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a b s t r a c t

Stable stepping motion from mechanical excitation of a piezoelectric device is generated using the impact
drive mechanism (IDM) based on various triangular waveforms exerted by the counter mass speed.
However, stick-slip behavior originating from the contact friction between the movable part and the
guide surface poses an obstacle for precise modeling. Therefore, this work presents a concise impulse
model for mechanism control of stepping motion behavior. The proposed impulse model incorporates the
vailable online 23 December 2010
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duty ratio and input frequency of the triangular waveform of counter mass relative displacement as the
system input and outputs the estimated step size and the behavior of the stepping motion. An enhanced
version of the dynamic model and our experimental results validate the efficacy of the proposed model.
An adequate design and control of IDM motion is highly promising for use in nano-scale positioning.

© 2010 Elsevier B.V. All rights reserved.
iezoelectric actuator

. Introduction

Among the many piezoelectric precision positioning systems
eveloped for industrial and scientific applications include scan-
ing displacement devices, pulse drive devices and ultrasonic
iezomotors [1]. Scanning displacement devices produce motion
hat is driven directly or mechanically amplified. Pulse drive
evices based on the inertial principle include stick-slip and other
lamping mechanisms. A stick-slip mechanism based on the rapid
esponse of continuous driving voltage can generate stable step-
ing motion from mechanical excitation of a piezoelectric device.
tick-slip behavior results from the contact friction between a mov-
ble part and a guided surface. Despite the apparent ability of a
ulse drive device to resolve the limited stroke problem of a scan-
ing device, some bottlenecks remain, including low load capacity
f a pulse drive device. Load variation significantly alters the mech-
nism behavior. The stick-slip motion is sensitive to changes in
earby surroundings, such as the indeterminate distribution of

riction on the guided surface, tilting of the guide surface and

echanical vibration. These quasi-static piezoelectric motors are

istinct significantly differ from ultrasonic piezomotors. Ultrasonic
iezomotors convert electro-mechanical energy on piezoelectric
omponents that transport an acoustic standing wave or traveling

∗ Corresponding author. Tel.: +886 3 571 2121x55152; fax: +886 3 572 0634.
E-mail address: whc@cc.nctu.edu.tw (W.-H. Chieng).

924-4247/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.sna.2010.12.008
wave (surfing wave) smoothly [2,3]. An acoustic wave produced by
resonantly excited piezoelectric materials induces the mechanical
movement for rotating or sliding motion.

IDMs have been applied include its use as a rotating joint within
a micro robot arm [4], not only as an actuator for positioning printed
circuit boards [5], but also as a movable platform to machine fine
structures on a large work piece [6]. Driving IDM should consider
the particular waveform of an input signal amplified to a high volt-
age [7,8]. Ha et al. [9] attempted to optimize an excitation waveform
for driving IDM with a real-coded genetic algorithm and, in doing so,
achieved the farthest step size under the same conditions of ampli-
tude and frequency of input signal. In some applications suffering
from an adverse environment, a non-contact method of thermally
exciting the actuators of IDM has been developed [10,11]. For the
precision positioning motion of IDM, a previous study integrated
the Leuven model for the frictional force and the Bounc–Wen model
for the hysteresis effects with the distributed parameter system
and formulated using the finite-element method (FEM) [12]. Other
applications involving positioning devices with IDM have also been
developed for new materials driven by a magnetic force [13–15].
Impressively, the demonstrations promulgate a 10 nm high preci-
sion step size through means of two-stage control strategies and a

combination of piezo-VCM (voice-coil motors) actuators or piezo-
pneumatic actuators with an adjusting preload mechanism in Refs.
[16,17].

A mathematical model of a spring–damper–mass system for a
linear motor using the IDM has been devised [18,19]. The subse-

dx.doi.org/10.1016/j.sna.2010.12.008
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:whc@cc.nctu.edu.tw
dx.doi.org/10.1016/j.sna.2010.12.008


C.-F. Yang et al. / Sensors and Actuators A 166 (2011) 66–77 67

q
i
m
d
l
o
t
i
p
b
q
t
c
s

2

c
a
a
g
a
s
o
s
a
a

v
a
r
d
a

X

a

x

w
v
c
b
m
a

P

Fig. 1. The Impulse Drive Mechanism (IDM).

uent dynamic behavior of an IDM system influences the driving
nput voltage and waveform frequency. For reason of optimizing

oving behavior of IDM, various waveforms [19] of driving IDM are
iscovered according to this dynamic model. In fact, since that non-

inearity of the hysteresis and friction [20] results in the inaccuracy
f dynamic model and the consequence of control strategy [21],
he phenomenon comes into existence of different motion behav-
ors exciting by triangular waveform in experiments. This work
roposes a concise impulse model to describe stepping motion
ehaviors of IDM and indicates not all inputs of the duty and fre-
uency of triangular waveform work as well. In the experiments,
his work selects the piezoelectric material-based IDM as the pre-
ise positioning for the proposed impulse model. The following
ections describe the stepping behavior of IDM.

