medium with Kerr nonlinearity. The periodic variations
of the refractive index inside the grating region is

(W) = n(w)+n,| B +n, cos(2B,2), (1)

where E is the electric field in the medium, n(w) is the

frequency-dependent refractive index, n, is the Kerr

nonlinear-index coefficient, n_,6 is the magnitude of the

a

periodic index variations, and 3, is the grating wave

number. The two-level atoms with the resonant frequency

w, are uniformly embedded in this Kerr host medium. From

Maxwell’s equations, the wave equation describing light
propagation in such a medium is
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where ¢ is the velocity of light in vacuum, p, is the

vacuum permeability, P is the electric induced polarization
including the linear and nonlinear contributions of the host
medium, and P, is the resonant polarization due to the two-

level atoms. In Fourier domain, Eq. (2) becomes

2
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C

where E is the Fourier transform of E, and IN’ is the
Fourier transform of P, . The electric field E propagating

along the z direction in such a doped nonlinear PBG
structure can be expressed as

Ezn)= %m @0 HE (2,0 e, (4)

where c.c. stands for complex conjugate, £, and E_ are
forward and Bragg scattering envelopes, and w, is the

Bragg frequency. In addition, the macroscopic polarization
caused by the dopants is written as

P.(z0) :%m @0 "+ P (2,0 THee,  (9)

where P, and P correspond to the polarization envelopes
induced by E, and E_, respectively. Substituting Egs. (1),

(4) and (5) into Eq. (3), and then taking the inverse Fourier
transform under the assumptions of #n, <<n and n,6 <<n,

we obtain
i) 0F
+i—E 4 = +0B E, +KE.
14 02 lB] ot Bo + T
2  OP
vr(E +2lE B, + P (p 2108 (6)
: too2B, ot

where B, (j=0,1) are determined by the mode-propagation
constant B(w) = (w/c)n(w) via B, =d'Bldw’| _ .



K =mn,/A is the coupling coefficient of the periodic
structure, I denotes the nonlinearity coefficient, and
0B, = B, — B, implies the wave number detuning from the

exact Bragg resonance. Notice that in contrast with the wave
equations adopted in Ref. [9], we take into account the first-
order time derivatives of the polarization envelopes. We will
show that these terms enable our model to involve the linear
contribution to the dispersion relation arising from the
resonant atoms.

We now consider the atomic Bloch equations. The
complex envelopes E, and P, are further written as

E,(z,1) = a,(z,0)expli¢, (z,0)], (7a)
P(z,0) =[U,(z,0) + iV, (z,0)]expli¢. (z,0)], (7b)

where a, are real envelopes, ¢, are phase functions, U

correspond to the dispersion (in phase) induced by the
resonant atoms, and ¥, correspond to the absorption (in

quadrature) caused by the resonant atoms. Moreover, the
Bloch vectors (u,,v,,w) relate the macroscopic

polarization and population difference as follows:

o

UV W)= [(u,,v.,, wgAw-Aw, )d(Bw),  (8)
where Aw is defined by Aw=w -w,, @,,v,,w)

describe the components of the polarization and population
difference contributed from the atoms with resonant
frequencies in the whole range of Aw, g(Aw-Aw,) is

the normalized inhomogeneous-broadening line-shape
function, Aw, is defined by Aw,=w,-w,, and w, is
the center of the broadening line-shape function. Here, the
quantity W =u(N, - N,) is the macroscopic population
difference multiplied by the transition matrix element u
between the ground state (N, ) and upper state (N, ) of the
two-level system. Furthermore, to keep a closed set of the
Bloch equations, we assume @, (z,0)=@z)*z,t) and
w=w, +2w cosP(z,1) +2,z]. After neglecting the atomic
relaxation times and the terms oscillating as exp(+i3/3,2) ,
we express the atomic Bloch equations as

aa_t - (Aw+ 0(;‘; W, (%)
% _ _(Am%m +%(atwo raw), (9b)
";o =Har. ran), (%)
% = —%(a v_+awv,). (9d)

The atomic Bloch equations can be solved by using the the

factorization ansatz v, (Aw,z,t) =v,(0,z,1) f(Aw), where
fAw)=(1+cAw+c,Aw*)™
response function of the resonant atoms. Leading to a self-
consistent solution to the Maxwell-Bloch equations, such an
ansatz has been widely applied to solve the SIT problems.
The undetermined constants ¢, and ¢, both relate to the

is the dipole  spectra-

frequency detuning and the pulse width of the electric field,
and they will be identified in the next section. Using this
factorization ansatz, we have’!?

u. =le, ~X2= - nwye, 1B w fdwya, (.. (10a)
ot /]
vo=e. P rawy La. o (10b)
+ 2 h i at + b b
CZ l'l 2 2 2
W, =W, _?(;) Wif(Aw)[a+(Z: t)+a,(z,t)], (IOC)
S My
w, = _?(E) Wif(Aw)[a+(Z: t)a—(Z: t)]) (IOd)

where w, is the initial population difference multiplied by
U and it is assumed in the ground state of the two- level
system, ie, w,=N,u, where N, =N +N, is the

doping concerntration of the resonant atoms. Substituting
Egs. (10) into Egs. (9a) and (9b), we obtain

2
2%0¢1+0¢¢a+=claai,
ot ot o> ¢, ot

2

@a, 1 ¢ 0, 0¢ . W, .,
oG Gy DY - 2a2)a,. (11b
or [c cz( ot )+ ot yla. 20 (@ *2a)a,. (11D)

2

(11a)

Defining s =padwi/CRA), 1,=[" fEg(bw-bw,)d?, and

I, :L:Aa) f(Dw)g(Dw-Aw,)d(Aw), and substituting Eqgs. (7),
(8), (10) and (11) into Egs. (6), we obtain
OE, OE,

+i—= +iff —=+OPE, +KE, +T (
0z ot :

“+2E]HE =0, (12)

Ei

where the effective parameters are Of, =0f3, +sc
1, B =B, +sc,I +2sc,1,/w,, and
I =T +sc, p’ f(w,h*). As a result, Eqgs. (6) are reduced to
effective nonlinear coupled-mode equations (NLCMEs).
The effective NLCMEs describe that pulse propagation
through a uniformly doped PBG structure is equivalent to
that through an effective PBG structure without dopants.
Consequently, many of the results known for the NLCMEs
can be easily applied to clarify the existence of the SIT
soliton in a nonlinear doped PBG structure.

The linear terms of the effective NLCME:s are considered
first.  Their dispersion relation is  written as

Q=w-a, =0 +k* /B =Q, , where the equivalent

=251,/ w, +sc



Fig.1. Frequency detuning of E, with respect to the original dispersion
relation Q! of the PBG structure and the effective dispersion relation
Q, for the linear terms of Egs. (12).

Bragg frequency has been shifted to ) =, = (-8, / B;)

because of the resonant atoms; likewise Q and Q are the
frequency and wave number detuning from the effective
Bragg resonance, respectively. Here we define

Aw, =-0f,/ B and Aw, =w, -w,, where w, is the
input carrier frequency of the electric field. Figure 1
schematically shows the frequency detuning Acw, with
repect to the dispersion relations. The hyperbolic curves
Q! indicate the original dispersion relation of the PBG
structure without dopants, and Q, indicate the effective
dispersion relation associated with the linear terms of Egs.
(12), i.e., QF are identical to Q,

Np=0- The center of the

original forbidden gap is located at ¢, , and this original

B
gap has a width being equal to 2k / 3,. After we take into
account the effects from the resonant atoms, not only the
Bragg frequency is shifted to wj, , but also the width of this

effective gap is narrowed to 2k /3. Note that Q,
indicate that the dispersion relation provides upper and
lower frequency branches. The Bloch waves (linear
eigenstates) corresponding to these two branches are exact
solutions to the linear terms of Eqgs. (12). In addition, the
group velocity of the Bloch wave on the upper branch is
v, =0Q,/00; thus we have Q =ky/B’ and Q=vky by

defining v= v, and y=1/ V1=V . The solution to Egs. (12)
now can be regarded as the envelope function of the Bloch
wave corresponding to the upper bandgap edge . Such an
envelope function expressed as E (z,¢) describes how the
positive nonlinearity weakly modulates the Bloch wave.

