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Development of a DSMC Code for Analyzing the Contamination and
Plume Impingement on Spacecraft

I.-S. Wu
'Depariment of Mechanical Engineering, National Chiao-Tung University, Taiwan

SUMMARY

A jeneral parallel three-dimensional direct simulation Monte Carlo method using
unstructured mesh is introduced in this report, which incorporates a multi-level
graph-partitioning technique to dynamically decompose the computational domain.
Particle ray-tracing technique is used to track the particle on unstructured mesh using
cell connectivity information. In addition, various strategies of applying the Stop at
Rise (S4R) [30] scheme are studied to determine how frequent the domain should be
re-decoriposed. The completed code is verified by computing a two-dimensional
hypersonic flow, a three-dimensional hypersonic cylinder flow and a sphere flow to
demonst-ate its superior computational capability. Results are then compared with
experimental data and previous simulation data wherever available. Finally,

prelimin: ry results simulating plume impingement of ROCSAT-3 using the completed

DSMC cnde is presented.

KEY WORDS: direct simulation Monte Carlo, parallel, graph partition, dynamic

domain decomposition, hypersonic flow, ROCSAT-3
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I. INTRODUCTION

Th: DSMC method has become a widely used computational tool for the
simulat on of gas flows in which molecular effects become important [1]. Specific
examples include the plume impingement from attitude-control thrusters on satellite
[2], the pumping characteristics of high vacuum pump [3], the low-pressure
plasma-:tching and chemical vapor deposition (LPCVD) [4], the computer hard disk
slider ai- bearing [5] and the micro-electro-mechanical-system (MEMS) [6-8], to name
a few. The advantage of using a particle method under these circumstances is that
moleculir model can be applied directly to the calculation of particle collisions and
particle- ~all interactions, while the continuum methods use macroscopic averages to
account ‘or such effects. Therefore, particle method can in general predict these effects
with mtch higher accuracy under rarefied condition. With the advancement of
computir g capability, not only 1s the DSMC method the practical tool for analyzing the
gas flow: in the transitional regime, but also it is potentially a numerical method for
studying gas flows from continuum to free-molecular regime. However, the main
drawback of such direct physical method is its high computational cost, especially in
the near-continuum regime.

Computing requirements for near-continuum flows can often render a meaningful
DSMC simulation unpractical on scalar machines. Since the DSMC method is a
particle-based numerical method, the movement of each particle is inherently
independent of each other. The DSMC method is highly suitable for parallel processing
since the coupling between particles is only made through collision in the cells.
Therefore, the parallel DSMC method represents an opportunity to simulate flows in

the near-cc ntinuum regime with an acceptable runtime [9] and to dramatically decrease



the coniputational time in other regimes.

In the past, several studies on parallel implementation of DSMC have been
publishzd using static domain decomposition on structured/unstructured mesh; see
[e.g., 1)-14] and references cited therein. Message passing was often used to transfer
molecu es and associated data between processors and to provide the synchronization
necessary for the correct physical simulation. The results show reasonable speedup and
efficiency could be obtained if the problem is sized properly to the number of
processyrs. However, the speedup often levels off very quickly due to the load
unbalancing and increase of communication among the processors. Besides, there are
several important studies in parallel DSMC method, which is worthy of detailed
review iis follows.

Re:ently, Boyd’s group [15,16] designed parallel DSMC software named
MONACQ, which emphasized high data locality to match the hardware structure of
modern workstations, while maintains the code efficiency on vectorized
supercoinputers. In this code, unstructured grids were used to take the advantage of
flexibiliy of handling complex object geometry. Static domain decomposition
technique was used to distribute cells among processors. Interactive human
interruption is required to redistribute the cells among processors to maintain workload
balance among processors, which is indeed unsatisfactory from practical viewpoint.
Timing results show the performance improvement on workstations and the necessity
of load jalancing for achieving high performance on parallel computers. Maximum
400 IBM-SP2 processors have been used to simulate flow around a planetary probe
with approximately 100 million particles, which parallel efficiency of 90% has been
reached by manually redistributing the cells among processors during simulation.

However, the parallel efficiency for n processors is unusually defined as the ratio of
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computational time to the sum of computational and communicational time, rather than
it is nomally defined as the ratio of the true speedup to the ideal speedup (n) for n
Processors.

Ivinov's group [17] has developed a parallel DSMC code called SMILE, which
implements both the static and dynamic load balancing techniques. SM/LE has united
the bactground cells into groups, so-called "clusters”, which are the minimum spatial
unit, and are distributed and transferred between the processors. The dynamic domain
decomgosition algorithm is scalable and requires only local knowledge of the load
distribu:ion in a system. In addition, the direction and the amount of workload transfer
are determined by the concept of heat diffusion process [18]. In addition, an automatic
granulaity control is used to determine when to communicate the data among
processors [18].