. Impulse model of IDM

IDM consists of the main mass, a piezoelectric actuator and a
ounter mass. A slider may be mounted on a V-groove guide way
nd held steadily by the friction force when no input voltage is
pplied to the piezoelectric actuator, as shown in Fig. 1. The V-
roove guide can produce a one-dimensional motion constraint
nd provide a necessary alignment for laser interferometer mea-
urement simultaneously. A counter mass is connected to the main
bject via one piezoelectric element. The mechanism performs the
tepping motion and elongating or contracting the piezoelectric
ctuator by applying voltage waveforms to the piezoelectric actu-
tor, as found in literature [5,6,11,12,16].

Fig. 2 shows a simplified IDM model and its block diagram. The
ariables X and x denote the displacement of the slider, as well
s the relative displacement between the counter mass and slider,
espectively. Whenever the time derivative of the stroke, ẋ(t), is
iscontinuous at time t, an impulse motion occurs at both the slider
nd the counter mass. The equations can thus be used as followings:

˙ (t) = Ẋ(t−) + P

M
(1)

nd

˙ (t) = ẋ(t−) − M + m

Mm
P (2)

here t denotes the time with an infinitesimally small time inter-
al ahead of t. M and m denote the mass of the slider and the
ounter mass, respectively. The piezoelectric actuator mass could
e included in M or neglected since the housing type of piezoelectric

aterials. The amount of impulse (momentum) P can be evaluated

ccording to

= Mm

M + m
(ẋ(t−) − ẋ(t)) (3)
Fig. 2. (a) Schematic of impulse model of IDM. (b) Block diagram of impulse model.

2.1. Impulse motion due to triangular waveform excitation

According to Fig. 3, the triangular wave form input to the piezo-
electric actuator can be written as follows:

ẋ(kT + t) =

⎧⎪⎪⎨
⎪⎪⎩

0 k < 0
S

�T
when 0 ≤ t < �T

−S

(1 − �)T
�T ≤ t < T

(4)

where S denotes the maximum displacement of the piezoelec-
tric actuator, � denotes the duty ratio of the triangular wave and
0 < � < 1. Two phases, i.e. the extension and retraction phases, are
applied alternatively to the piezoelectric actuator which is used
to connect the slider and counter mass. Between the phases, the
impulse is introduced to cause velocity discontinuity of both the
slider and counter mass. Switching from the retraction phase to
the extension phase is considered first. Substituting t = kT with Eq.
(3) yields

P1 = Mm

M + m
(ẋ(kT−) − ẋ(kT)) = Mm

M + m

(
ẋ(kT−) − S

�T

)
(5)

where P1 denotes the corresponding impulse produced by piezo-
electric actuator input at this instant. Rewriting Eq. (1) by
substituting Eq. (5) follows

Ẋ(kT) = Ẋ(kT−) + m

M + m

(
ẋ(kT−) − S

�T

)
(6)

as the points A and B shown in Fig. 3. During the extension phase,
the friction force is introduced to prevent the slider from sliding
relative to the ground as following

Ẋ(kT + t) = Ẋ(kT−) + m

M + m

(
ẋ(kT−) − S

�T

)
+ �gt (7)

where the friction coefficient � is chosen to be positive for Ẋ(kT +
t) < 0. The slider may come to a full stop when the impulse P1
cannot keep the slider from moving during the entire extension

phase. As the point C shown in Fig. 3, the solution at the end of the
extension phase may be

Ẋ(kT + �T−) = Ẋ(kT−) + m

M + m

(
ẋ(kT−) − S

�T

)
+ �gT� < 0 (8a)
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Fig. 3. The input triangular waveform x(t) for piezoel

r

˙ (kT + �T−) = 0 (8b)

Next, switching from the extension phase to the retraction phase
s considered. Similarly, by substituting t = (k + �)T with Eq. (3), the
ollowing relation from Eq. (4) is obtained

2 = Mm

M + m
(ẋ(kT + �T−) − ẋ(kT + �T)) = Mm

M + m

(
S

(1 − �)�T

)
(9)

here P2 denotes the corresponding impulse produced by piezo-
lectric actuator input. By substituting Eq. (9) with Eq. (1) yields
he following:

˙ (kT + �T) = Ẋ(kT + �T−) + m

M + m

(
S

(1 − �)�T

)
(10)

During the retraction phase as shown the region between the
oints D and E in Fig. 3, the friction force is introduced to prevent
he slider from sliding relative to the ground so that

˙ (kT + t) = Ẋ(kT + �T) − �g(t − �T) (11)

here the friction coefficient � is chosen to be positive for �T ≤ t < T.
earranging Eqs. (8a), (10) and (11) yields

˙ (kT + t) = Ẋ(kT−) + m

M + m

(
ẋ(kT−) + S

(1 − �)T

)
+ �g(2�T − t) (12a)

or �T ≤ t < T. Also, rearranging Eqs. (8b), (10) and (11) yields

˙ (kT + t) = m

M + m

(
S

(1 − �)�T

)
− �g(t − �T) (12b)

or �T ≤ t < T. The slider may come to a full stop when the impulse
2 cannot keep the slider from moving during the entire retraction
hase, i.e.