Consequently, under the limitations of slow-velocity (v<<l),
the effective NLCMEs for

E,(6,1)=+E (£, T)expli(0z—Q.0]/2 can be well
approximated by an effective NLS equation
LO0E 1 0

IE—EB;

’E 2
e +T e E =0, (13)
and &=z

coordinates, and the parameters of this NLSE depend on the
effective undoped PBG structure via®

where T =1-z/v, are the moving frame

r=22Yr. pr=-(B)——0. (4
2v Ky “v’

Although the NLSE has well-known soliton solutions, it is

noticed that the solution to Eq. (13) has to satisfy Egs. (11).
We seek the solution in the form of

E(S.1) = a(r)explig(T) +i§ / (2L,)], (15)

where L, is the dispersion length representing the length
scale over which the dispersive effects are important.

Integrating Egs. (11a) and using
a,(z,0) =€ (§,1)|/v2 = £a(1) /N2, we obtain
99. :_a(p* :c_l+_260 , (16)
oT or  2c, a(1)’

where ¢, is an integration constant, and we have
Aw, = -Dw, +Q, =—¢,/(2¢,) and 0¢/0T1 =2¢,/a(T)’. Eq.
(16) describes the general phase modulation, or pulse
chirping in the SIT. The constant —c,/(2c,) indicates that
the carrier frequency of the optical field is w, —¢,/(2¢,);

moreover, the instantaneous frequency 1is inversely
proportional to the pulse intensity. Such a chirping relation
has been studied for the SIT in a nonlinear medium without
PBG structure. Substituting Eq. (16) and

a,(z,t)= ia(T)/\/E into Eqgs. (11b), and then substituting
Eq. (15) and 0¢/0T =2¢,/a(T)’ into Eq. (13), we find that
both of the resulting equations lead to

0%a _4c
P a;’ +yaty.a’, (17
where
1 ¢ 1 3u* _2r,
Y E——S =, V;ELzz—e- (18)
cZ 4c2 B2 LD 4h BZ

For ¢, #0, Eq. (17) has a distortionless pulse-train solution

given by the Jacobi elliptic function. Such pulse-train
propagation results from the energy of resonant atoms
periodically oscillating between the ground state and upper
state. Here we focus our attention on a single-pulse solution
to Eq. 7). For ¢, =0, we obtain

B:|/ (N.T))

=221/ (\By]g) is the pulse amplitude, and T=l/Jy is the
pulse width. Consequently, we obtain

a(r) = A,sech (1 /T,),  where A4, =

L) +0z~(-Dw, +Q, )]

EED) :i%sech (%) A& . (19)

where the dispersion length is L, =7/ Because the

B:|-
central frequency w, =w, —Aw, +Q, of this optical field is
inherently located at the effective bandgap edge, Egs. (19)
express a Bragg soliton. This soliton undergoes the effective

nonlinearity and quadratic grating dispersion expressed in
Egs. (14). Furthermore, such a soliton solution also satisfies




the atomic Bloch equations. Hence it indicates the
coexistence of a SIT soliton and a Bragg soliton. This mixed
state is referred to as a SIT-Bragg soliton. Notice that the
effective PBG structure described by Egs. (12) is not fixed
by the associated medium parameters. Such an effective
model can be determined by the input pulse width T
incorporated with either the atomic frequency detuning
Aw,, or the Bragg frequency detuning Acw, . Therefore, a
SIT-Bragg soliton can exist deep inside the original
forbidden gap as long as Ay =—,/(2c,) <k/f3 (see Fig. 1).
To examine the existence of a SIT-Bragg soliton, we
numerically study an As,S;-based fiber Bragg grating
(As,S;-FBG) doped uniformly with Lorentzian line-shape
two-level atoms. The As,S;-based fiber is a type of
chalcogenide-glass fiber with the Kerr nonlinearity being
two orders of magnitude higher than the value of silica-glass
fiber. Because of its high nonlinearity, As,S;-based fiber has
been widely investigated for all-optical switching. Moreover,
the fabrication of an As,S;-FBG has been reported. The
materal parameters for such an As,S;-FBG are assumed to

be n(w)=239, B, =59x10°m™, B=79%10°s/m, and
n, =2.5%10"m* /V?* at 1550 nm wavelength region. The
coupling coefficient of the Bragg grating is K =100cm™
corresponding to the index vibration n, =0.005 at the
Bragg wavelength A, =1553nm. In contrast with K
describing the coupling strength, we use Of3, = B,Aw, to
indicate the carrier detuning and define 6f = B Aw, to

express the atomic detuning from the exact Bragg resonance.
For the embedded resonat atoms, the Lorentzian line-shape
function is written as

glhw-Aw,) =(Aw, /21) /[(Aw-Aw,,)’ +(Aw, /2)],

where Aw, =2mf, is the full width at half maximum
(FWHM) of g(Aw-Aw,,). In addition, we assume that
Of, =1472GHz, U =14%x10"Cem,and N,=80x10"m".
Note that the large Y is realistic for Erbium atoms. By
using Egs. (18) and Aw, = -Aw, +Q, = —¢,/(2c,) under
the assumptions of Aw, >>1/T,, Fig. 2(a) shows the
FWHM T, =1.763T, of the SIT-Bragg
functions of OB at OB, =20cm™ (dotted line),
OB, =22c¢m™" (dashed line), and Of, =24cm™ (solid line).
The FWHM curve for a fixed Of, is symmetric to
OB, =0f,; namely the minimum 7,

solitons as

occurs on exact
atomic resonance w, = w,,. Moreover, detuning the atomic
transition frequency from the exact atomic resonance
slightly increases the required FWHM for a SIT-Bragg
soliton. By contrast, detuning the carrier frequency from the
exact Bragg resonance significantly increases the required
T, . Fig. 2(b) shows the required FWHM (solid curve) and
the corresponding peak intensity (dotted curve) for a SIT-
Bragg soliton at 03, =0 as functions of Jf, . Obviously, a

larger Bragg detuning implies higher peak intensity for the
existence of a SIT-Bragg soliton. The require peak

intensity for the SIT-Bragg soliton in this doped As,S;-FBG
is one order of magnitude lower than the value for a Bragg
soliton in silica-FBG. The group velocities in the range

20<0f3, <100 almost maintain a constant v, =1.31x10°m/s,

which is dominated by the nonlinearity coefficient and the
atomic doping concentration. This quantity of v, results in

v=0.025 and corresponds to 1/250 of the speed of light in
vacuum. Note that Fig. 2 (b) does not exhibit the FWHM
and peak intensity for 0<df, <20, because the required
FWHM for this range dramatically exceeds 1000 ps that is
not much less than the atomic relaxation times. From an
experimental viewpoint, the atomic relaxation processes
would incoherently absorb the pulse energy for
0<9pB, <20. Fianally, in such an doped As,S;-FBG the

SIT-Bragg soliton cannot exist for Jf3, <0. The existence
of a SIT-Bragg soliton for df, <0 could be clarified by

deriving the similar effective NLSE to describe how the
negative nonlinearity modulates the Bloch wave on the
lower effective bandgap edge.

Pusber Wl i
-
i &

]
B, o'y g, (am'y

Fig. 2. (a) FWHM of the SIT-Bragg solitons as functions of §g3 at
OB, =20cm™ (dotted  line), OB, =22cm™ (dashed  line), and
O3, =24cm™ (solid line). (b) FWHM (solid curve) and the corresponding
peak intensity (dotted curve) for a SIT-Bragg soliton at 5B =0 as
functions of B,. Note that the original bandgap edge is located at
Of, =Kk =+100cm™

In summary, we have derived the effective NLSE to
model the SIT effect in a nonlinear PBG structure doped
uniformly with inhomogeneously broadening two-level
atoms. According to the effective NLSE, we show that SIT
solitons can coexist with Bragg solitons. Such a mixed state
is called a SIT-Bragg soliton. A SIT-Bragg can propagate
through a nonlinear doped PBG medium, even if the central
frequency of the SIT-Bragg soliton is deep inside the
forbidden gap. The input pulse width in conjunction with the
Bragg frequency detuning and atomic frequency detuning
strictly constrains the existence of a SIT-Bragg soliton.
Furthermore, the material nonlinearity and atomic doping
concentration determine the slow-light property of such a
soliton. Hence we suggest that the mechanisms of a SIT-
Bragg soliton could be applied to study the sensitively
tunable filter, high-speed optical switch, and all-optical
delay line in the vast area of lightwave systems.