Arund the same period of time, dynamic load balancing technique, using Stop At
Rise (S.AR) [30], which compares the cost of re-mapping the decomposition with the
cost of hot re-mapping, based on a degradation function, was used in conjunction with
the parallel implementation of the DSMC method [9,14]. In the study [9], they used a
runtime library, CHAOS, for data communication and data structure manipulation on a
structurc:d mesh. Results show that it yields significantly faster execution times than
the scaler code, although only 25% of parallel efficiency is achieved for 64 processors.
LeBeau [19] reported that parallel efficiency up to 90% is achieved for 128 processors
for the :low over a sphere. It is not clear how they implemented the dynamic load
balancing, although they did mention they have used the concept of heat diffusion [18].
In LeBuau's study [19], surface geometry is discretized using an unstructured
trianguler grid representation. A two-level embedded Cartesian grid is employed for

the discrztization of the computational domain.
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In summary, studies about DSMC using both purely unstructured mesh and
dynami : domain decomposition were relatively few in the past [20-22], although using
unstruciured mesh exhibits higher flexibility in handling objects with complicated
geometiy and boundary conditions. Robinson [20-22] has first developed a heuristic,
diffusiv:, hybrid graph-geometric, localized, concurrent scheme, ADDER, for
repartitisning the domain on an unstructured mesh. Dramatic increase of parallel
efficien:y was reported as compared with that of static domain decomposition.
However, Robinson [20-22] has shown that the parallel efficiency begins to fall
dramatically as the number of processors increases to some extent due to the large
runtime of the repartitioning the domain relative to the DSMC computation. Thus, the
utilization of a more efficient repartitioning runtime library is essential to improve the
performiince of a parallel DSMC method.

To lecompose an unstructured mesh across NP processors is a critical but difficult
issue in many applications [23]. It is usually approached as a graph-partitioning
problem. where each node in the mesh represents a vertex in the graph. A edge cut is
formed when it connects two vertices across the inter-processor boundary. Each vertex
and edge¢ in the graph can be given a weight, which represents an amount of work. A
conventi ynal graph-partitioning problem is to subdivide the » vertices between the NP
sub-domiins while minimizing the number of edge cuts, E., and balancing the weight
in each sub-domain. However, it is well known that it is NP complete, which means
that the optimal solution of this problem is impossible to compute in polynomial
bounded time. Instead, it is relaxed to seck near-optimal solutions within reasonable
time. In computer science, there are several methods developed for achieving
near-optimal solutions to this problem. Among these, spectral bisection has been

widely used [23] in the past. Recently, a multi-level partitioning method has become



more popular [24,25], in which the graph is coarsened and partitioned. This new
partition is then mapped back to the original graph. These methods utilized substantial
heuristi: approaches, which has been proven as a powerful graph-partitioning tool.
"Pure” heuristic method proposed by Kernighan and Lin [26] has been often
incorporated into the local refinement phase of the multi-level schemes. These
partitioning tools are shown to have superior performance and are relatively easy to
parallel ze. In addition, the extension of the graph partitioning to three-dimensional
case is «traightforward in essence.

Ore of the advantages in expressing the problem in terms of a graph is that each
of the edges and vertices can be assigned a weight to account for the specific numerical
application. For example, in DSMC, the vertex (i.e., cell center) can be weighted with
the nurr ber of particles with all edges that connects cell centers, having unitary weight.
A truly dynamic load balancing technique is required for DSMC because the load
(approx mately proportional to the number of particles) in each sub-domain changes
frequen ly, especially during the transient period. Domain decomposition in DSMC
may become very efficient by taking the advantage of successful development in graph
partitior.ing. For example, the multi-level scheme, PJOSTLE [27], uses initial domain
decomp ssition (generated by greedy partitioning) and successively adjusts the partition
by mov ng vertices lying on partition boundaries. In this method, vertex shedding is
localize: since only the vertices along the partition boundaries are allowed to move,
not the sertices anywhere in the domain. Hence, this method possesses a high degree
of conctrrency and has been written as a package of runtime libraries on many modern
computer platforms [27]. Thus far, there seems no report that matured
graph-purtitioning tool has been incorporated in the parallel DSMC method on an

unstruct ired mesh. Thus, it is interesting and technically important to learn that if the
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graph partition tools can be used efficiently in conjunction with the DSMC method.
Thus, 1a the current study, we will use PJOSTLE to dynamically decompose the
comput ational domain for the parailel DSMC simulation.