˙ ((k + 1)T−) = 0 (12c)

.2. Steady state analysis
Subjected to one-sided (towards the slider) movement control,
he duty ratio must be less than 50%, i.e. � < 0.5. The triangu-
ar waveform exciting on the piezoelectric actuator is repetitive
ccording to Eq. (4) for k > 0. The situation of steady state shows
actuator and the induced slider velocity Ẋ(t) of IDM.

the initial condition of piezoelectric actuator velocity before each
cycle is

ẋ(kT−) = − S

(1 − �)T
(13)

Note that the periodic triangular waveform schemes the mirror
transition corners, the momentum P1 and P2 are equal but opposite
except for k = 0. Substituting Eq. (13) with Eq. (12a) yields

Ẋ(kT + t) = Ẋ(kT−) − �g(t − 2T�) > 0 (14)

for �T ≤ t < T. The condition for a slider to come to a full stop before
the end of the retraction phase, i.e. Ẋ(NT−) = 0, for certain k = N is

�gT(1 − 2�) ≥ Ẋ((N − 1)T−) > 0 (15)

According to Eqs. (14) and (15), once the slider stopped in the
retraction phase, it must consequently come to a full stop before
the end of retraction phase for all k ≥ N to achieve a steady state,
i.e.

Ẋ(kT−) = 0 for k ≥ N (16)

The precondition for validity of Eq. (12a) is that Eq. (8a) must
not be zero at all instances in the interval 0 ≤ t < �T. Thus, when a
steady state is achieved, Eqs. (13) and (16) can be substituted with
Eq. (8a) to obtain that

m

M + m

(
S

(1 − �)�T

)
> �gT� (17)

Let the impulse ratio � be defined as

� = mS

(M + m)�gT2
(18)

and then Eq. (17) yields the following:

� > (1 − �)�2 (19)

In case that Eq. (19) is valid, velocity of the IDM is determined
using the following velocity equation⎧ ( )

Ẋ(nT + t) =

⎪⎨
⎪⎩

�gt − m

M + m

S

(1 − �)�T
0 ≤ t < �T

when
�g(2T� − t) �T ≤ t < 2�T

(20)
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00) and � = 0.482; (d) (� , f) = (0.47, 350) and � = 0.164; (e) (� , f) = (0.4, 300) and � =

hen the steady state is achieved. The step size of the IDM motion
an be derived by integrating Eq. (20) with the initial condition
˙ (NT−) = 0 as following:

X(NT) = X((N + 1)T) − X(NT)

= −
(

m

(M + m)(1 − �)
S − �g�2T2

)
(21)

According to [17], adding a preload force on the slider is equiva-
ent to increasing frictional coefficients � in both static and kinetic
egions. The step size may be refined by either properly adjust-
ng �, or adjusting the preload, to match the slider displacement
nduced by S (the maximum displacement of the piezoelectric actu-
tor). In the extreme case that � → (m/(g�2T2(M + m)(1 − �)))S, the
tep size approaches theoretically, according to Eq. (21), to zero or
n infinitely small size. The consequence of a miniature step size

ay be useful in the applications involving advanced measurement

chemes for nano-scale positioning.
However, the practical piezoelectric actuator cannot produce

elocity discontinuity, implying that an infinite acceleration is
equired. The above equation for step size estimation can thus be
(a) (� , f) = (0.1, 200) and � = 0.054; (b) (� , f) = (0.4, 200) and � = 0.054; (c) (� , f) = (0.35,

attenuated as follows:

�X = ˛
(

�g�2T2 − m

(M + m)(1 − �)
S
)

= ˛
(

�2 − �

(1 − �)

)
�gT2 (22)

where ˛ refers to the correction factor and 0 < ˛ < 1.
The precondition for the validity of Eq. (12b) is Eq. (8b) during

the interval 0 ≤ t < �T, that implies

� ≤ (1 − �)�2 (23)

The corresponding step size may be derived by integrating Eqs. (7)
and (12b) with the initial condition Ẋ(NT−) = 0 as that

�X(NT) = X((N + 1)T) − X(NT) = 0 (24)

Eq. (24) implies that although the steady state can be achieved

when Eq. (21) is violated, however, the slider will have no net
displacement in whole. The fateful behavior of movement is deter-
mined by either Eq. (19) or Eq. (23) as IDM achieves a steady state.
Fig. 4(a) shows the response of a simulation for � ≤ (1 − �)�2 with
system parameters listed in Table 1.
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Table 1
System parameters of the IDM used in the simulations and experiments.

Symbol Physical meaning Quantity

M Mass of slider 165.57 g
m Mass of counter mass 57.61 g
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Table 2
The specifications of Burleigh’s piezoelectric actuator.

Specifications Description

Model number PZL-015
Materials Lead zirconate titanate (PZT)
Type Preloaded stack actuator with housing

Piezo stack: rectangular disk 4 mm × 5 mm 0.25 mm
thickness PZT plate

Dimension Total stack length: 20 mm
Housing: diameter 12.7 mm, length 33.8 mm

Operating voltage −20 to 150 V
Motion for 0–100 V −5 to 23 �m
Frequency response 3.5 kHz
Nonlinearity 4%
� Friction coefficient 0.4
g Acceleration of gravity 9.8 m/s2

S Stroke of piezoelectric actuator 20.35 �m
˛ Step size correction factor 0.35

.3. Transient analysis

Transient response attributed to the initial condition of the
iezoelectric actuator differs from the consecutive periodic trian-
ular waveform. Transient response should be as short as possible
o achieve highly accurate position control. At the initial time k = 0,
e have Ẋ(0−) = 0 and ẋ(0−) = 0. Additionally, Eq. (7) indicates that

he slider velocity is obtained during the extension phase, 0 ≤ t < �T,
o that

˙ (�T−) =
{

�g�T − m

M + m

(
S

�T

)
if � > �2

0 if � ≤ �2
(25)