This work was supported by the National Science Council,
Taiwan, R.O.C. under contract NSC 89-2215-E-009-112.
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Distortionless pulse-train propagation in a nonlinear photonic bandgap structure

doped uniformly with inhomogeneously broadening two-level atoms

Sien Chi and Hong-Yih Tseng

Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu, Taiwan, 300, R.O.C

We have studied the self-induced transparency (SIT) pulse train in a one-dimensional nonlinear photonic
bandgap (PBG) structure doped uniformly with inhomogeneously broadening two-level atoms. The Maxwell-
Bloch equations describing pulse propagation through such a uniformly doped PBG structure are derived without
using the slowly varying envelope approximation. It is shown that the Maxwell-Bloch equations can be reduced to
effective nonlinear coupled-mode equations. An exact analytic pulse-train solution to these effective coupled-mode
equations is obtained. Such a distortionless pulse-train solution is given by sinusoidal functions and has to exist
with background intensity. We also show that the pulse train propagating in a uniformly doped nonlinear PBG
structure obeys the general SIT phase modulation effect. Furthermore, because both SIT and Bragg scattering
slow down the light, the pulse-train group velocity can be substantially less than the speed of light in a
bare nonlinear medium. Numerical examples of the SIT pulse train in a silica-based PBG structure
doped uniformly with Lorentzian line-shape two-level atoms are demonstrated.

I. INTRODUCTION

The distortionless propagation of light through an
optical resonance medium has been widely discussed
since McCall and Hahn discovered self-induced
transparency (SIT) [1]. The SIT is characterized by the
continuous  absorption  and  reemission  of
electromagnetic radiation from the resonant atoms.
When the coherent interactions between an optical
pulse and the resonant atoms occur, the quantum
mechanical Bloch vector of the atoms undergoes a 277
rotation, and the state of the resonance medium is not
varying. It means that the medium is “transparent”.
Thus the optical pulse propagates through the medium
without loss and distortion. The group velocity of such
a coherent pulse depends on the pulse width and is
much less than the speed of light due to the SIT effect.
Furthermore, the SIT effect is described by the
Maxwell-Bloch equations, which have distortionless
pulse-train solutions given by the Jacobi elliptic
functions [2-4]. Such pulse-train propagation results
from the energy of resonant atoms periodically
oscillating between the ground state and upper state. In
particular, when the Jacobi elliptic modulus is unity,
the pulse-train solutions are reduced to single-pulse
solutions of hyperbolic secant functions. These single
pulse solutions are called SIT solitons. Both SIT
solitons and periodic pulse trains have been observed
in the experiments [5,6].

More recently, a photonic bandgap (PBG) structure
doped with resonant atoms has drawn considerable
attention [7-14]. Kozhekin and Kurizki showed that
near-resonant gap solitons exist in a Bragg reflector
doped with periodic layers of two-level systems [11,
12]. Under the assumption that the resonant absorbers
are confined to thin layers, both standing and moving
analytic solutions are obtained by using the

slowly varying envelope approximation (SVEA). This
specialized PBG model has been extended to study
three-dimensional spatiotemporally solitons [13]. In the
meantime, AkoOzbek and John investigated the
fundamental work on SIT solitary waves in PBG
materials doped uniformly with resonant atoms [14].
For example, they derived single pulse solutions for
frequency detuned far from Bragg resonance and
frequency detuned near the PBG edge. Notice that a
PBG structure has a forbidden band for optical energy,
but the SIT provide a mechanism to make it possible
that an optical pulse can pass through the PBG medium.
Hence such research with respect to SIT propagation
through a doped PBG structure is currently a topic of
great interest. However, the SIT analytic solution
suitably for general frequency detuning and general
phase modulation in a uniformly doped PBG medium
has never been found. In this paper, we study the SIT in
a nonlinear PBG structure doped uniformly with
inhomogeneously broadening two-level atoms without
using the slowly varying envelope approximation
(SVEA). It is shown that the Maxwell-Bloch equations
can be reduced to effective nonlinear coupled-mode
equations. Analytic distortionless pulse-train solutions
to these effective NLCMEs are obtained. It is found that
even if the carrier frequency of the pulse train is deeper
inside the forbidden band, the pulse trains can
propagate through the PBG structure and obey the
general SIT phase modulation effect.

The paper is structured as follows: In Section 1II, the
Maxwell-Bloch equations governing the optical pulse
propagating in a uniformly doped PBG structure are
derived without using the SVEA. We take into account
the material dispersion and Kerr nonlinearity of the host
medium. In Section III, we solve the Bloch equations
and subsequently reduce the Maxwell-Bloch equations
to effective nonlinear coupled-mode equations



(NLCMES). The effective NLCMEs describe that pulse
propagation through a uniformly doped PBG structure
is equivalent to that through an effective PBG structure
without dopants. In Section IV, we solve the effective
NLCMEs and obtain exact pulse-train solutions given
by the sinusoidal functions. It is also shown that such a
pulse train obeys the general SIT phase modulation
effect. In Section V , we numerical study the
characteristics of the pulse trains in the simplification
that the inhomogeneous broadening line shape of the
resonant atoms is assumed to be Lorentzian. In Section
VI, we compare our studies with the previous research
and give the conclusions at last.

I. MAXWELL-BLOCH EQUATIONS
WITHOUT USING SVEA

We consider a one-dimensional Bragg grating
formed in a host medium with Kerr nonlinearity. The
periodic variations of the refractive index inside the
grating region is assumed to be [15]

(W) = n(w)+n,|E[" +n, cos(2B,z2), 2.1

where E is the electric field in the medium, n(w) is the
frequency-dependent refractive index, n, is the Kerr

nonlinear-index coefficient, n_ is the magnitude of the

a

periodic index variations, and [, is the grating wave
number. The two-level atoms with the resonant
frequency w, and the dipole moment p are uniformly

embedded in this Kerr host medium. From Maxwell’s
equations, the wave equation describing light
propagation in such a medium can be written as

g L OE_ 0P_ 0P,

o Hge THe

; (22)

where ¢ is the velocity of light in vacuum, g, is the

vacuum permeability, P is the electric induced
polarization including the linear and nonlinear
contributions of the host medium, and P, is the

resonant polarization due to the two-level atoms. In
Fourier domain, Eq. (2.2) becomes

2

K +7i ()’ %i: =—pw P, (2.3)

where E is the Fourier transform of E, and f’R is the
Fourier transform of P,. The electric field E

propagating along the z direction in such a doped
nonlinear PBG structure can be expressed as

E(r,0)= %)%[E(r, e ™™ +c.c]

1 ~ i z—wpgt i(— z—Wpt
= Lire o [E..0e ™0 + E.(2.0e " 4 e,

(2.4)

[\

where c.c. stands for complex conjugate, x is the
polarization unit vector of the light assumed to be
linearly polarized along the x axis, F(x,y) 1is the
transverse modal distribution, E, and E_ are forward
and Bragg scattering envelopes, and w, is the Bragg
frequency. In addition, the macroscopic resonant
polarization P, caused by the dopants is written as

P,(r,t) = %)?[P(r,t)e”'“"" +cc]

= %)%F(x,w{ [0 4 P(z0)e 4 cd),
(2.5)

where P, and P correspond to the polarization

envelopes induced by E, and E_, respectively. For

simplicity, the quantities of n, |E|2 and n, 6 are
assumed to be much smaller than the refractive index
n(w) of the host medium, so that they can be treated as

perturbations for expanding #(w)®> in Eq. (2.3). After

substituting Egs. (2.1), (2.4), and (2.5) into Eq. (2.3),
we can convert the resulting equations to time domain
by following the perturbation theory of distributed
feedback [15] but without wusing the SVEA.
Consequently, the time-domain  coupled-mode
equations describing pulse propagation in a uniformly
doped PBG structure are written as

0°E OF OF 0’E
=42 4925 t (B + +
aZZ IBU aZ lﬁoﬁl al (B] Boﬁz) 6[2
+2B,[F(E,| +2|E.|E, +3B,E, +KE.]
; OP
+ U, 0, (P, +£a—*) =0, (2.6)
ow, ot

B

where, B, (j=0,1,2) are determined by the mode-
B(w) =(w/ c)n(w) via
B =d'B/dw| _ ., 86,=B,~B, implies the wave

propagation constant

number detuning from the exact Bragg resonance,
k=m,/A is the linear coupling coefficient,

I =nw,/(cAd,) is the Kerr nonlinearity coefficient,

and the transverse mode function is averaged out by
introducing the effective core area

g ]
L:I:|F(x,y)|4 dxdy '

elf

Note that in arriving at Egs. (2.6), we expand B(w)* in



a  Taylor series

B@) =B, +2B,B (@w-w,)
+(B,B, + B)(w-w,)* for converting Eq. (2.3) to
time domain beyond the SVEA [16]. Likewise the high-
order time derivatives of the polarizations and the
coupling terms are neglected.

