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類神經網路結構安全監測系統之發展（3/3）  

摘 要 

本計畫之目的是利用類神經網路來架構用於監測結構行為之整體監測網路。這些監測

網路除可用於結構系統識別之外，尚可透過觀察監測網路之輸出誤差來偵測破壞之發生或

是其位置。在第二項研究主題上，本文提出兩階段的結構破壞診斷方式。第一階段之工作

在於偵測破壞產生之位置。研究中證明基於結構模態參數而得之破壞特徵（DLF）僅與破

壞位置相關，而與破壞程度無關。於是，DLF 便可作為辨識破壞位置之參考指標。另外，

由觀測訊息進而推求結構可能之破壞狀態為一逆運算問題，其處理程序可視為樣本識別

（pattern recognition），因此結構破壞偵測之問題相當適合以非監督式模糊神經網路來處

理。利用合適的數值模型，吾人可事先建立不同破壞狀態下之解析破壞特徵。當真實之破

壞情況發生時，依據系統識別模式所獲得的結構模態參數，便可用於計算實際之量測破壞

特徵。接著利用非監督式模糊神經網路，藉由比對量測破壞特徵以及解析破壞特徵，便可

診斷出破壞產生之位置。待破壞發生之可能位置決定後，第二階段便可透過本文所述之演

算法來評估破壞的程度。藉由數值或實驗室案例，於分析研究中所發展之模式或方法得以

驗證，驗證之結果顯示其於應用上之可行性。 

計畫中，吾人設計了一棟四層樓鋼構架作為試體，以便進行勁度損失模擬之震動臺實

驗。實驗中以樓層層間勁度之降低來模擬結構之退化(deterioration)。於該試體上共裝置了

三種不同的感測器，如加速度計、光纖光柵感測器（FBG sensor）、以及傳統電子式應變計

（RSG），以量測試體於實驗中之結構加速度以及應變反應。根據分析研究以及實驗研究之

成果，提出一整合型的結構監測以及破壞診斷系統架構。該系統將具有即時系統識別、結

構監測、破壞診斷、以及提供正確警示之功能。 
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Development of Artificial Neural Network Based Structure 

Health Monitoring System (3/3) 

ABSTRACT 

The objective of the research is to develop a novel ANN-based system identification 

(ANNSI) model for identifying the modal parameters of a structure from its vibratory responses 

to monitor the health condition of the structure. The modal parameters can be directly estimated 

from the weighting matrices of a trained ANN, and further be used for diagnosing a structure. 

Following, a damage detection approach, which is based on the damage localization feature (DLF) 

and an unsupervised fuzzy neural network (UFN), is proposed. It is shown that DLF is correlated 

with damage location but independent of damage extent. As a result, it is used as indicator to 

identify the damage location. Detection of structural damage is an inverse problem, and the 

solving procedure for this problem is a kind of pattern recognition which is very suited to be 

implemented by unsupervised fuzzy neural networks. Through the use of the UFN, the damage 

site is located by matching two sets of the damage feature, the analytical DLF which is generated 

from an analytical model and the measured DLF which is computed according to the identified 

modal data. Subsequently, estimation of the damage extent is implemented by the proposed 

algorithms after the damage location is identified. The developed model or approaches in the 

analytical study are examined by either numerical or laboratory examples. The simulation results 

reveal the capability and practicability of the proposed methods. 

Moreover, a scaled-down four-story steel frame structure was designed to conduct the health 

monitoring study on the shaking table. The structural deterioration is simulated by reduction of 

the story stiffness. Three types of sensors, such as accelerometers, fiber Bragg grating (FBG) 

sensors, and resistant strain gages (RSGs) were installed on the specimen to measure the 

structural acceleration and strain responses during the shaking table tests. Based on the results 

from analytical and experimental study, an integrated health monitoring system is proposed in 

this dissertation. The system is designed to be capable of on-line system identification, 

monitoring, diagnosis, and warning.  
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CHAPTER 1  INTRODUCTION 

1.1 Background and Motivation  

The civil infrastructure ages and deteriorates with time due to aging of materials, excessive 

use, overloading, climatic conditions, etc. All these factors contribute to the discard of 

constructed systems. As a result, health monitoring system which is capable of health monitoring 

(including damage diagnosis), issuing warning message, and providing maintenance guidance, 

become necessary to ensure the safety of the infrastructure and public. Health monitoring refers 

to the use of in-situ, nondestructive sensing, and analysis of system characteristics, including 

structural response, for the purpose of detecting system changes, which may indicate damage or 

degradation. Health monitoring techniques may be categorized into two groups, global and local 

health monitoring. Global approaches attempt to simultaneously assess the condition of the 

structure whereas local approaches employ non-destructive evaluation (NDE) tools on specific 

structural components. 