In a case in which � > �2, the terminal velocity at the end of the
rst step is derived from Eq. (12a) for �T ≤ t < T as follows:

˙ (T−) =
{(

�

(1 − �)
− (1 − 2�)

)
�gT if � > (1 − �)(1 − 2�)

0 if � ≤ (1 − �)(1 − 2�)
(26)

In another case in which � ≤ �2, the terminal velocity at the end
f the first step is derived from Eq. (12b) for �T ≤ t < T as follows:

˙ (T−) =
{(

�

(1 − �)�
− (1 − �)

)
�gT if � > (1 − �)2�

0 if � ≤ (1 − �)2�
(27)

The steady-state condition is achieved after the first step, i.e.
= 1, when Ẋ(T−) = 0. Based on the steady state analysis, the

lider’s terminal velocity of the first triangular waveform input dis-
riminates whether the following steps are identical or not. Not
ntil the slider is caught in a stop does the contact friction force act
ersistently upon it. For the slider containing velocity at the first
erminal, additional steps must be taken to achieve the steady state
ithin a finite time. The impulse model also explains the transient

esponse accompanied by a reverse movement within the first few
teps occasionally. High accuracy of position control is generally
ccomplished within the first few steps and, hence, reverse versions
re not anticipated.

Steady-state and transient response analyses indicate that four
oundaries, i.e. (1 − �)�2, �2, (1 − �)(1 − 2�) and (1 − �)2� , locate
he operating region of IDM with the switching frequency defined
s f = 1/T. Fig. 4(a)–(e) schematically depicts the transient response
f an impulse model for different operation regions, with the sys-
em parameters listed in Table 1.

As has been explained, three behavioral regions of operating
DM with the triangular waveform excitation input (Fig. 4), referred
o as stepping motion behavior for operating IDM, are defined as

. Cut-off region: When � ≤ (1 − �)�2, the steady-state impulse
induced from extension and retraction of the piezoelectric actu-

ator cannot sufficiently yield a movement for IDM, as shown in
region I of Fig. 4(b).

. One-step stable region: When the motion of IDM falling into
standstill during extraction phase of the first step, the steady-
state impulse subsequently induced from the extension and
Hysteresis 15%

Creep
Increasing voltage: 1–2% in 20–30 s
Decreasing voltage: 7–8% in 60–80 s

retraction of the piezoelectric actuator can not sufficiently yield
a movement for IDM, as shown in region II of Fig. 4(a) and (e).
For applications requiring high precision incremental position-
ing, e.g., incremental positioning precision is less than 1 �m, the
incremental movement must be achieved exactly in the initial
steps. In the one-step stable region, the impulse ratio � satisfies
the following set:

{�|� > (1 − �)�2, � < (1 − �)2�} ∪ {�|� > �2,

� < (1 − �)(1 − 2�)} for 0 < � < 0.5 (28)

3. Multi-step stable region: When velocity occurs at the end of the
first step, the steady-state impulse induced from the extension
and retraction of the piezoelectric actuator can sufficiently yield
a movement for the IDM. However, the initial impulse is too large
to cause the initial step of the motion not falling into the steady
state, as shown in region III of Fig. 4(c) and (d). In the multi-step
stable region, the impulse ratio � satisfies the following set:

{�|� > (1 − �)(1 − 2�), � > (1 − �)2�} for 0 < � < 0.5 (29)

3. Experiments

In the experiment, the excitation triangular waveform is formed
using NI DAQ-card PCI-6711 which features a 12-bit digital-to-
analog converter (DAC) per channel. The signal is controlled by
a LabVIEW software, amplified maximal to 130V by Burleigh PZ-
350M Amplifier, and then fed into piezoelectric actuator of IDM
on the V-groove guide way. Fig. 5 illustrates the overall system
architecture and configuration with instrumentation for evaluat-
ing the displacement of the piezoelectric actuator. The HP10705A
single beam interferometer with 10 nm (0.4 �in.) resolution and
3 MHz maximum data update rate determines the displacement of
IDM. The sampling time of the data is controlled by the DSP module
and, then, sent to HP10885A axis board in PC. The HP10885A axis
board focuses mainly on converting the reference and measured
signals from a HP5517C interferometer laser head and measure-
ment receiver into a 32-bit digital position word. The unit of
measurement associated with the position word is a fraction of the
wavelength of the laser light currently used. Following conversion,
the raw data is read by the DSP module directly. The DSP mod-
ule focuses mainly on sending signals to HP10885A axis board to
control the sequence of data sample and hold (8 bits digital output)
and performing data reading (32 bits digital input). These objectives

are achieved by integrating these tasks into a program that can be
loaded to the DSP controller through use of developmental soft-
ware. Table 2 lists the specifications of the piezoelectric actuator
that is applied in the experiments (Fig. 6).
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Fig. 5. The architecture of stepping motion experiments using IDM.
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slider and the guide way. The variables X and x refer to the displace-
Fig. 6. Experimental setup for evaluating stepping motion of IDM.