We now consider the atomic Bloch equations. If the
relaxation times of the polarization and population
difference are long compared with the pulse width, the
relaxtion effects of the two-level system can be ignored.
Therefore, under the rotating wave approximation, the
electric field and the macroscopic polarization satisfy
the Bloch equations given by

9 p=—inwr+iFwE, (2.72)
ot h

Oy g - P (2.7b)
ot 2h ’ '
where  Aw is  defined by Aw=w-w,
W =u(N,—-N, is the macroscopic population

difference multiplied by p between the ground state
(N,) and upper state (N, ) of the two-level system. The
complex envelopes E, and P, can be further written
as

E.(z,t) = a,(z,t)expli¢,(z,1)], (2.8a)

P (z,0) =[U,(z,0) + iV, (z,0)]expli¢,(z,0)],  (2.8b)

where a, (z,f) are real envelopes, ¢,(z,#) are phase
functions, U, (z,f) correspond to the dispersion (in
phase) induced by the resonant atoms, and V, (z.f)

correspond to the absorption (in quadrature) caused by
the resonant atoms. Moreover, the Bloch vectors
(u, ,v,,w) relate the macroscopic polarization and

population difference as follows:
ULV W) = [(u,v.,wg(bw)d(Aw), (2.9)

where u, (Aw,z 1), v, (Aw,z, f),and w(Aw,z, )

are the components of polarization and population
difference contributed from the atoms with frequency
Aw detuned from w,, and g(Aw) is the normalized

inhomogeneous-broadening line-shape function. To
keep a closed set of Bloch equations, we assume that

$.(z.0) =@z,0) £Y(z,1), (2.10a)
W= w, +2w cos24(z,1) +2,2] . (2.10b)

After substituting Egs. (2.4), (2.5) and Egs. (2.8)-(2.10)

into Egs. (2.7), the Bloch equations are expressed as

%:(Am ag;t W, 2.11a)
%:—(Aw+%)ut +%(atw0 *aw), (2.11b)
";0 . _%(a+v+ fav), @.11¢)
% - _%(ay_ tav) 2.11d)

In Egs. (2.11), we have neglected terms oscillating as
exp(£i3f3,z) .

II. EFFECTIVE NLCMES FOR THE MAXWELL-
BLOCH EQUATIONS

In this section, we reduce the Maxwell-Bloch
equations to effective NLCMEs for coherence light
propagating in a nonlinear PBG structure doped
uniformly with inhomogeneously broadening two-level
atoms. In order to obtain the analytic solution we
assume v, (Aw, z,t) are in factorized forms [4, 14, 17]

v, (Aw, z,t) =v,(0,z,1) f(Aw) , 3.1

where f(Aw) is known as the dipole spectra-response

function and is normalized as f(0) =1. Integrating Eqgs.
(2.11a), we have

u,(Bw,z,0) = ur (z,0) +u (z.)Dw ] f(Aw), (3.2)

where u” and u] are defined as

o _ 99, (3.3a)
ot ot

Ou’

Py oy 3.3b
a (3.3b)

Similarly, by integrating Eq. (2.11c) and (2.11d), we
obtain

wo (B, z,0) = w, =[w! (z.0) +w; (z.0)] f(Bw), (3.4a)
wl(Aw,z,t)z—%[w;(z,z)w;(z,t)] f(Dw). (3.4b)

In Egs. (3.4), w, is the initial population difference and
it is assumed in the ground state of the two-level system,



ie, w,=N,u, where N, =N, +N, is the doping
concerntration of the resonant atoms. Likewise w; and

w; are defined as

I, Eﬂm 7 and a&Eﬂa,v[, (3.5a)
ot h ot h
M Koy and M=H, (3.5b)
o h o0 h

Substituting Eqgs. (3.1)-(3.5) into Egs. (2.11b), we have

W= B ya, ¢
ot ot h )
%_ﬂ(wl +W17)ai_(ult+a¢t u;)Aw_M;AOf +& a. S
2h ot n fAw)g
(3.6)

The terms in square brackets in Egs. (3.6) should be
independent of Acw . Therefore, we have

f(Aw)=(1+cAw+c,Aw’)™, (3.7)
and

u = "gf freBaw,, (3.80)
u; :czgatwm, (3.8b)

where ¢, and c, are the constants to be determined.

Substituting Egs. (3.3b) and (3.8) into Egs. (3.1), (3.2),
(3.4), and (3.5), we obtain

09,
ot

u, =[c, ~( —Aw>cz]%w,-fmw)ai<z,r), (3.92)

voze, B o) La e, (3.9b)
B f or

W, =W, ‘%(%)zwif(ﬂw)[af(zat)+af(2, nl, (3.9¢)

w = —%(%)Zwi f(Bw)[a,(z,0)a_(z,0)]. (3.9d)

Then substituting Eqgs. (3.9) into Egs. (2.11a) and
(2.11b), we have

2
,00.09. 09, _c0a
or ar o T ¢, Ot

(3.102)

Fa 162, 0 K
o ¢ ¢ Ot ot 20

)la. - K (@ +2d)a,. (3.10b)

+ ¥

Eqgs. (3.10) are the keys to this paper. These key results
not only describe the coupling nature between the
envelopes and phases of the forward and Bragg
scattering fields in the PBG structure, but also lead to
the general SIT chirping equation, which will be studied
in the next section. Now we show that using Egs. (3.10)
can reduce the Maxwell-Bloch equations to effective

NLCMEs. Using Egs. (2.7)-(2.8), (3.9), and (3.10) to
reduce 0°E, /0’ and p [P, +(2i/w,)(P./d1)], we

0o

obtain

2
aEi:jia£+LE+
or’ ¢, 0t ¢ =
-l(E)Z(E+2+2E;2)E+, (3.11a)
2 :
2iop. O 2 O
0% (P, +;B a{) = sgc, _E)I‘ +al, Eﬁt
2 0E
+ise.(I +—1 =3
lSCZ(] wa 2) al’
+s 21 By (e[ +2E[E,, (.11b)
w n T :

where s is s=pw’(U/h)w,, and two integral

constants /, and [/, are defined by

1, = [ /(Bw)g(Bw)d(Aw), (3.122)
1, = [Aw f(Aw)g(Bw)d(Aw) (3.12b)

Substituting Egs. (3.11) into Egs. (2.6), we obtain

0’E OE OE
+ +2 + +2; e +
o 2Py THRBI,
+2B,[BB.E, +KE, +T,(E.| +2|E.|)E.1=0,
(3.13)
where the effective parameters are
. _ ) c sc, 2
=B -(B+ + I +—1I),
Bl Bl (Bl BOBZ)ZﬁOCZ 2ﬁ0( 1 wB 2)
(3.14a)
2 2
F=r+(B*+ H 56 [M—,
e (Bl BOB2)4BOh2 2B0wb, 1 h2
(3.14b)
s 2 B +B.B
OB =083 +—I|(c. ——)I +c I, ——0727,
B.= 0B+ ) (e, wB) Vel . ]
(3.14¢)
Consequently, we have reduced Eqgs. (2.6) to



effective NLCMEs beyond the SVEA. The effective
NLCMEs describe that pulse propagation through a
uniformly doped PBG structure is equivalent to that
through an effective PBG structure without dopants.
These effective NLCMEs are referred to as the Bloch-
NLCMEs. It is notice that the analytic solutions
describing pulse propagation in a doped nonlinear PBG
structure have to satisfy both Egs. (3.10) and Egs.
(3.13).