Therefore, the objectives of the current study are summarized as follows.
1. To complete a parallel three-dimensional DSMC code on an unstructured mesh
incorpo-ating the multi-level graph-partitioning technique to dynamically decompose
the com putational domain.
2. To verify the parallel DSMC implementation by computing a realistic,
near-coiitinuum  two-dimensional hypersonic flows over a cylinder, and a
three-dimensional hypersonic flow past a sphere and compare with previous
experim ental and DSMC data wherever available.
3. To apply the completed code to compute the plume impingement using
ROCSAT-3 as an example.

The report begins with descriptions of the parallel DSMC method and the
strategics of repartitioning the domain. Verifications of the current parallel are present
by two realistic flows, and finally the rc;ughly simulation results of reaction control

system of spacecraft are present in turn.

II. NUMERICAL METHOD

Direct Simulation Monte Carlo Method

Thz direct simulation Monte Carlo method (DSMC) is a particle method for the
simulation of gas flows. The gas is modeled at the microscopic level using simulated
particles which each represents a large number of physical molecules or atoms. The

physics of the gas is modeled through uncoupling of the motion of particies and



collisions between them. Mass, momentum and energy transports are considered at the
particle level. The method is statistical in nature. Physical events such as collisions are
handled probabilistically using largely phenomenological models, which are designed
to reproduce real fluid behavior when examined at the macroscopic level.

Siice Bird [1] has documented in detail the conventional DSMC method in his
monograph, it is only briefly described here. Important steps of the DSMC method
include setting up the initial conditions, moving all the simulated particles, indexing
(or sort ng) all the particles, colliding between particles, and sampling the molecules
within :ells to determine the macroscopic quantities. This method is essentially a
comput:r simulation of gas molecular dynamics and depends heavily upon
pseudo-random number sequences for simulating the statistical nature of the
underly ng physical processes. The data variables are often randomly accessed from
comput:r memory. Thus, it is very difficult to vectorize the DSMC code. However,
since the movement of each particle and the collision in each cell is treated
independently, this makes DSMC perfectly suitable for parallel computation, which is
introduc ed next.

Parallel Implementation of DSMC

Th: DSMC algorithm is readily parallelized through the physical domain
decomposition. The cells of the computational grid are distributed among the
processors. Each processor executes the DSMC algorithm in serial for all particles and
cells in its own domain. Parallel communication occurs when particles cross the
domain (processor) boundaries and are then transferred between processors. High
parallel performance can only be achieved if communication is minimized and the

computi tional load is evenly distributed among processors. To minimize the
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communication for domain decomposition, the boundaries between sub-domains
should more or less lie along the streamlines of the flow field; however, it is nearly
impossible to achieve this partition for most practical flows. In practice, we can only
minimi’e the number of edge cuts E. under the framework of graph theory.
Fortunately, the advancement of networking speed has reduced the communication
time butween processors to an acceptable level. For the DSMC algorithm, the
worklo:d (or equivalently the -number of particles) in each processor changes
frequen:ly, especially during the transient period of a simulation; while the workload
attains a roughly constant value during the steady-state sampling. Thus, a truly
dynami:: (or adaptive) domain decomposition technique is required to perfectly balance
the wor cload among the processors.

Fig,. 1 shows a sifnpliﬁed flow chart of the parallel DSMC method proposed in the
current study, which incorporates the multi-level graph-partitioning technique. In
general, this algorithm not only works for the DSMC method, but also it is suitable for
other particle-based methods, such as Molecular Dynamics (MD), Particle-In-Cell
(PIC) and Monte Carlo methods in plasma physics, which will be reported in the very
near future. Note that processors are numbered from 0 to np-1 in the figure. Before
detailing; the proposed procedures (Fig. 1), we will instead discuss the preprocessing
requirec for this parallel implementation. In this implementation, an unstructured mesh
is first constructed by a commercial code, HyperMesh™ [28] or other equivalent
meshing tool. Then, a preprocessing code is used to reorder the fully unstructured mesh
data int> the globally sequential but locally unstructured mesh data [10] for each
processor in conformation with the partitioning information from graph partitioning

tool (JOSTLE) [29], as schematically presented in Fig. 2. In addition to the above,



another important information output from this preprocessor is the cell-neighboring
informa:ion, which is needed for particle tracing on an unstructured mesh. Original
algorithn [10] used to obtain the information of cell neighbors, using the concept of
loops over cells by identifying repeated node number, has been found to be very
inefficient as the total number of cells increases up to several tens of thousand. Instead,
we have replaced it by a very efficient algorithm, using the concept of loops over
nodes by searching through the cells sharing the node, which turns out to be very
efficient. For example, for preprocessing 3 million unstructured 3-D cells, it takes less
than 20 minutes on a 1.6-GHz (Intel) personal computer. Preliminary results show that
the preprocessing time increases approximately linearly with the number of cells.
Paralle] processing to speed up this preprocessing is currently in progress and will be
incorporated into the parallel DSMC code in the very near future.