Currently available NDE methods are mostly non-model methods, i.e., either visual or 

localized experimental methods, such as acoustic or ultrasonic methods, magnetic field methods, 

radiographs, eddy-current methods and thermal field methods. Shortcomings of currently 

available NDE methods indicate a requirement of damage inspection techniques that can give 

global information on the structure and they do not require direct human accessibility of the 

structure. Furthermore, among with the continuous competing requirements of improving the 

weight, interdisciplinary performance, and reliability of structures, the development of effective, 

reliable, and real-time non-destructive health monitoring techniques based on the dynamic 

characteristics of the structures is receiving growing attention. Among them, the techniques of 

detect damage by monitoring changes in the dynamic characteristics or in the dynamic responses 

of the structure seem to be attractive and promising.  

Consequently, for the security and reliability during the service life, smart structures should 

have the potential to achieve the ultimate objective in damage detection, i.e., predicting the 
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remaining useful life of the structure. The goals of developing smart structures in health 

monitoring is that the structure could, through the system identification process using vibratory 

observations, be able to detect damage as it is incurred by the structure, determine the location 

and extent of the damage, predict if and when disastrous failure of the structure will occur, and 

alert the operator as to how the performance of the structure is affected as that appropriate steps 

can be taken to remedy the situation. Therefore, system identification and damage assessment 

techniques are the foundations of developing the health monitoring system of smart structures. 

Figure 1.1 illustrates the relationship between system identification and damage assessment 

techniques. 

1.2 Literature review 

Numerous investigations in the damage detection or health monitoring of structures have 

been vigorously carried out in the past decades. Since the health monitoring approaches in this 

work are based on the modal parameters obtained from the structural vibrations, most reviews are 

focused on the modal-based (i.e. based on structural modal parameters) methods. Moreover, by 

the efforts of some researchers during these years, artificial neural network-based methods have 

become a major branch of studying structural health monitoring. Therefore, the health monitoring 

and damage detection related studies which were based on neural networks will also be reviewed 

herein.  

The modal-based methods utilize the information from modal parameters to detection and 

assess structural damage. The majority of this group of methods uses the lower modal frequencies 

and can best describe the global behavior of the structure. Therefore, they hold promise for global 

non-destructive inspection of a variety of structures, because surface measurements of a vibrating 

structure can provide information about the health of the internal members without costly 

dismantling of the structure. Also, because of their global nature, these techniques allow the 

customization of measurement points. Another major advantage is that the modal information is 

easy to extract from the measurements obtained through free, ambient, and forced vibration tests. 

A number of damage assessment techniques based on changes in structural modal parameters 
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have been proposed. The concept underlying such an approach is that damage to a structure 

reduces its natural frequencies, increases the modal damping, and changes the modal shapes.  

In early research, structural damage detection methods use natural frequencies as damage 

indicator. Salawu [1] made a comprehensive review on the detection of structural damage trough 

changes in frequency. However, from dynamic tests on bridges, Alampalli and Fu [2] and Salawu 

and Williams [3] concluded that the change in natural frequencies is not spatially specific and not 

sufficiently sensitive to detect local damage in the structure so that its application is limited. The 

results of their work indicate that the modal assurance criterion (MAC) and the coordinate modal 

assurance criterion (CMAC), which are based on mode shape data, are useful in detecting local 

structural change. Since mode shapes can provide much more information than natural 

frequencies, many studies have concentrated their efforts on damage detection with mode shapes 

information [4-6].  