VI. EXACT ANALYTIC SOLUTIONS TO THE
BLOCH-NLCMES

Now we start solving the Bloch-NLCME:s to obtain
analytic solutions. By making the moving coordinate

transformation T =¢-z/ v, and &=z, the Bloch-
NLCMEs are rewritten to the forms:
0’E, 2 0’E, - 1 aE 1 0°E,
0 v, 0108 r v or
+2BOB.E, +2B,
4.1

To solve the Bloch-NLCMEs, we seek the solutions of
the forms

E (z,t) = a, (T)exp[i¢, (T) +iABE] . 4.2)
Egs. (4.2) indicate that the phase functions are
O(z,0) =@(1)+AB,E and Y(z,0)=Y(T), where AP,
represents the change of the propagation constant due to
the resonant atoms and Kerr nonlinearity. Substituting
Eq. (3.11a) and (4.2) into Egs. (4.1), and using the new
variables of optical field E,(7)=a,(7)exp[i¢,(T)] to

express Egs. (4.1), we have

£ : +ZEI‘2)E¢ +’<E'; :0’

(4.3)

where [ =T -1 /ABVI), B=p +c/CBev)~LB/,B)
and 8B, =o6B, +1/(2B,c,v)-AB; /2B,. The forms of
Eqgs. (4.3) are equivalent to the general NLCMEs that
have moving gap-soliton solutions describing
distortionless pulse propagation through undoped PBG
structure [18]. However, we will show in the following
that such gap soliton solutions cannot satisfy Egs.
(3.10). Separating the real parts and imaginary parts of
Eqgs. (4.3), we obtain the following differential
equations:

(4.42)

—_1.0a, _
7%
(A v, ot

n —i a¢t

=( ) 3 $Aﬁ,())az
g
+Ta +2T dla, +Ka, cosQW) =0, (4.4b)
Eqgs. (4.4) possess two first integrals [19]
Blnai +B1pa3 =G, (4.52)
— P n_ 6&] 2
B]pﬁln COS( 2‘1’)%“7 - K (Aﬁoﬁl v )a+
r r
+Eﬁlnﬁ3na‘+‘ +Iﬁlpﬁ}paf +C3 s
(4.5Yb)
where ¢, and ¢, are integration constants, and
ﬁ’lp =El +1/v,, B., =E1 -1/, B3F =E1 +3/v, and
B, = [_31 —3/v,. Substituting Egs. (4.4a) and Eq. (4.52)

into Eq. (4.5b), we have a differential equation for a’:

BB, (a3 O

(e it =, Bt =

g .TB, . T B
et g 4Kﬁl,,<ﬁ3n g h
7l _ 0
+Ba Beop - R s TS
vg 2 Ip E

By defining S =a?, Eq. (4.6) can be expressed as

(S)2+ +yS+y, S +y,S +y,S' =0
4 Yo ™V Y Ys Y =0,

4.7)

where the expressions of y, (m=0, 1, 2, 3, 4) for Eq.
(4.7) will be discussed later. Eq. (4.7) can describe the
motion of a solitary wave by analogy with that of a
classical particle moving in a potential. Therefore,
analytic solutions to Eq. (4.7) have been extensively
studied for grating solitons and SIT theory. The well-
known solutions include single-pulse solitary waves
(for y,=y,=0) [18,19], single-pulse solitons (for
Y, =V, =V, =0) and Jacobi elliptic soliton-trains (for
Y, =0) [2,4,14]. From a mechanical analogy viewpoint,
a single-pulse solution corresponds to a particle resting
at a position of zero displacement, and a pulse-train
solution corresponds to a particle oscillating between
two positions. Notice that all the above solutions are
obtained under y, #0 and y, #0. However, for a
uniformly doped nonlinear PBG structure, the Bloch-
NLCMEs constrain the quantities of y,. Indeed, we

subsequently show that Y, has to be zero for exact



solutions to Eq. (4.6). Using 0/9t=0/07 and
integrating Eq. (3.10a), we obtain

9. - g4l (4.8)
ot a,

where Q=-¢,/(2¢,) and ¢ are integration constants.

Eqgs. (4.8) describe the general phase modulation, or
pulse chirping in the SIT. The constant Q indicates that
the carrier frequency of the optical field is shifted to
w, +Q by the SIT effect. Likewise the shifted

instantaneous frequency is inversely proportional to the
pulse intensity. The general chirping relation has been
studied for the SIT in a resonance medium without PBG
structure [4]. Substituting Egs. (4.8) and Eq. (4.5a) into
Eq. (3.10b), and then integrating the resulting equation,
we obtain

Sy’ 1
O sy -esr o Ly
4 1p G
1_B
+— ( ) (- -—%)8" =0, (4.9)
2 B,
where ¢, is another integration constant. Comparing

Eq. (4.6), Eq. (4.7) and Eq. (4.9), we undergo the
constraint Yy, =0 resulting from Yy, =0. These

constraints lead to 3, =3/ v, and F'=0. Hence y,,

y, and Yy, are determined as

Y, _ﬁK v =(c;)’, (4.10a)
— 1 N\ 4 1 2.3
Y, —aKc3(3Aﬁ0 —-9B,)v, —RCOK v, ==¢;, (4.10b)
1 ‘7 \2..2 1 2.2
Y, :a(:;ABO -0B,) Ve +§K Ve
2
1
=Q*+ 4‘;2 e, = (4.10¢)

2

Since y, has to be zero, the exact single-pulse and

Jacobi pulse-train solutions cannot exist for the Bloch-
NLCMEs equations. Nevertheless, Eq. (4.9) can be
integrated to yield

a

’ a.da, _ “ ada, _ \/71_
a,(0) \/_ai =(ya +y,)!y, _[1+<0>VR;(‘1+) ’

(4.11)

Because y, >0 and y, >0 from Egs. (4.10), we have
Y, <0 (¢;>0) for Pa,)>0. The
solution to Eq. (4.11) depends on the

to restrict
roots of

P(a,). Thus we assume P(a,) =(a, —a;)
X(a;—a),where 0<a, <a,(T)<a,.ThenEq. (4.11)

have an exact analytic solution written by
- 2 2 2 2.2

a, = \/ a,—(a,—a,)sin (\/y_ZT) s

where @ =c¢,/2y,+\| (¢,/2,) -Y,/y, and @ =c/2y,

—\/ (¢;/2y,)* =y, !y, . From Eq. (4.5a) and Egs. (4.8),

(4.12a)

a (1), ¢ () and ¢ _(T) are obtained as follow:
a =i\/(1cv ~@)+(@ —a&)sit (y,T) (4.12b)
- \/5 2 0"g P P q 27/ .
$,=-QT+——tan~ [—tan(\/y_zr)] +Y
Jv—z
(4.12¢)
6 =-Qr+ 4c,
Waley, =2a2)(c,v, —2a})
xtar[ / 2, " tan(yy, D]+, (4.12d)
oy, —2,

and W

result, we have obtained exact analytic solutions to the
Bloch-NLCMEs. Physically, these solutions
demonstrate that both the forward and Bragg scattering
fields are infinite CW electromagnetic waves whose
amplitudes are modulated periodically with a period

where W, are integration constant. As a

T,=m/,y, . These periodic pulse trains propagate
distortionlessly in the same direction. Thus the group
velocity of the Bragg scattering field is in the direction
opposite to its phase velocity. Such distortionless
propagation results from the two-level atoms
periodically absorbing energy from one part of the wave
and then returning the energy to an adjacent part [3].
Likewise these coherent photon-atom interactions
balance with the grating dispersion and Kerr
nonlinearity. Therefore, SIT occurs and the optical field
overcomes the forbidden band and passes through the
PBG structure.