. Mass–damper–spring dynamic model

In the foregoing section, an impulse model has been devel-
ped for predicting the behavior of IDM motion. The impulse
odel is simplified dynamic model without considering the detail

pring and damper effect of the IDM. Through the impulse
odel analysis, it is convenient to obtain the one-step stabil-

ty of the IDM motion. However, the corresponding transient
esponse is inaccurate as a result of the simplified model. On
he other hand, a better precise dynamic analysis, referred the

ass–damper–spring dynamic model [19,20,22,23], may be used
o analyze the spring–damper effect during each impulse step.

he coefficients of the mass–damper–spring dynamic model are
btained from experiments based on the known system identifica-
ion techniques. The mass–damper–spring model of IDM as shown
Fig. 7. Schematic of mass–damper–spring dynamic model of IDM.

in Fig. 7 is expressed as follows:

{
MẌ − Cẋ − Kx = F� − (C�̇ + K�)
m(Ẍ + ẍ) + Cẋ + Kx = C�̇ + K�

(30)

where � and F� denote the piezoelectric actuator length input and
the frictional force between the two surfaces in contact, respec-
tively. Friction force F� is evaluated by the stick-slip friction model
[24–27] based on the relative velocity Ẋ between these two con-
tacting surfaces.

The housing piezoelectric actuator is assumed here to be lin-
ear and rigid. According to the piezoelectric actuator design, the
mechanical interface between the slider and the counter mass is
specified as a linear spring constant K and a linear damping coeffi-
cient C. While assuming that no contact friction occurs between the
counter mass and the guide way, friction occurs only between the
ment of the slider, as well as the relative displacement between the
counter mass and slider, respectively.
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.1. Dynamic model analysis

The dynamic response of Eq. (30) can be expressed as follows:

(t) = (M + m)((A1 sin(ωdt + A2)e−�ωnt − A3)(C�̇ + K�)

+ m(A4t2 + A3 − A1 sin(ωdt + A2)e−�ωnt)F� (31)

here
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1 − �2
ynamic analysis can also be performed by implementing
IMULINK software, which involves use of the functional blocks,
s shown in Fig. 8. The functional blocks carry out the differen-
ial equations of the dynamic model in Eq. (30) solving by the
unge–Kutta method. Simulation results of the dynamic model
model of IDM for simulations.

using parameters listed in Table 1 are discussed after identifying
system parameters experimentally.

4.2. Identification of dynamic system parameters

Parameters of the dynamic model must be estimated from
the experimentally measured data to forecast the behavior of the
mechanism precisely. As mentioned earlier, the dynamic model of
IDM with a linearization MCK system consists of a friction model
and a linear actuator. The estimated parameters include stiffness K
and damping coefficient C of the piezoelectric actuator. To identify
these two parameters of the piezoelectric actuator, the slider of the
MCK model must be fixed like a level suspension without contact-
ing the friction surface to reduce the complexity of identification.
For consistency of the identification, the retraction and the exten-
sion of IDM excited by triangular waveform signals are used to feed
as the inputs of identification which the hysteresis effect reveals.
The dynamics of the mechanism are discrete based on a finite dif-
ference approximation to the MCK system. The discrete system of
a particular sampling time Ts is specified as follows

m(xi − 2xi−1 + xi−2) + CTs(xi − xi−1 − �i + �i−1) + KTs
2(xi − �i) = 0

(32)

The above equation can rewrite as follows:

HW − Y = 0 (33)

where

H =
[

(xi − xi−1 − �i + �i−1) (xi − �i)
]

W =
[

C

m
Ts

K

m
Ts

2
]T

and

Y = −(xi − 2xi−1 + xi−2)
Converging the identified parameters to a range can be ensured
based on a weighted recursive least square (WRLS) adaptive
algorithm [28] where W refers to the matrix that contains the
parameters to be estimated. Ultimately, the stiffness and the damp-
ing coefficient must be estimated by an iteration of W, followed by
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ig. 9. Experiments for identifying the stiffness K and the damping coefficient C of
he MCK system. The identified result of the damping coefficient C is approximately
30 N × s/m and the stiffness K is approximately 5.7 × 106 N/m.

inimizing the value of ||HW − Y||. The optimal solution can be
btained from the following recursive formulation

i = Wi−1 + Pi−1H∗
i


i + HiPi−1H∗
i

(Yi − HiWi−1) (34)

here

i = 
i

[
Pi−1 − Pi−1H∗

i HiPi−1


i + HiPi−1H∗
i

]
nd

0 = I

In the evaluation, 
i = 0.995 is selected to perform a forget-
ing factor. Fig. 9 accumulates the parameter estimates identified
rom the experiments which indicate that the stiffness is approxi-

ately 5.7 × 106 N/m and the damping coefficient is approximately
30 N × s/m.
. Comparison study