For the damage localization problem, Cawley and Adams [7] proposed the first model by 

employing the changes in the natural frequencies, together with a finite element model (FEM), to 

locate the damage site of a given structure. Following their works, some researches [8, 9] have 

found this method susceptible to measurement errors, and ways of improving the localization 

have been introduced. Hearn and Testa [10] have illustrated that the ratio of the elemental strain 

energy to the total kinetic energy of the whole system is a fraction of the eigenvalue, and the ratio 

of this fraction for two different modes is dependent only on the location of the damage. Shi et al. 

[11, 12] presented a method based on modal strain energy for locating damage in a structure. 

Their method makes use of the change of modal strain energy in each structural element before 

and after the occurrence of damage. Some properties of the modal strain energy change are given 

to illustrate its sensitivity in locating damage. 

By employing control-based eigenstructure assignment techniques, a subspace rotation 

algorithm was proposed by Zimmerman and Kaouk [13], in which the damage vector and relative 

rotation angle are used to identify the DOFs affected by damage. Lim and Kashangaki [14] put 

forward a similar method in concept using best-achievable eigenvectors, however, to identify the 



 4

damaged structural members directly.  

Yao et al. [15] presented a structural diagnosis technique using vibratory signature analysis 

and the concept of strain mode shape. When a structure experiences a damage or change, a new 

state of force equilibrium is realized. Since force distribution is, in general, greatest near the 

damaged area, the location of damage is implicitly identified by the severity of the strain mode 

shape change. Due to its sensitivity to local damage, strain mode shape change seems to be a 

suitable damage indicator for locating structural damage. 

Stubbs and Kim [16] presented a methodology to localize and estimate the severity of 

damage in structures for which only postdamage modal parameters are available for a few 

vibratory modes. First, a theory of damage localization and severity estimation that utilizes only 

changes in mode shapes of the structures is outlined. Next, a system identification method that 

combines the experimental modal data and the modal parameters of a finite element model of the 

structure is developed to yield estimates of the baseline modal parameters for the structure. This 

method is attractive when the baseline modal information for the structure is unavailable. 

Topole and Stubbs [17] used natural frequencies with mode shapes and showed the 

importance of introducing mode shape orthogonality to identify the location and extent of 

damage on a structure. Messina et al. [18] developed an assurance criterion for detecting single 

damage site of structures. And this method was extended to identify the relative amount of 

damage at multiple sites [9, 19]. Recently, Shi et al. [20] proposed a sensitivity-and 

statistical-based method to localize structural damage by direct use of incomplete mode shapes. 

This method is an extension of the work by Messina et al.[19]. The damage detection strategy is 

to localize the damage sites first by using incomplete measured mode shapes, and then to detect 

the damage site and extent again by using the more accurate measured natural frequency 

information. 

Another important and interesting category uses the characteristics of the flexibility matrix. 

Unlike the stiffness matrix, the flexibility matrix can be formed more accurately through the 
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usage of first several order experimental modal data. Lin [21] used this flexibility matrix to 

multiply the pre-damaged FEM stiffness matrix to determine the damage locations. Pandey and 

Biswas [22] used the change in flexibility matrix before and after the occurrence of damage in the 

structure as damage index to identify the location and amount of damage. An important 

advantage in this category is that the usage of the analytical model can be avoided. Also, some 

researchers used some special information such as curvature modes [23-26] and strain data [27] 

to search for the damage locations.  

For the estimation of damage extent, one important class of methods for correlating 

measured modal data with analytical finite element models is the minimization or elimination of 

modal force error. This error is that resulting from the substitution of the analytical FEM and the 

measured modal data into the structural eigenproblem. Various approaches have been presented 

to minimize some measure of the error in the eigenproblem by perturbing the baseline values in 

the analytical model, such as the components of the stiffness, damping, and mass matrices. One 

type of method, known as sensitivity-based model update, uses the sensitivities of the modal 

response parameters of the FEM to the structural design parameters (such as Young’s modulus, 

density, etc.) to iteratively minimize the modal force error [28, 29]. Another type of method, 

known as eigenstructure assignment, designs a controller that minimizes the modal force error 

[13, 14]. Further, another type of method, known as optimal matrix update, solves a closed-form 

equation for the matrix perturbations that minimize the modal force error or constrain the solution 

to satisfy it [30, 31].  