V.NUMERICAL STUDY OF THE PULSE-TRAIN
CHARACTERISTICS

To study the distortionless pulse trains, we have to
further derive all undetermined constants. For the
following discussions, we restrict our attention to the
optical field without carrier frequency shift, i.e., Q=0.
In addition, the inhomogeneous broadening line shape
of the resonant atoms is assumed to be Lorentzian and
written as



Aw 1
Aw) = 2% , 5.1
SO = A + (B, ) 2)’ -1

where Aw, =277, is the full width at half maximum
(FWHM) of g(Aw) . Substituting Eq. (5.1) and Eq.(3.7)
into the difinitions of /, and [, in Egs. (3.12), we

find that 1, =2/(Je,0w,) and 1,=0 for

Aw, >>1/ \/Z [16] which will be justified later. From
F=0, B =3/v, and Egs. (3.14), both ¢, and A,
are first obtained as a function of the group velocity

v, .
g

¢, = BOB g E e ey (B + BB T
l6s"u’v,
(5.2a)
1 ; MhTw,,, o
BB, =—v,[Bw, + B,(4B + B, + )] - =36,
4 u 4vg
(5.2b)

Substituting Eqs. (4.12) and T =0 into Eqs. (4.4b),
and then comparing the expressions of cos(2Y)

derived from the upper- and lower- sign equation of Egs.
(4.4b), we have

Y 11 AB?

oB, =0 = —+8f - 5.3
B, 3 (2 Bocz)v; B 2B, (5.32)
= Lo ng e (5.3b)
NS AR B '

By substituting Eq. (5.2b) into Eq. (5.3a), not only (5[?0
is expressed as functions of the group velocity v, , but

also the group velocity is determined for given
parameters of the medium. Consequently, the pulse-

train period 7, =7/,/y, and the integration constant
¢, are further obtained from Eq. (4.10c). On the other
hand, in order to obtain the integration constants c,,

c;,and c,, we define the total intensity of the forward
and Bragg scattering field as follows [20]:

I =a,(t) +a (1) =1,+1, cos’(\Jy,T), (5.4)

where I, =c,v /4+a]/2 is the background intensity

and I, =(a,—a’)/2 is the modulated intensity of the
total field. The relationship between the optical power
and optical intensity is P, =(n, /2)(&, / Uy )A s I,

where &, isthe vacuum permittivity, n, 1is the

0

refractive index at the Bragg wavelength of the host
medium. In this paper, we are interested in the contrast
between the total field and its modulated amplitude.
Thus we define the contrast n =1 /({,+1,). Then

the integration constants c,, c; can be

., and ¢,

determined for a given n by using the expressions of
I, 1
Moreover, for the constant phase parameters W, and
Y =W =0 for

envelopes (¢; #0). However, for an unchirped pulse

a, and a  in conjunction with Egs. (4.10).

0 mo p

Y_, we can assume chirped

train, the forward and Bragg scattering field have to
satisfy a constant phase difference W, —W_=/m/4

(! : odd number) obtained from Egs. (4.4a). Such an
unchirped case leads to AB, =0 and ¢, =0 from Eqgs.

(4.4b) and Eqgs. (4.10a), respectively. Therefore, a, are

reduced to
a,(t) = a,|cos(yJy, r)‘ , (5.52)
a(r)= ap‘sin(\/z r)‘/\/i : (5.5b)

These results lead to 1, =c,v,/4 =a,/2 that cannot be

zero for the existence of the pulse train. Consequently,
there must be a dc term in the total intensity of the pulse
train.
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FIG. 1. (a) Envelopes and (b) phases of the optical forward
field (solid curves) and Bragg scattering field (dashed curves)

as functions of a scaled time ,/y, T . The pulse-train period is
T = 7'[/\/y72 =6.85nsec; and the group velocity is
v, =129%x10° m/sec

=—0.00169%" and corresponding to 1/250 of the speed of
light in the bare Kerr-host medium.

resulting in a appropriate Af,



In order to illustrate the pulse trains, we use the
following material parameters: The Kerr host medium

is silica-based material with n, =145, A4, =50um*,
B,=59x10°m™, B =48x10"sec/m, B,=-20psec/km
and T=486x10""m/V? (n,=12%x10"m*/V?) at
1550 nm wavelength region. The coupling coefficient
of the Bragg grating is Kk =10cm™ corresponding to

the index vibration n, =0.006 at the Bragg
wavelength A, =1553nm. Here we focus the
frequency on the exact Bragg resonance, i.e.,

OB, =0cm™. For the two-level atoms, we assume that
U=14x10"C+m, Of, =1472GHz and N,=8.0x10"m"

corresponding to the typical 1000ppm  doping
concentration of erbium atoms. By using the above
parameters, Fig.1 shows the envelopes and phases of
the optical forward field (solid curves) and Bragg

scattering field (dashed curves) as functions of a scaled
time \/Z 7. Note that the resulting group velocity is
v, =1.29x10° m/sec

being consistent with the

assumption of Aw, >>1/ \/Z . The group velocity of

this forward propagating energy is substantially less
than the speed of light in the bare Kerr-host medium
because both SIT and Bragg scattering slow down the
light. Fig. 2 shows the total power of such slow light as

a function of y,T. The
P +P,=224W and occurs when ¢, (T)=¢_(1)=0.

Furthermore, the components of the Bloch vectors
(u, ,v, ,w) are obtained by substituting Eq. (4.12) into

peak power is

Egs. (3.9). Fig. 3 shows the normalized population
difference as a function of \/y_z T and B, . Clearly,

the magnitude of the population difference is modulated
periodically with the period T s and the time average
of the population difference varies periodically along
the propagating distance. Such energy exchanges
between the upper state and the lower state lead to the
distortionless pulse trains, even if the central frequency
of the optical envelopes is deeper inside the forbidden
band. Finally, we emphasize that the pulse-train period
T, =6.85 nsec corresponds to each pulse width (FWHM)
T, =0.5T, =3.425 nsec. Recalling that for deriving Egs.
(2.11), we assume the relaxation times of the resonant
atoms are long compared with the pulse width 7, .
However, at 4.2 K, the relaxation times of erbium atoms
are T, =10msec (>>T,,) for the population difference,
and T, =10nsec(>T,) for the
Accordingly, the pulse width, strictly speaking, is not
consistent with 7, >>7,. From an experimental

viewpoint, the medium would incoherently absorb the
pulse energy because the total pulse-train length should
be much less than 7, and 7,. Nevertheless, it will be

polarizations.

interesting to find out the suitable materials and

conditions to experimentally study the distortionless
propagation.

1}

aijrF+aiTrF

FIG. 2. Total power of the pulse train as a function of a scaled
times

N <0.5 . Hence we choice 171 =0.49 so that the background

Y,T. For ¢, >0, the contrast 1] has to satisfy

optical power is P, =1.10W and the amplitude of the
modulated power is P, =1.14W . Each pulse width is
T, =05T =3.425 nsec (FWHM).
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FIG. 3. Normalized population difference as a function of a

scaled time ,/y,T and a scaled distance f,& . Clearly, the
magnitude of the population difference is modulated
periodically with the same period 7, =6.85 nsec; likewise

the time average of the population difference varies
periodically along the propagating distance.

VI. DISCUSSIONS AND CONCLUSIONS

For the research of optical pulses propagating
through a doped Bragg reflector, Mantsyzov first
studied pulse propagation in a discrete one-dimensional
medium made of two-level atoms [21]. Subsequently,
Kozhekin and Kurizki extended this discrete model to
continuous medium in which thin layers of two-level
atoms are periodically placed at a one-dimensional PBG
structure [11-13]. These studies all assume that the
resonant absorbers are confined to thin layers. Akdzbek
and John first studied the SIT solitary waves in a



uniformly doped nonlinear PBG material [14]. In this
present paper, we adopt the similar uniformly doped
PBG model to study SIT pulse-train propagation.
However, in contrast with Ref. [14], our model is more
general than that in Ref. [14]: (i) In our uniformly
doped PBG model, we derive the Maxwell-Bloch
equation without using the slowly varying envelope
approximation. The formation of the SIT effects require
ultrashort pulses with their pulse widths being shorter
than the relaxation times of the resonant atoms, but the
SVEA is not valid for a ultrashort pulse. Thus we use
the model without making the SVEA. Moreover, in Ref.
[14], the authors emphasize that they have neglected the
linear contribution to the dispersion relation arising
from the two-level atoms. Hence the allowed
concentration of dopant atoms are limited for their
SVEA model. In Ref. [17], it has been found that SIT
could induce an additional negative dispersion of which

it has not been predicted by the SIT theory under SVEA.