Noie that the partition information from JOSTLE provides the cell numbers (myg
for the 1'® sub-domain, where n=0 to np-1) and mapping of cells in each partitioned
sub-domain. After the cell-number reordering, the cells in each sub-domain are

renumbered such that the corresponding global starting and ending cell numbers for the

n—| n
h . .
n" sub-idomain are E m, +1 and E m, , respectively. In each processor, the cell
=0 =0

numbering is unordered (unstructured), but both the starting (smallest) and ending
(largest) cell numbers increase with processor numbers. We term this as “globally
sequentid but locally unstructured “ [10]. Thus, in each processor the memory is only
needed to record the starting and ending cell numbers for all processors, in addition to
the cell r:lated data in each processor. The mapping between global and local cell data,
however, can be easily obtained by a simple arithmetic operation due to this special

cell-num sering design. The required array size for cell related data is approximately
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the same as the number of cells in each sub-domain. For example, if there are one
million cells totally in the simulation with 100 processors, each processor will only be
requirec. to store the array on the order of 10,000. The memory cost reduction will be
approxinately 100 times in this case. This simple reordering of cell numbers
dramatically reduces the memory cost otherwise required for storing the mapping
between the local cell number in each processor and the global cell number in the
comput: tional domain if un-reordering unstructured cells are used.

In iddition, a processor neighbor-identifying array is created for each processor
from th: output of the preprocessor, which is used to identify the surrounding
processars for those particles crossing the inter-processor boundaries during simulation.
From our practical experience, the maximum number of processor-neighbor is on the
order of 10 at most; therefore, the increase of memory cost due to this processor
neighbor-identifying array is negligible. The resulting globally sequential but locally
unstructe red mesh data with the partition information is then imported into the parallel
DSMC code as the initial mesh distribution.

Agan referring to Fig. 1, after reading the preprocessed cell data on a master
processot (cpu 0), the cell data are then distributed to all other processors according to
the designated initial domain decomposition. All the particles in each processor then
start to move as in sequential DSMC algorithm. The particle related data are sent to a
buffer anc| are numbered sequentially when hitting the inter-processor boundary (IPB)
during its journey within a simulation time step. After all the particles in a processor
are moved!, the destination processor for each particle in the buffer is identified via a
simple arithmetic computation, owing to the previously mentioned approach for the

cell-numbering scheme, and are then packed into arrays. Considering communication
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efficiency, the packed arrays are sent as a whole to its surrounding processors in turn
based on the tagged numbers recorded earlier. Once a processor sends out all the
packed arrays, it waits to receive the packed arrays from its surrounding processors in
turn. This “send” and “receive” operation serves practically as a synchronization step
during zach simulation time step. Received particle data are then unpacked and each
particle continues to finish its journey for the remaining time step. The above
procedures are repeated twice since there might be some particles cross the IPB twice
during 2 simulation time step. Theoretically it could be more than twice, but in our
practice! experience it is generally at most twice for "normal” domain decomposition
and by :arefully choosing the simulation time step.

After all particles on each processors have come to their final destinations at the
end of 1 time step, the program then carries out the indexing of all particles and the
collisio1s of particles in each computational cell in each processor as usual in a
sequential DSMC code. The particles in each cell are then sampled at the appropriate
time. T1e program then checks whether the remapping (or repartitioning) is required
based ¢n some decision policy, e.g., Stop At Rise (SAR) [30] in the current study,
which v/ill be described shortly for completeness. If it does, then the program begins to
re-deconpose the computational domain, using multi-level graph-partitioning
technique, after which the cell- and particle-related data are transferred between
processors. Finally, the received particles and cells are re-numbered to reflect the new
partitioti in each processor. In brief summary, major difference between the parallel
DSMC using dynamic domain decomposition and the original DSMC method lies in
the adcition of decision policy for repartitioning, repartitioning, migration and

renumbering of cell/particle data among processors in the procedures, which will be
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describ:d, respectively, in detail as follows.