Experiments are performing with input frequencies as 100 Hz,
00 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz, 800 Hz and for each

ig. 10. The experimental results of the representative sets are shown for input frequencie
he different operating illustrations of IDM.
uators A 166 (2011) 66–77 73

input frequency, we set duty ratio as 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5. For each experimental pair of input frequency
and duty ratio, 30 experiments are performed on different sections
of the V-groove guide way. The experimental results are shown by
either the best representative, committee voting, or the average
of all the results. For instance, Fig. 10 displays the experimen-
tal results of the representative sets for input frequencies 200 Hz,
400 Hz, 600 Hz, 800 Hz and duty ratio 0.2. In the right of Fig. 10, the
symbols from top to bottom represent a multi-step stable case, a
one-step stable case, a cut-off case and an illustration of reversed
motion, respectively. Reversed motion indicates IDM steps towards
the direction of the counter mass as duty ratio of the excita-
tion waveform between 0 and 0.5, which traduces the impulse
model incidentally. Movements of the slider of IDM are also clearly
observed from the zoom in on the first few steps of Fig. 10. Com-
paring this figure with Fig. 4(d) reveals that a reversed motion in
the impulse model falls to the direction of slider of IDM eventually.
In contrast, the dynamic model can derive such reversed motion
due to the interaction of a damper and spring. Fig. 11 summa-
rizes the results of the committee voting for each experimental pair
(f, �), i.e. the operating region is determined based on the major-
ity of the behavior of the thirty experiments undertaken during
each experimental set; in addition, the experimental results corre-
late well with the estimated ones. However, some of the one-step
stable regions are shaded with multi-step stable symbols, indi-
cating that the impulse model still incurs some of the adverse
dynamic effects. These dynamic effects, including the counter mass,
oscillate owing to the stiffness and damping coefficient of the
piezoelectric actuator, sticktion (stick-slip phenomenon), and hys-
teresis effect of the piezoelectric actuator [29]. Such effects may
cause the slider to oscillate in a high frequency and a high duty
ratio region, ultimately failing to comply with the impulse model
estimates.

Due to the −3 dB bandwidth of the PZT amplifier used in our

experiment, Burleigh PZ-350M is 3 kHz, in which the response
on the corner point (velocity discontinuity) of the triangular
waveforms is distorted. The impulse spectrum of the velocity dis-
continuity point, which requires an infinite bandwidth, is clipped at
high frequencies in the experiments. The theoretical impulse model

s 200 Hz, 400 Hz, 600 Hz, 800 Hz and duty ratio 0.2. The symbols at the right denote
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Fig. 11. Experimental results compared with Fig. 4.

nd the experimental results more significantly differ at a higher
requency, as shown in Fig. 11.
.1. Frequency response

Based on Eq. (22) and the system parameters listed in Table 1,
he frequency response of the impulse model for the step size is
erived, as schematically shown in Fig. 12 with the excitation input

ig. 13. Step size comparisons: (a) impulse model (simulation), (b) dynamic model (sim
uty ratio and (d) experimental results with respcet to different input frequency.
Fig. 12. Comparisons of impulse model (simulation), dynamic model (simulation),
and experimental results with excitation input frequency 100 Hz.

frequency 100 Hz and Fig. 13(a) for additional results. In Fig. 13(a),
the dashed lines denote the multi-step stable region which each
step size is not identical in first few steps. According to these fig-
ures, except for the cut-off region, for the same input frequency the

step size monotonically decreases with an increasing duty ratio.
Except for the cut-off region, for the same duty ratio the step size
monotonically increases with an increasing input frequency.

ulation), (c) average of thirty experimental results with respect to different input
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ig. 14. Effect on step size by changing damping coefficient C with the friction coef

Based on Eq. (31) and the system identification results, the
requency response of mass–damper–spring dynamic model is sim-
lated, with those results shown in Fig. 12 with the excitation input
requency 100 Hz and Fig. 13(b) for additional results. The dynamic

odel has a frequency response similar to that of the impulse
odel in the low input frequency and low duty ratio sets.
Fig. 12 also displays the frequency response of experiments with

he excitation input frequency 100 Hz. Fig. 13(c) and (d) shows
dditional results in terms of input duty ratio and input frequency,
espectively. The results are demonstrated based on the average of
0 experiments with variances on the same experimental pair (f,
). The experiment has a frequency response similar to that of the
mpulse model in the low input frequency and low duty ratio sets.
he experiment has a dynamic frequency behavior similar to that
f the dynamic model with an input frequency exceeding 200 Hz.
ig. 12 further indicates that with a satisfactory correlation among
he impulse model, dynamic model and the average of 30 exper-
t � = 0.4 and the stiffness K = 9 × 106 N × s/m using dynamic model (simulation).

iments with variances, nano-scale positioning can be performed
within a duty ratio range from 0.07 to 0.1.

5.2. Dynamic simulation

Determining how system parameters affect the stepping posi-
tioning of IDM is rather difficult owing to that the IDM used
in the experiments has only a set of system parameters. Alter-
natively, a dynamic model is simulated to exploit the damping
coefficient and the friction coefficient effects. Fig. 14 illustrates
the effects due to different damping coefficients C. For the
damping coefficient C exceeding 500 N × s/m, the step size tends

to decrease monotonically with an increasing duty ratio and,
also, increase monotonically with an increasing input frequency.
Moreover, the mass–damper–spring model is more appropriate
for IDM systems with large damping coefficients, as shown in
Figs. 14(d)–(f). Furthermore, the dynamic analysis becomes less sta-
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ig. 15. Effect on step size by changing friction coefficient � with the damping coeffi

le for IDM systems with small damping coefficients, as shown in
ig. 14(a)–(c).