Since the Maxwell-Bloch equation without using the
SVEA can reduce to Bloch-NLCMEs, these effective
NLCMEs completely involve the SIT-induced negative
dispersion and the effective grating dispersion. (ii) The
phase functions of the forward and Bragg scattering
field are assumed to be identical in Ref. [14]. On the
contrary, we consider general phase functions written as

®,(z,0) =@z,t) 2P(z,t) for the field; likewise the
population  difference are assumed to be
w=w, +2w cos[2((z,t)+2B,z]. This general

consideration of the phase functions result in the
demonstration that the phase modulation effects of the
forward and Bragg scattering field both satisfy the
general SIT chirping equation. To our best knowledge,
this chirping relation for the SIT propagating through a
uniformly doped nonlinear PBG structure is shown for
the first time.

Although our model is more general, in contrast with
the main subject of single pulse solutions in Ref. [14],
we focus our studies on the exact pulse-train solutions
to the Bloch-NLCMEs. Notice that the Jacobi elliptic
pulse-train solutions to the Maxwell-Bloch equations
for a resonance medium without PBG structure have
been theoretically studied [4] and experimentally
demonstrated [6]. However, our model involves
considering a resonance medium whose resonant atoms
embedded in a PBG structure. It is well known that a
PBG structure has a forbidden band for optical energy,
but the SIT provide a mechanism to make it possible
that an optical pulse train can pass through the PBG
medium. The pulse trains in a uniformly doped
nonlinear PBG structure are given by the sinusoidal
functions and have to exist with background intensity.
Because the PBG medium is transparent for the SIT,
such research with respect to optical pulse propagation
in a doped nonlinear PBG structure has attracted much
interest. It has been further suggested that a doped
nonlinear PBG structure could be applied to high
sensitivity optical filter, pulse reshaping devices, and
optical switching devices for optical computing, optical

interconnection and optical communication system
[7-14]. It is our hope that our general model can
accurately estimate the associated medium parameters
and the initial condition of the input optical field for
designing such a device. In addition, it would be useful
to study how to excite the pulse trains in a real doped
PBG medium and what are the impacts of the relaxation
effects on the stability of the pulse trains. These
subjects would lead to practical applications of
uniformly doped PBG structures in the vast area of
lightwave systems.

In summary, we have established the Bloch-
NLCMEs to model the SIT effect in a one-dimensional
nonlinear PBG structure doped uniformly with
inhomogeneously broadening two-level atoms. Our
studies confirm that the Bloch-NLCMEs have exact
analytic solutions related to the sinusoidal functions.
Such a new type of pulse-train solution describes how
the SIT evolves in a uniformly doped nonlinear PBG
structure. We show that the pulse train propagating in a
uniformly doped PBG structure obeys the general SIT
phase modulation effect and there must be a dc term in
the total intensity of the pulse train. Furthermore,
because both SIT and Bragg scattering slow down the
light, the pulse-train group velocity can be substantially
less than the speed of light in a bare nonlinear medium.
Numerical examples of the SIT pulse train in a silica-
based PBG structure doped uniformly with Lorentzian
line-shape two-level atoms are demonstrated. It is found
that even if the carrier frequency of the pulse train is
deeper inside the forbidden band, the pulse trains can
propagate through the PBG structure. Namely, the SIT
pulse train renders the PBG structure transparent.

This work was supported by the National Science
Council, Taiwan, R.O.C. under contract NSC 89-2215-
E-009-112.
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Ultrashort Bragg Soliton in a Fiber Bragg Grating
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The propagation of a nonlinear ultrashort pulse in a photonic bandgap structure is investigated by using the finite difference
time domain method. The simulation results show that an ultrashort pulse near the bandgap edge can propagate through a
nonlinear fiber Bragg grating, even if the broadband spectrum of this ultrashort pulse overlaps the whole forbidden band of the
grating. Hence we numerically confirm that an ultrashort Bragg soliton exists beyond the low-intensity limit. It is also shown that
the time delay of such an ultrashort Bragg soliton is proportional to its detuning wavelength from the exact Bragg resonance.

Introduction

Gap solitons are solitary waves propagating in a
nonlinear photonic bandgap (PBG) structure [1]. The
exact analytic solution to describe such a nonlinear
pulse has been obtained from the nonlinear coupled-
mode equations (NLCMEs). By using the multiple scale
method [4], the NLCMEs can be reduced to the
nonlinear Schrodinger equation (NLSE). Soliton
solutions to this approximated NLSE are called Bragg
solitons. Bragg solitons exist near the PBG edge and
have been widely discussed both in theory [4-7] and
experiment [8,9]. It has been demonstrated that a Bragg
soliton can propagate through a fiber Bragg grating
(FBG) [8]. The experimental results are very good
agreement with the NLSE model.

One of the attractive characteristics of a Bragg
soliton is the reduction of its group velocity. The
experiments have shown that such a soliton-like pulse
with 80-ps width can travel with the velocity as low as
70% of the light speed in an unprocessed fiber. Thus all
optical buffer based on the slow propagation of a Bragg
soliton is an ongoing challenge. Moreover, nonlinear
compression for optical pulses by using FBGs is also an
interested subject associated with the Bragg soliton
propagation. Such research may result in applying
solitary propagation in FBGs to practical all-optical
communication system. However, to investigate the
dynamics of a Brag soliton, the models of the NLCMEs
and the NLSE have the following drawbacks: (i). The
NLCMEs are derived from Maxwell’s equation under
the slowly varying envelope approximation. This
approximation renders the NLCMEs invalid to predict
the characteristics of a Bragg soliton in a FBG with
large index variations and arbitrarily apodized grating
profile. (ii). The NLSE is derived from the NLCMEs
under the low-intensity limit. This limitation restricts a
Bragg soliton to a broad pulse, but for a high-speed
lightwave system an ultrashort pulse is more practical
and necessary.

In this paper, we use the finite difference time
domain (FD-TD) method to study the nonlinear
ultrashort pulse in a PBG structure. The FD-TD method
can directly simulate Maxwell’s equations. Hence it
provides a robust simulation theory to investigate the
characteristics of a Bragg soliton without any
approximation. It is shown that a nonlinear ultrashort
pulse near the bandgap edge still can propagate through

a FBG, even if the broad spectrum of this ultrashort
pulse overlaps the whole forbidden band of the FBG.
Consequently, we clarify that the existence of a Bragg
soliton is not constrained by the low-intensity limit.

Simulation theory
We consider an electromagnetic field with the
electric component E_ polarized along the x-axis and

the magnetic component H | polarized along the y-axis.

Such an electromagnetic field propagates along the x
direction in a medium, which is assumed to be non-
permeable, isotropic and non-dispersive. Maxwell’s
curl equations for this problem are written as

0H

o, _ 1 0E, (1)
ot U, Ox

oD, _0H,

—r =Y 2
ot o’ @
D, =g, (X)E. +P", 3)

where [, is vacuum permeability, & is vacuum
permittivity, €_(x) is the relative material permittivity,
D_ is the electric induced polarization including the
linear and nonlinear contributions of the medium, and
P is the nonlinear polarization regarding the Kerr

nonlinearity. On the basis of the FD-TD method, the
finite difference equations for Egs. (1) and (2) are

V u+l‘,2 -H, t,fl'z + Nt (EZ " —EZ ")’ (4)
ylivir2 w2 Ax i+l i
DZ nl =D,|” +£(HV nl/2 —HV n+1'z)’ (5)
i 21 Ax Vlisr2 i-1/2

where At and Ax are the finite difference intervals in
the temporal and spatial domain, respectively. The
procedures of the FD-TD approach are described in the

n+l/2

following. First Eq. (4) is used to determine H

S litl/2

~and E|
i+l zli

1/2

, E

from the previous values of H

-
i+1/2 z

Second D,

n+l
i

is determined by using Egs. (5) from the



n+l/ 2 n+1/2

n
z|j H i+1/2 and y

previous values of D

y i-1/2 "

Finally the resulting D, i"” are substituted into Eq. (3)

to determine EJ|™ under the Newton iterative

Z]i
procedure:

n+l

D

<p+l> _ z

(6)

<p>

ele )+ cOE[]

where c® isthe third-order susceptibility, p is zero or
positiveintegral, and EP =E! for p=0.