Decision Policy for Repartitioning

$MC represents a typical dynamic (or adaptive) irregular problem, i.e.,
workloiid distributions are known only at runtime, and can change dramatically as
simulat on proceeds, leading to a high degree of load imbalance among the processors.
Thus, some decision policy is required to determine when to repartition the
computational domain, since the repartition is often expensive computationally. It has
been stown that, for some problems using DSMC, remapping the domain at fixed
intervals leads to poor parallel performance [7,9]. Therefore, it is highly desirable to
either »ore-determine the optimal interval for repartitioning, or using a clever
monitoring policy to decide when to repartition. The former choice is definitely
impract.cal since pre-runtime analysis is generally required to determine this optimal
choice. Therefore, in the current study, a decision policy, Stop At Rise (SAR) [30], is
employ::d to determine when to repartition the domain. SAR, a “greedy” repartitioning
policy, attempts to minimize the long-term processor idle time since the last
repartitioning. This decision policy chooses to repartition the computational domain
based 01 the value of a degradation function W{(r) at the t® time step, which is defined
as follo'ws:

2D =T N+ C
W(t)=" t 1)

where 7ma/) is the maximum amount of time required by any processor to complete
the /™ time step, Tavg(f) is the average time required by a processor to complete the ™

time ste), and C is the amount of time required to complete the repartitioning operation.
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This de sradation function represents the average idle time for each processor including
the cost of repartition. In general, W{f) tends to decrease with the increasing value of ¢.
The suinmation term in Eq. (1) will eventually increase as the workload unbalance
develors, while the repartitioning cost, C, is approximately constant during simulation.
Reparti:ioning is not performed until the time that W(r) > W(¢-1), i.e., when the first
local rinimum of degradation function is detected. This decision policy for
repartit oning the domain is inherently advantageous over the fixed-interval scheme in
that nc prior knowledge of the evolution of the problem is necessary for the
determination of the repartitioning interval, and the repartitioning can be expected to

follow -he dynamics of the problem without wasting computing resources.

Reparti;ioning Technique

In he current study, we have incorporated the parallel runtime library, PJOSTLE
[27], as the repartitioning module in our parallel DSMC code. JOSTLE [29], a serial
version of PJOSTLE [27], uses the multilevel implementations that match and combine
pairs ol adjacent vertices to define a new graph and recursively iterate this procedure
until thz graph size falls under some threshold. The coarsest graph is then partitioned
and the partition is successively refined on all the graphs starting with the coarsest and
ending with the original. At evolution of levels, the final partition of the coarser graph
is used to give the initial partition for the next finer level. PJOSTLE [27], a parallel
version of JOSTLE [29], uses an iterative optimization technique known as relative
gain of timization, which both balances the workload and attempts to minimize the
inter-processor communication overhead. This parallel algorithm runs on single

prograr multiple data (SPMD) paradigm with message passing in the expectation that
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the undzrlying unstructured mesh will do the same. Each processor is assigned to a
sub-doriain and stores a double-linked list of the vertices (cell centers in DSMC)
within that sub-domain. However, each processor also maintains a “halo” of
neighbcring vertices in other sub-domains. For the serial version, the migration of
vertices simply involves transferring data from one linked-list to another. In parallel
implemzntation, this process is far more complicated than just migrating vertices. The
newly created halo vertices must be packed into messages as well, sent off to the
destination processors, unpacked, and the pointer based data structure recreated there.
This provides an extremely fast solution to the problem of dynamically load-balancing
unstruc ured mesh [27].

In DSMC simulation, the workload of each processor is approximately
proport onal to the number of particles in the corresponding sub-domain. Thus, we can
assign the weight of each vertex in graph as particle numbers in the corresponding cell
in estiriating the workload during simulation. PJSOTLE [27] will try to maintain
perfect load balance while optimizing the partitions based on pre-determined balance
factor. This factor, which affects the partitioning quality and cost, is defined by
B=S8max Sopr» Where Sy, is the largest allowable weight of the sub-domains and Sopt 18
the optimum sub-domain size which equal to the average weight of these sub-domains.
B is 1.03 in the current study, unless otherwise specified. Simulated results have shown
a fairly even particle distribution among processors is obtained using the above setting,

which can be seen later.

Cell/Pa ticle Migration

Atter repartitioning the domain, relationship between cells and sub-domains has
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to be updated according to the new partition. Any cell may be assigned to a processor,
which is different from the original processor it belongs to. Thus, cell/particle
associat :d data need to migrate to their new parental processor properly. Theoretically,
the multi-level graph-partitioning scheme is much faster than the hybrid
graph-geometric partitioning scheme developed by Robinson f20-22], in which only
the "hal»" cells of each sub-domain are allowed to move among processors after each
repartitidn.

In addition, the original neighbor-identifying array, nbr(face number,
local_cell_number)=local_cell_number, in a sequential code has been changed to
nbr(face_number, local_cell_number)=global_cell number in the parallel code. Thus,
an convsarsion array between local and global cell numbers is required to access the
data eff ciently. Note that the global cell numbers associated with each cell is not
changed throughout the simulation. Only the local cell numbers for each cell in each
processor has to be updated according to the new partition. Of course, the conversion
array between local and global cell numbers has to be changed accordingly for those
cells involved in migrating among processors. Thus, the update of neighbor-identifying
array afier cell data transferred between processors becomes very easy. Only the local
cell nun bers for the transferred cells have to be changed with negligible computational
cost.