Using modal parameters, Koh et al. [32] proposed an improved-condensation method to 

estimate the stiffness matrix that corresponds to observed degrees of freedom. Then, these authors 

detected local structural changes by quantifying changes in stiffness. Based on their own previous 

work [12], Shi et al. [33] further proposed an improved structural damage quantification 

algorithm. The algorithm includes the analytical stiffness and mass matrices of the system in the 

damage quantification. It reduces significantly the modal truncation error ad the FE modeling 

error from higher analytical modes in the computation. 
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Over the last two decades, artificial neural networks have gradually been established as a 

powerful tool in the fields of prediction and estimation, pattern recognition, and optimization 

[34-38]. Due to the features of robustness, fault tolerance, and powerful computing ability, the 

model of artificial neural networks becomes a promising tool in solving civil engineering 

problems, such as linear/nonlinear system identification, structural control and health monitoring.  

Recently, some researches have investigated the suitability and capabilities of ANNs for 

damage detection purposes. Ghaboussi et al. [39] and Wu et al. [40] discussed use of neural 

networks for detection of structural damage in a three-story frame with rigid floors. They trained 

neural networks to recognize the frequency response characteristics of undamaged and damaged 

structures. The varying damage levels were simulated by adjusting the properties of individual 

members. Elkordy et al. [41] question the reliability of the traditional methods for structural 

damage diagnosis and monitoring that rely primarily on the visual inspection and simple on-site 

tests. They proposed a structural damage monitoring system for identifying the damage 

associated with changes in structural signatures using neural networks. For training, they used an 

FEM to develop failure patterns that were used to train a neural network so that it can later 

diagnose damage in the reference structure. Szewezyk and Hajela [42] presented a neural network 

approach based on mapping the static equilibrium requirement for a structure in a finite element 

formulation with the assumption that structural damage is reflected in terms of stiffness reduction. 

The results showed that even with input noise and incomplete measured data, neural networks 

can still obtain satisfying diagnosis.  

Pandey and Barai [43, 44] trained a multilayer perceptron and a time-delay neural network 

respectively for the detection of steel-truss bridge structures. Zhao et al. [45] used a 

counter-propagation neural network to locate structural damage for a beam, a frame, and support 

movements of a beam. The required data such as natural frequencies, mode shapes and their other 

derivatives are obtained through the use of FEM.  

The studies presented by Masri et al. [46] used neural network-based approaches for the 

detection of changes in the characteristics of structure-unknown systems. Their approaches rely 
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on the use of vibration measurements from a ‘healthy’ system to train a neural network for 

identification purposes. Subsequently, the trained network is fed comparable vibration 

measurements from the same structure under different episodes of response in order to monitor 

the health of the structure. Differ from other approaches, the attractive advantages of these 

approaches are that they do not require the analytical model for a real structure and only vibratory 

responses are used. 

Zapico et al. [47] proposed a multi-layer-perceptron-based procedure for damage assessment 

in a two-storey steel frame and steel-concrete composite floors structure. A simplified finite 

element model is used to generate the training data. Sahin and Shenoi [48] presented a damage 

detection algorithm using a combination of global (changes in natural frequencies) and local 

(curvature mode shapes) vibration-based analysis data as input in ANNs for location and severity 

prediction of damage in beam-like structures. A FE model is used to introduce the damage 

scenarios to generate the training data. Other recent published works can be referred to the 

references [49-54]. 

1.3 Objectives  

The object of this research is to assemble a framework of the health monitoring system in a 

smart structure via artificial neural network (ANN) approaches. In the health monitoring system, 

it is considered to involve three core parts which are the system monitoring, the system 

identification, and the damage assessment mechanisms. Figure 1.2 illustrates the relationship 

between these mechanisms. 