To investigate Bragg solitons in a one-dimensional
PBG medium, we consider a uniform FBG with the
relative material permittivity €, (x) = n(x)?, where

n(x) =n,+ Dn cos(%). @

Here n, is the linear refractive index at the central

wavelength of the electric field, Dn is the magnitude
of the periodic index variations, and L is the grating
period with respect to the Bragg wavelength |, via

L=1,/2n,. It is noticed that during the FD-TD

process, there is no constraint on the quantity of Dn
and the apodized profile of the grating. Thusthe FD-TD
method is more suitable than the NLCMEs and the
NLSE model to investigate the dynamics of a nonlinear
pulse in arealistic rectangular waveguide grating or an
apodized FBG. Such nonuniform gratings have been
widely discussed for pulse compression and all-optical
delay line based on the mechanisms of the Bragg
soliton. Nevertheless, in the present paper, we focus our
attention on how an ultrashort pulse evolves in a
uniform FBG with Kerr nonlinearity, if the broad
spectrum of this ultrashort pulse overlaps the whole
forbidden band of the FBG.

Numerical results and discussions

DI HhmL

2

Fig. 1. The reflectivity (solid curve) of the uniform FBG and the
broadband spectrum (dotted curve) of the incident pulse as functions
of the wavelength detuning p =| - |, from the exact Bragg

resonance.

The solid curve in Fig.1 shows the reflectivity
R(DI ) of the uniform FBG in our simulation. The

linear refractive index of this FBG is n, =15 and the

index variation is Dn=9"10*. The central
wavelength of this reflectivity is |, =1.55nm. The

dotted curve in Fig.1 shows the spectrum of the adopted
incident pulse with a hyperbolic-secant pulse shape
initially. The full width at half maximum (FWHM) of
this pulseis assumed to be T, =5.28ps; likewise the

central wavelength of this incident pulse is located at
I, =1.5492nm. Both of the FBG reflectivity and the

pulse spectrum are shown as functions of the Bragg
wavelength detuning DI =1 -1 . Furthermore, the

range with R(DI ) =1 exhibits the forbidden band of

such a PBG structure. It is obviously that the initial
pulse spectrum exceeds the PBG edge and even
overlaps the whole forbidden band. We emphasize that
because of the low-intensity limit for Bragg solitons,
the previously demonstrated experiments and
simulations have not yet clarified the existence of a
nonlinear pulse with such a broadband spectrum. We
use FD-TD method to examine the dynamics of this
nonlinear ultrashort pulse beyond the low-intensity
limit. By choosing a uniform FD-TD space resolution
Dx=50nm, the numerical phase error is limited to
about 3.6"10°°, which is much smaller than the
dispersion due to the PBG structure. Figure 2 showsthe
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Fig. 2. Monitoring the propagation of a low-amplitude pulse in the
fiber grating. The FD-TD method gives the snapshot of the
propagating pulse at (1) t=15 ps, (2) t=60 ps, (3) t=105 ps, and (4)
t=150 ps.



evolution of the incident pulse with low peak power
P=14" 10"™W propagating through the FBG The
Kerr coefficient of this FBG is g=2.0" 10°mW!

and the grating length is L = 38mm. After the initial
pulseis put into this FBG, Fig. Aa), 2(b), 2(c) and 2(d)
show the pulse shapes at t=15ps, t=60ps,
t =105ps, and t =150ps, respectively. One can see

that the shapes of this pulse are asymmetrically
broadened as a consequence of its broadband spectrum.
The evolution of the peak power and the spatial width
of the pulse versus the propagating distance are shown
inFig. 3.

Fig. 3. (8 Peak power and (b) spatid pulse width of the low-
amplitude pulse versus the propageting distance.

During the propagation, the pulse undergoes the large
quadratic grating dispersion. Such a large dispersion is
produced by the interference among the multi-layers of
the grating. To balance this quadratic grating dispersion,
we have to increase the peak power of the initial pulse.

Enargy |aks. ures)

Energy (ab= enis]

1
i
.
N

SN (0]

(1] 1) |

Energy (abs urils]

Ereergy {abs urils)

1.
T T T f T 3
1 2 3 L o a 3 4
distants () dislaros (em)

Fig. 4. Monitoring the propagation of the soliton-like pulse in the
FBG. The FD-TD method gives the snapshot of the propagating pulse
at (1) t=15ps, (2) t=60 ps, (3) t=105 ps, and (4) t=150 ps.

Fig. 4 shows the evolution of the nonlinear ultrashort
pulse with peak power P=14"10°W. Figure 4(a),
4b), 4c) and 4(d) represent the pulse shapes at
t=15ps, t=60ps, t=105ps, and t=150ps,
respectively. It is shown that the peak power and the
pulse width are almost unchanged during the
propagation. Hence the balance between the
nonlinearity and the quadratic grating dispersion leads
to a soliton-like pulse. Figure 5 explicitly shows the
evolution of the peak power and the spatial width
versus the propagating distance. The numerical results
show that the incident hyperbolic-secant pulse becomes
quasi-stable. The pulse adjusts its amplitude and
duration periodically because of the interaction between
the nonlinearity and the quadratic grating dispersion.
The soliton periodic L_ for such a solitary wave can be

defined by the nonlinear length L via
L.=p,/2=p/(2g>P). Therefore the soliton-like
wave propagates about 16.7 soliton periods.

by o

Fig. 5. (@) Pesk power and (b) spatial pulse width of the soliton-like
pulse versus the propagating distance. It is shown that the pulse
adjusts its amplitude and duration periodically because of the
interaction between the nonlinearity and the quadratic grating
dispersion.

Another notable characteristic of this solitary wave is
its propagating delay with respect to the propagating
time of the light in an unprocessed fiber. For the above
hyperbolic-secant pulse with carrier frequency
I, =1.5492 nm, the delay after propagating through the
grating with length L =38mmis 42ps. This delay
corresponds to the soliton’ s group velocity as low as
72% of the light speed in an unprocessed fiber. The
group velocity of our adopted ultrashort pulseis very
close to that of the Bragg solitons demonstrated
previously in the experiment [8]. Figure 6 further
displaysthe time delay versusthe carrier wavelength of
the ultrashort Bragg soliton. One can see that the delay
is linealy proportional to the Bragg detuning
wavelength. Note that both of the NLCMEs and the
NLSE model cannot predict such arelation between the
time delay and the carrier wavelength detuning of an
ultrashort Bragg soliton. Consequently, it would be
useful to apply the FD-TD method to estimate the group
velocity of an ultrashort Bragg soliton, especially for
designing an all-optical buffer in practical high-speed
communication systems.
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Fig. 6. Time delay versus different carried wavelength of the
ultrashort Bragg soliton.

Conclusion

We have applied the FD-TD method to investigate
the nonlinear ultrashort pulse in a fiber Bragg grating.
The FD-TD method can directly simulate Maxwell s
equation and inherently computes the bi-directional
electromagnetic field without using any approximation.
As a result, our study numerically confirms that the
existence of a Bragg soliton is not constrained by the
low-intensity limit. An ultrashort Bragg soliton still
could propagate through a nonlinear PBG structure,
even if its broadband spectrum overlaps the forbidden
gap of the PBG medium. The propagating dynamics
which have not yet been clarified by the NLCMEs and
the NLSE model are explicitly shown on the basis of
the FD-TD method. Furthermore, the FD-TD method
shows that the time delay of an ultrashort Bragg soliton
is linearly proportional to the Bragg detuning
wavelength. It would be useful to apply the FD-TD
method to design an all-optical delay line in a realistic
high-speed telecommunication system.
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