The: cell/particle migration after the repartition is briefly summarized as follows.

1. Pack into buffer arrays the to-be-transferred particle related data particle by

particle. Fig. 3 illustrates this procedure using CPUQ as the example, which
requires data (column in shaded area) to be sent to CPU3 and receive data

(row in shaded area) from CPU1 due to repartitioning of the computational
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domain. Data include positions, velocities, internal energies and the new
local cell numbers in the destination processor, to which the particle shall
reside. The new local cell numbers is assigned as the value, which is the sum
of one and the most updated pre-partitioned maximum local cell numbers in
pre-partitioned destination processor. Having packed the to-be-transferred
particle data, they are then removed from the source processor they belong
to.

2. Pack into buffer arrays the to-be-transferred cell related data cell by cell.
Similar procedure is also shown in Fig. 3. The procedures for each cell are
described in detail as follows. First, record the data of the to-be-transferred
cell, including new local cell number in the destination processor (as in step
1), cell/node coordinates and sampled data in the cell and related cell face.
Second, update the relation between the local and global numbers, i.e., the
data of the to-be-transferred cell numbers are then replaced by the data of the
maximum cell numbers in the source processor. Then, subtract one from the
maximum local cell numbers in the source processor.

3. Migrate both the particle- and cell-data in the buffer arrays as a whole to the
destination processors.

4.  Receive and unpack these data from the buffer.

5. Reorder and change the neighboring cell numbers accordingly.

6. Reconstruct the processor neighbor-identifying array for each processor,

The current parallel code incorporating the above procedures, in SPMD (Single

Progranr. Multiple Data) paradigm, is implemented on the IBM-SP2 and IBM-SMP

machines (distributed memory system) using message passing interface (MPI) to

21



commuicate information among processors. It is thus essentially no code modification
requirec. to adapt to other parallel machines (e.g., PC-cluster system) with similar
distribu:ied memory system once they use the same MPI libraries for data

commu iication,

III. VERIFICAITONS

To verify of the current implementation of parallel DSMC method using dynamic
domain decomposition, we have applied it to compute several realistic flows, including
a two-d.mensional hypersonic flow past a cylinder and a three-dimensional hypersonic
flow pest sphere. Results are then compared with experimental data and previous
simulat on wherever available, while the description of flow physics of the test
problens will be as brief as possible since it only serves to verify the applicability and
its accuracy of the proposed method. Flow conditions and results for each case are
described in the following in turn.

Two-Dimensional Hypersonic Flow Past a Cylinder
Flow ard Simulation Conditions

Flow conditions are the same as those of Koura and Takahira [32] and represent
the experimental conditions of Biitefsch [31]. For completeness, they are briefly
describ¢d here as follows: VHS nitrogen gas, free-stream Mach number M.=20,

free-strcam number density n,=5.1775E19 particles/m’, free-stream temperature
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To=20k,, fully thermal accommodated and diffusive cylinder wall with T,/T¢=0.18,
where Ty (=291.6 K) and Tp (=1620 K) are the wall and stagnation temperatures,
respectively. Temperature dependent rotational energy exchange model of Parker [33]
1s used to model the diatomic nitrogen gas with the following parametric setting:
limiting rotational collision number Zr.,=21, potential well-depth temperature T*=79.8
K. Resulting Knudsen number is 0.025, based on the free-stream mean free path and
diameter of the cylinder. An h-refined mesh with mesh quality control, resulting from
the cell size (less than local mean free path) and density gradient requirements [34] is
used in this simulation (64 processors) to increase the accuracy of the solution. The
simulat.on particles are about 1.3 million at steady state and the number of cells is
approximately 75,000 after 4 levels of mesh refinement (Fig. 4). Constant time-step
method is used throughout the computational domain. 20,000 time steps are used to
sample for obtaining averaged flow properties.
Domair_Decomposition

Figure 5 shows the initial and final domain decomposition for this simulation.
Large variation of sub-domain area in the initial domain decomposition results from
the use of a solution-based adaptive mesh, which is obtained from a mesh adaptation

module {34] based on a preliminary parallel simulation. For the initial domain



decomposition, we have assigned the uniform weight of each cell to operate the initial

domain decomposition. Number of cells in each sub-domain is approximately the same

initially, although the size of each sub-domain is highly different. Figure 5b shows that

the fina. decomposition, which adapts to the flow dynamics as simulation continues, is

totally cifferent from the initial decomposition.