Interestingly, the friction coefficient only slightly affects the step
ize for a small duty ratio and high input frequency. This observa-
ion may also be explained from Eq. (21) when

g�2

f 2
� m

(M + m)(1 − �)
S (35)

he friction coefficient only slightly affects the step size. Accord-
ng to Fig. 15, the coefficient of LuGre friction that is applied in
he dynamic model affects the step size to a lesser extent. This

bservation correlates with experiments reported in the literature
30], which introduced different lubricants to the interface of IDM.
dditionally, dynamic model simulated in Fig. 15 complies with
xperimental results shown in Figs. 11 and 13(c) that has large
ariances in high duty ratio and input frequency.
C = 200 N × m/s and the stiffness K = 9 × 106 N/m using dynamic model (simulation).

6. Conclusion

This work describes two stepping motion models, i.e. impulse
model and mass–damper–spring dynamic model, to demonstrate
the stepping function of an IDM. The impulse model is applied
to classify the operations into a cut-off region, one-step stable
region, and multi-step stable region based on different duty ratio
� and input frequency f. In applications requiring accuracy posi-
tioning higher than 1 �m, the incremental movement must be
achieved exactly in the preliminary phase steps, thus warranting
the identification of the one-step stable region for short distance
position control. Experimental results indicate that IDM with a

proper measurement means can perform the nano-scale in sin-
gle step precision. During the detailed design phase of IDM, the
mass–damper–spring dynamic model can facilitate the designer in
forecasting the performance of IDM without fabrication. Therefore,
we conclude that the piezoelectric actuators with a higher damping



d Act

c
c
H
y
d
t
o
d

A

o
r
A

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

and Mechanical Engineering at Columbia University in 1986 and 1987, respectively.
He received a Ph.D. in Mechanical Engineering at Columbia University in 1989. He
C.-F. Yang et al. / Sensors an

oefficient yielding similar step sizes due to different input frequen-
ies are preferred in the domain of high precision velocity controls.
owever, piezoelectric actuators with a lower damping coefficient
ielding better correlations between the input frequencies and the
uty ratio sets are preferable in the domain of high precision posi-
ion control. This work provides a significantly contribute of efforts
f manufacturers attempting to categorize various applications for
ifferent piezoelectric actuators.

cknowledgements

The authors would like to thank the National Science Council
f the Republic of China, Taiwan for financially supporting this
esearch under Contract No. NSC 98-2218-E-009-015 and Mr. Tsai,
n-Chen for performing some of the experiments.

eferences

[1] K. Uchino, Piezoelectric actuators/ultrasonic motors-their developments and
markets, in: Proceedings of the Ninth IEEE International Symposium on Appli-
cations of Ferroelectrics, ISAF’94, 1994, pp. 319–324.

[2] K Uchino, Piezoelectric ultrasonic motors: overview, Smart Mater. Struct. 7
(1998) 273.

[3] K. Spanner, Survey of the various operating principles of ultrasonic piezomo-
tors, in: Presented at the ACTUATOR 2006, 10th International Conference on
New Actuators, Bremen, 2006.

[4] T. Higuchi, Y. Yamagata, K. Furutani, K. Kudoh, Precise positioning mecha-
nism utilizing rapid deformations of piezoelectric elements, in: Micro Electro
Mechanical Systems, 1990. Proceedings of an Investigation of Micro Structures,
Sensors, Actuators, Machines and Robots, IEEE, Napa Valley, CA, USA, 11–14
February, 1990, pp. 222–226.

[5] J. Mendes, M. Nishimura, K. Tomizawa, Y. Yyamagati, T. Higuchi, Printed board
positioning system using impact drive mechanism, in: SICE’96. Proceedings of
the 35th SICE Annual Conference. International Session Papers, Tottori, Japan,
24–26 July, 1996, pp. 1123–1128.

[6] K. Furutani, N. Mohri, T. Higuchi, Self-running type electrical discharge machine
using impact drive mechanism, in: IEEE/ASME International Conference on
Advanced Intelligent Mechatronics’97. Final Program and Abstracts, Tokyo,
Japan, 16–20 June (1997) 88.

[7] S.L. Jeng, Y.C. Tung, A multicell linear power amplifier for drivingpiezoelectric
loads, IEEE Trans. Ind. Electron. 55 (2008) 3644–3652.

[8] Y.C. Tung, S.L. Jeng, W.H. Chieng, Multi-level balanced isolated floating differ-
ence amplifier, IEEE Trans. Circuits-I 55 (2008) 3016–3022.

[9] J.L. Ha, R.F. Fung, C.F. Han, Optimization of an impact drive mechanism based
on real-coded genetic algorithm, Sens. Actuators A 121 (2005) 488–493.

10] Y. Yamagata, T. Higuchi, N. Nakamura, S. Hamamura, A micro mobile mecha-
nism using thermal expansion and its theoretical analysis. A comparison with
impact drive mechanism using piezoelectric elements, in: Proceedings of the
IEEE Workshop on Micro Electro Mechanical Systems, 1994, MEMS’94, Oiso,
Japan, 25–28 January (1994) 142–147.

11] O. Ohmichi, Y. Yamagata, T. Higuchi, Micro impact drive mechanisms using
optically excited thermal expansion, J. Microelectromech. Syst. 6 (1997)
200–207.

12] R.F. Fung, C.F. Han, J.L. Ha, Dynamic responses of the impact drive mechanism
modeled by the distributed parameter system, Appl. Math. Model. 32 (2008)

1734–1743.