To accomplish this goal, ANN-based system identification models have been developed to 

provide the information (such as the structural modal data) about the structure through the 

vibration measurements (such as the acceleration and strain responses) and can be used to 

continuously monitor the structure. Based on structural information provided by the identification 

models, the damage condition is assessed through the two-stage damage assessment approaches: 

an unsupervised fuzzy neural network for locating structural damage and estimating the damage 
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extents of the structure. In addition to the theoretical developments in system identification and 

damage assessment techniques, experimental study is also conducted to complete this work.  
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 CHAPTER 2  ARTIFICIAL NEURAL NETWORKS 

2.1  Introduction  

An artificial neural network (ANN) model is a functional abstraction of the biological neural 

structures of the central nervous system. They are composed of many simple and highly 

interconnected computational elements, also called neurons, that operate in parallel and are 

arranged in patterns similar to biological neural nets. The neurons are connected by weighted 

links passing signals from one neuron to another. Each neuron receives a number of input signals 

through its connections. The output signal is transmitted through the neuron’s outgoing 

connection. The outgoing connection, in turn, splits into a number of branches that transmit the 

same signal. The outgoing branches terminate at the incoming connections of other neurons in the 

network.  

It is generally thought that a neural network is highly sophisticated nonlinear dynamic 

system. Although each neuron is primitive both in architecture and in function, a network 

comprising many neurons is intricate. In addition to its nonlinear nature, neural network is a 

signal processing system. The inherent dynamic process can be classified as a fast process and a 

slow process. The former is a numerical process to evolve to an equilibrium status with given 

inputs. The latter is a learning process where the values of the connective weights between 

neurons are adjusted according to the environment. After learning, environmental information is 

stored on the connective weights. 

In 1943, McCulloch, a neurobiologist, and Pitts, a statistician, published a seminal paper [55] 

which inspired the development of the modern digital computer. At approximately the same time, 

Rosenblatt [56] was also motivated by this paper to investigate the computation of the eye, which 

eventually led to the first generation of artificial neural networks, known as the perceptron. Since 

then, the theory and design of ANNs have advanced significantly.  
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Over the last two decades, ANNs have found application in pattern recognition, signal 

process, intelligence control, system identification, optimization, etc. [57-59] because of their 

excellent learning capacity and their high tolerance to partially inaccurate data. They are suitable 

particularly for problems too complex to be modeled and solved by classical mathematics and 

traditional procedures. A good review article by Adeli [60] summarized the applications of the 

ANNs in civil engineering during the 20th century.  

Artificial neural networks are typically characterized by their computational elements, their 

network topology, and the learning algorithm used. According to the learning approaches adopted, 

ANNs can be classified into two major groups: supervised and unsupervised. A supervised 

network is given both inputs and desired outputs pairs for training or learning. The network 

adjusts its weights until the errors between its outputs and the desired reach a predefined bound. 

An unsupervised network is commonly used for classification or clustering. Its weights are 

adjusted using predefined criteria until the network has performed a classification. In this work,  

an unsupervised neural network with fuzzy reasoning algorithm, termed as UFN, is employed to 

perform the damage detection of structures. 

2.2  Unsupervised Fuzzy Neural Network Reasoning Model  

The unsupervised fuzzy neural networks (UFN) reasoning model was proposed by Hung and 

Jan [61]. This model had been successful applied to the problems of preliminary design [62, 63] 

and control of building structures [64], and is further applied to the damage detection of 

structures [65]. The UFN reasoning model consists of an unsupervised neural network with a 

fuzzy computing process. The basic concept of the proposed model is that, the solution of a new 

instance can be solved by retrieved the similar instances from a collection of solved instances, 

named as instance base, to a specified domain. The following is a brief review of the UFN 

reasoning model.  

The UFN reasoning model is implemented in the following steps (Figure 2.1):  

(1) measuring the similarities between new instance and existed instances;  
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(2) generating the fuzzy set of similar instances; and  

(3) synthesizing the solution based on the fuzzy set of similar instances.  

The first step involves searching for instances that similar to the new instance (Y) in the 

instance base (Uj) according to their inputs ( iY  and ijU , ). It is performed through a 

single-layered laterally-connected network with an unsupervised competing algorithm. The 

similarity measurement is implemented by calculating the degree of difference between two 

instances. The function of degree of difference is defined as 
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where Yjd  denotes the discrepancy between the inputs of the new instance Y and the jth instance 

Uj in the instance base; mα  denotes predefined weight which is used to represent the degree of 

importance for the mth decision variable in the input. 
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The terms Rmax  and Rmin  define the upper and lower bounds of the degree of difference. In 

case the degree of difference is less than the upper bound Rmax , any two instances are treated as 

similar in some measure. Obviously, Equations (2.1) and (2.2) show that the smaller the 

discrepancy Yjd  is, the higher is the degree of similarity. 