Centerline Properties Distribution

Figures 6 and 7 illustrate the computed centerline densities and temperatures
(rotational and translational) using dynamic domain decomposition, respectively, along
with tke simulation data without dynamic domain decomposition and previous
experim ental data [31]. Density increases rapidly along the centerline in front of the
cylinder and becomes relatively small in the wake region. Temperature also increases
rapidly along the centerline but decreases rapidly after the bow shock. Strong
non-equilibrium between rotational and translational temperatures is found after the
cylinder due to the highly rarefied conditions in the wake region. Nevertheless,
agreement  between the current simulation with/without dynamic domain
decomposition and experimental data wherever available is excellent, considering the
experimental uncertainties. In addition, simulation using dynamic domain

decomposition reduces the running time up to 60% in this case, as compared with that
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using static domain decomposition.
Three-timensional Flow Past a Sphere
Flow ard Simulation Conditions

A 1ypersonic flow past a sphere is simulated to demonstrate the applicability of
the curtent parallel implementation to three-dimensional flow problem. Simulation is
conductzd for 1/16 of a sphere by taking advantage of the inherent axial symmetry of
this problem. The reasons to choose this as the test problems are, first, there exist
experimental data and, second, it is a good test for checking if the simulation can
reproduze the flow symmetry. Third, it can prove that the dynamic domain
decompsition method can be easily extended to three-dimensional flow. Related flow
conditions, which represent the experimental conditions of Russel [35], are listed as
follows: VHS nitrogen gas; free-stream Mach number M= 4.2; free-stream number
density n, = 9.77E20 particles/m’; free-stream temperature T.= 66.25K; stagnation
tempera ure 7, = 300K; fully thermal accommodated and diffusive sphere wall with the
tempera ure 7,, (equal to stagnation temperature T,). The corresponding free-stream
Knudser. number Kn. is 0.1035, based on the free-stream mean free path and diameter
of the sphere. The diameter of sphere is 1.28cm.

An h-refined, three-dimensional mesh with mesh quality control [36] is used in
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this sirr.ulation (8 IBM-SMP processors) to increase the accuracy of the solution. In

additior., variable time-step method [36,37] is implemented in the three-dimensional

code to further reduce the computational time, in which the local time step in each cell

is proportional to the size of adaptive cell. The simulation particles are about 1.7

million at steady state and the number of cells is approximately 164,000 after 2 levels

of mesh refinement (Fig. 8). 20,000 time steps are used to sample for obtaining

average 1 flow properties.

Dynamic Domain Decomposition

Figure 9 illustrates the initial and final domain decomposition for the hypersonic
flow past a sphere on a reduced (1/16) computational domain surface. The initial
domain decomposition (Fig. 9a) is obtained assigning equal weight to each cell, which
is differznt from previous two cases. At the final domain decomposition (Fig. 9b), the
sub-maia size in front of the sphere enlarges as compared with the initial sub-domain
size, du: to the application of variable time-step method and increased density in the
stagnation and bow shock region. In this case, the computational time is saved up to
35% usiag dynamic domain decomposition, as compared with that using static domain
decompuosition. We would expect much higher time saving of more processors are

used.
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Center ine Density Distribution

Figure 10 presents the computed centerline density distribution using dynamic
domair decomposition, along with that computed using static domain decomposition
and experimental data of Russel [35]. The current computed results agree excellently
with experimental data in front of the sphere, in which the experimental data behind
the sphere is not available. Also the computed results between dynamic and static
domain decomposition is indistinguishable in this case, which again proves the correct

implem :ntation of dynamic domain decomposition in three-dimensional flow.

IV. RESULTS AND DISCUSSIONS

Wlen spacecraft flies in space, the spacecraft thrusters are used to provide the
attitude control of the spacecraft. However, improper design of the thrust location and
thrust angle can induce unwanted effects such as contamination, disturbance torques
and postibly erosion on the spacecraft surface. Prediction of the plume impingement
on spacecraft is thus very important during the design phase of the reaction control
system, which mainly consists of small thrusters. Exhaust jets issuing from the
thrusters of spacecraft produce a complicated flow field. In this flow field, the flow is

continuun in the nozzle inlet and near the throat, then becomes transitional further
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downsiream near the exit and rarefied as the flow pass through the nozzle to the space.
In the current study, we compute the flow field of a realistic full-scale ROCSAT-3
model to demonstrate the feasibility of prediction using the PDSC (parallel direct
simulation Monte Carlo Code) developed in the project.