13] T. Ueno, T. Higuchi, Miniature magnetostrictive linear actuator based on
smooth impact drive mechanism, Int. J. Appl. Electrom. 28 (2008) 135–141.

14] T. Ueno, T. Higuchi, C. Saito, N. Imaizumi, M. Wun-Fogle, Micromagnetostrictive
vibrator using a U-shaped core of iron-gallium alloy (Galfenol), J. Appl. Phys.
103 (7) (2008) E904.
uators A 166 (2011) 66–77 77

15] T. Ueno, C. Saito, N. Imaizumi, T. Higuchi, Miniature spherical motor using iron-
gallium alloy (Galfenol), Sens. Actuators A 154 (2009) 92–96.

16] Y.T. Liu, C.H. Lee, R.F. Fung, A pneumatic positioning device coupled with piezo-
electric self-moving mechanism, Asian J. Control 6 (2004) 199–207.

17] Y.-T. Liu, R.-F. Fung, C.-C. Wang, Precision position control using combined
piezo-VCM actuators, Precis. Eng. 29 (2005) 411–422.

18] S.F. Ling, H.J. Du, T.Y. Jiang, Analytical and experimental study on a piezoelectric
linear motor, Smart Mater. Struct. 7 (1998) 382–388.

19] T.Y. Jiang, T.Y. Ng, K.Y. Lam, Optimization of a piezoelectric ceramic actuator,
Sens. Actuators A 84 (2000) 81–94.

20] J.-L. Ha, R.-F. Fung, C.-S. Yang, Hysteresis identification and dynamic responses
of the impact drive mechanism, J. Sound Vibrat. 283 (2005) 943–956.

21] J.J. Tzen, S.L. Jeng, W.H. Chieng, Modeling of piezoelectric actuator for compen-
sation and controller design, Precis. Eng. 27 (2003) 70–86.

22] Y.T. Liu, C.W. Wang, A self-moving precision positioning stage utilizing impact
force of spring-mounted piezoelectric actuator, Sens. Actuators A 102 (2002)
83–92.

23] Y.T. Liu, T. Higuchi, R.F. Fung, A novel precision positioning table utilizing impact
force of spring-mounted piezoelectric actuator. Part II. Theoretical analysis,
Precis. Eng. 27 (2003) 22–31.

24] D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic
systems, J. Dyn. Syst. Meas. Control-Trans. ASME 107 (1985) 100–103.

25] C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for
control of systems with friction, IEEE Trans. Automat. Control 40 (1995)
419–425.

26] J. Swevers, F. Al-Bender, C.G. Ganseman, T. Projogo, An integrated friction model
structure with improved presliding behavior for accurate friction compensa-
tion, IEEE Trans. Automat. Control 45 (2000) 675–686.

27] K.J. Astrom, C. Canudas de Wit, Revisiting the LuGre friction model stick-slip
motion and rate dependence, IEEE Control Syst. Mag. 28 (2008) 101–114.

28] A.H. Sayed, Fundamentals of Adaptive Filtering, IEEE Press, Wiley–Interscience,
New York, 2003.

29] J.L. Ha, R.F. Fung, C.F. Han, J.R. Chang, Effects of frictional models on the dynamic
response of the impact drive mechanism, J. Vib. Acoust. 128 (2006) 88–96.

30] K. Furutani, T. Higuchi, Y. Yamagata, N. Mohri, Effect of lubrication on impact
drive mechanism, Precis. Eng.-J. Am. Soc. Precis. Eng. 22 (1998) 78–86.

Biographies

Chia-Feng Yang was born in Taiwan, in 1979. He received the B.S. degree in Mechan-
ical Engineering and the M.S. degrees with a major in Mechanical Engineering and
minor in Communication Engineering from the National Chiao-Tung University,
Taiwan, in 2001 and 2004, respectively. Since 2008, he joined the ARadTek Cor-
poration as a System and Software engineer. He is currently working toward the
Ph.D. degree in Mechanical Engineering, National Chiao-Tung University, Taiwan.
His fields of interest include piezoelectric micro-actuators and microwave imaging
sensors.

Shyr-Long Jeng was born in Taiwan, in 1965. He received a Ph.D. in Mechanical
Engineering from National Chiao-Tung University, Hsinchu, Taiwan, in 1996. From
1996 to 1998, he joined an electrical motor design company. He was appointed
an Assistant Professor in the Department of Automation Engineering at Ta-Hwa
Institute of Technology, Taiwan, in 1998. He is currently an Associate Professor. His
current research is in the microprocessor based control and applications in power
electrics.

Prof. Wei-Hua Chieng was born in Taiwan, in 1959. He received MSs in Electrical
has awarded the IBM manufacturing fellowship in 1988 and 1989. During his time at
Columbia University his adviser, Professor David A. Hoeltzel, has brought him into
the research in artificial intelligence for mechanical design. His research interests
include the PC-based controllers, motion simulators, and mechatronics devices.


	Motion behavior of triangular waveform excitation input in an operating impact drive mechanism
	Introduction
	Impulse model of IDM
	Impulse motion due to triangular waveform excitation
	Steady state analysis
	Transient analysis

	Experiments
	Mass–damper–spring dynamic model
	Dynamic model analysis
	Identification of dynamic system parameters

	Comparison study
	Frequency response
	Dynamic simulation

	Conclusion
	Acknowledgements
	References
	Biographies