It is obvious that the upper bound Rmax  heavily influences the measurement of similarity. A 

large Rmax  implies a loose similar relationship between instances. Consequently, a large number 

of instances are considered as similar instances. Since the solution of the new instance is based on 
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the similar instances been taken, a selection of large Rmax  could result in inferior solution. On 

the other hand, a small Rmax  indicates that a strict similar relationship is adopted. Accordingly, 

most of the instances in the instance base are sorted as dissimilar to the new instance, and the 

UFN reasoning model could generate no solution. Therefore, a linear correlation analysis is 

employed to systematically determine the appropriate value of Rmax .  

The second step entails representing the fuzzy relationships among the new instance and its 

similar instances. The instances with the degree of difference smaller than Rmax  (the fuzzy 

membership value larger than zero, in other words) are extracted from the instance base as similar 

instances. Subsequently, the fuzzy set of “similar to Y” is then formed with the similar instances 

and their corresponding fuzzy membership values and is expressed by 

{ }... ),( ..., ),( ),( 2211sup, ppY SSSS µµµ=                                            (2.3) 

where Sp is the pth similar instance to instance Y; and µp is the corresponding fuzzy membership 

value. 

Finally, the solution for instance Y is generated by synthesizing the outputs of similar 

instances according to their associated fuzzy membership value through the center of gravity 

(COG) method. As a result, the output Yo of instance Y via the COG method is defined as 

follows: 
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CHAPTER 3  DAMAGE DETECTION OF STRUCTURES 

VIA NEURAL NETWORKS 

3.1  Introduction  

The damage of a structure is conventionally assessed from observed dynamic responses by 

detecting changes in the modal parameters of the structure. The concept underlying such an 

approach is that damage to a structure reduces its natural frequencies, increases the modal 

damping, and changes the modal shapes. In early research, structural damage detection methods 

use natural frequencies as damage indicator. However, the frequencies are not spatially specific 

and are not very sensitive to damage so that its application is limited. Since mode shapes can 

provide much more information than natural frequencies, many studies have concentrated their 

efforts on damage detection with mode shapes information. 

Recently, structural damage identification based on vibration monitoring techniques has paid 

much attention. Various damage identification algorithms have been developed for dealing with 

three key problems, i.e., detection of the presence of damages, detection of the structural damage 

locations, and estimation of the damage extents. For the problems stated above, most of the 

existing methods can be thought of as a two-stage algorithm in which damage locations are 

detected at first, and then damage extents are estimated. Generally, the first step may be more 

important, but probably more difficult.  

Due to the features of robustness, fault tolerance, and powerful computing ability, the model 

of artificial neural networks becomes a promising tool in solving civil engineering problems. 

Masri et al. [66] has demonstrated in their study that neural networks are a powerful tool for the 

identification of systems typically encountered in the structural dynamics field. Some researches 

have investigated and proven the suitability and capabilities of ANNs for damage detection 

purposes. Consequently, the ANNs are also employed to develop the damage detection methods 

in this work.  
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By using the modal data extracted from the structural responses via the aforementioned 

ANNSI model, the damage locations and extents in the structure can be identified and evaluated. 

A two-stage damage assessment approach for building structures is used in this study. The first 

stage focuses on identifying the damage locations of the damaged structure by using ANNs and 

the second stage works on the estimation of the damage extents. 

3.2  Damage Detection Using The UFN Model  

Based on recent developments in measuring and data analyzing techniques, modal data 

(such as natural frequencies and mode shapes) of a structural system can easily be obtained 

through utilizing system identification procedure. Therefore, the damage detection approach has 

been developed on the basis of the available natural frequencies and mode shapes of the 

structures. 