Flow and Simulation Conditions

This satellite is designed for observing meteorology, ionosphere and climate, and

operatedd on an orbit about 700~800 kilometers. The details of the project of

ROCSAT-3/COSMIC can be  found in  the following  website,

http://w yw.nspo.gov.tw/rcweb/chinese/rs3 intro.html. The flow conditions of

ROCSAT2, which are provided by National Space Program Office (NSPO), are used
for ROCSAT3 simulation. Computer-generated photograph of ROCSAT-3 is shown in
Fig. 11. Simulation is conducted for 1/2 of the solar panel and the body of the satellite
by takirg advantage of the inherent axial symmetry of this problem. Simulation
conditions are summarized in Table 1. Related flow conditions can be briefly listed as
follows: the cant angle of four thrusts is 10° the flow consists of N>H4, NH; and H;
with corresponding mole fraction 0.58:0.71:1.13, respectively. Total number density 7.,
= 2.E22 particles/m’; Fig. 12 illustrates the temperature and velocities of different

direction:: at the thruster exit, which is the inlet of computational domain. Note the data
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at this ocation are obtained using commercial CFD solver with computation starting
from the reservoir. In addition, fully thermal accommodation on all solid walls 1s
assumel. Full-scale simulation model of ROCSAT-3 and computational mesh (only
surface is shown) is shown in Fig. 13 and Fig. 14, respectively.

Surface properties contours

In this report, most data are presented using surface properties, which are the most
concerred properties in the plume impingement study. Some iso-surface data in the
space ajove the main body are shown to help understand the underlying physics of
plume i npingement.

Figs. 15-26 illustrate the surfaces properties contours and the iso-surface for
different cases. As Fig. 16(a), Fig. 18(a), Fig. 20(a), Fig. 22(a), Fig. 24(a), and Fig.
26(a) show, the number densities is generally larger in the regions near the thruster exit
and at tie location near the thruster jet interaction above the main body. In addition,
there is one region on the solar panel with larger number density due to the
impingement of the plume. Also the plume is divided into twp parts by the presence of
the solar panel. The flow conditions behind the solar panel strongly depends the angle
of the solar array. The larger the angle of the solar panel, the less flow goes into the

regions behind the solar panel.
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Tte solid surface temperature seems having very little effect on number density
distribution. Fig. 16(b), Fig. 18(b), Fig. 20(b), Fig. 22(b), Fig. 24(b), and Fig. 26(b)
show tie temperature distribution. There are some regions with obvious higher
temperz tures, including where the jets issue and jets interact. Fig. 15, Fig. 17, Fig. 19,
Fig. 21, Fig. 23, and Fig. 25 illustrate the number flux on the satellite surfaces, which
shows that much higher surface number flux is obtained for H2 gas due to its high
diffusiv ty. The smaller angle the solar panel is, the larger number flux impinges on the
solar panel. It is easy to understand that the closer the distance between the jets and

solar pacl more particles come to impinge on the solar panel.

V. CONCLUSIONS

In the current study, a parallel DSMC method that dynamically re-decomposes the
computational domain using graph-partitioning technique is presented. Proposed
method :s then applied to compute several realistic cases, including a two-dimensional
hypersor ic cylinder flow and a three-dimensional hypersonic sphere flow. Computed
results are compared with experimental data and previous simulation data wherever

available. In summary, the progress of the current research are listed as follows:

1. A general parallel 3-D DSMC method combining variable time-step scheme and
dynamic domain decomposition on unstructured mesh are implemented and

veri ied successfully.



Verification by computing several realistic flow problems shows the accuracy and
conputational efficiency of the current proposed parallel DSMC method using

dy1amic domain decomposition.

Completed PDSC applied to compute a full-scale ROCSAT-3 show that it is

feasible to predict the complicated plume impingement on spacecraft.
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Table 1. Test conditions for plume-impingement simulations of full-scale ROCSAT-3

model
Case 1 2 3 4 > 6
soler array 90° 90° 121° 121° 150° 150
argle

M‘zfgus)‘ze 142597 142597 145852 145852 143618 143618

Simulated, LOSM™  1.08M 1M IM  0.68M  0.68M
partic:les #
Temrg erature 173K 373K 173K 373K 173K 373K
(solar panel)
Tempzrature 123K 423K 123K 423K 123K 423K
(mair body)
Temp:rature 273K 273K 273K 273K 273K 273K

(antenna panel)

*1 The angle between solar panel and main body.

*2 # : number
*3 M : n.illion
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Fig. 5. Iritial and final domain decomposition for 64 processors for a two dimensional

hypersonic cylinder flow. (a) initial; (b) final.
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Fig. 11. Imagining photograph of ROCSAT-3
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Fig. 14. The surface mesh of ROCSAT-3
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