3.2.1 Index for Damage Localization 

For an undamaged structure, the modal characteristics are described by the following 

eigenvalue equation: 

Niii ,...,1for 0][ ==− φλ MK                                               (3.1) 

where iλ  is the ith modal eigenvalue which presents the square of the natural frequency of the 

structure; iφ  is the ith eigenvector which presents the mode shape of the structure; K  and M  

are symmetric system stiffness and mass matrices, respectively. 

Generally, the damage of a structure is assumed to be the reduction of stiffness but not the 

loss of mass in structural elements, then the eigenvalue equation for such a damaged structure 

becomes 

0)]()()[( =∆−∆−−∆− iiii φφλλ MKK                                        (3.2) 

Assume the system stiffness matrix is the combination of individual member stiffness 

matrices. The change in stiffness matrix due to damage then be expressed as 



 15

∑
=

=∆
dN

e
ee

1
kK α                                                               (3.3) 

where ek  is the individual stiffness matrix for the eth element; Nd is the total number of 

damaged elements in the structure; and eα , which is within the range between 0 and 1, is the 

coefficient defining a fractional change of the eth elemental stiffness matrix. Therefore, the index, 

α , which is damage extent-dependent, makes estimation on the damage extent and the suffix, e, 

which is damage location-dependent, offers the information about the location of the damage. In 

the case of 0=eα , the eth structural element is not damaged. When 1=eα , in contrast, it 

means that the eth structural element is totally damaged. Accordingly, the problems of locating 

the damage site and evaluating the damage extent are focus on identifying the index e and 

computing the corresponding value of eα . 

Expand equation (3.2) and neglect the higher order terms of ∆  yields  

0=∆+∆−∆+∆− iiiiii φλφφλφ MKMK                                          (3.4) 

Pre-multiply equation (3.4) with T
iφ , the change in eigenvalue is then expressed by 
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This equation expresses the relationship between the structural damage and the change in 

eigenvalue of the damaged structure. The eigenvalue change is direct proportion to the extent of 

damage. It is seen that the change in eigenvalue is damage location-dependent (the index, e) as 

well as damage extent-dependent (the index, α ). 

Subsequently, the relationship between the structural damage and the change in eigenvector 

is derived. Pre-multiply equation (3.4) with the transpose of the jth eigenvector, T
jφ , and use the 

relationship, MK T
jj

T
j φλφ = , which leads to the following equation: 

i
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where iφ∆  is assumed to be a linear combination of the mode shapes [2], i.e. 
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Substitute equation (3.7) into equation (3.6), and introduce the orthogonal property, equation 

(3.6) is rearranged as 
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Impose equation (3.8) onto equation (3.6), the expression show the change in ith eigenvector 

of the system. 
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Again substituting K∆  in the above equation with equation (3.3) yields  
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This equation, as equation (3.6), also shows that the change in eigenvector is damage 

location-dependent as well as damage extent-dependent. It is clear that equations (3.6) and (3.10) 

show the expression of changes in modal values and vectors, respectively. The changes in modal 

values and vectors are direct proportion to the stiffness change. 

Finally, suppose single damage or multiple damages with similar severity (i.e. all eα , e=1~Nd, 

are identical) exist in the structure. With this assumption, the expression for the change in the ith 

modal vector divided by the changes in the jth modal value (i.e. divide equation (3.10) by 

equation (3.6)), termed Damage Localization Feature (DLF) in this work, can be used as an 

indicator for identifying the location of structural damage. 

The location of damage to a structure is dependent only on the ratio of change in modal 

vectors and modal values, and can be identified by matching the measured damage localization 
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feature and the analytical damage localization feature. This kind of problem solving process may 

be categorized as the technique of pattern recognizing. And the unsupervised neural network 

model had been widely applied and approved an efficient tool for the problem of pattern 

recognition [67]. 

3.2.2 UFN for the Damage Detection of Structures 

In the studies of damage detection that based on certain damage indices or features, two 

main approaches are usually adopted to deal with the detection or diagnosis process. One 

computed the discrepancy between the measured (or real) damage index and the FEM-based 

analytical damage index for all potential damage states to a structure. The case with the smallest 

discrepancy represents the current state for the structure [68, 69]. The other optimizes the 

specified objective function in which the measured information is included to search for the 

possible damage state [70]. Accordingly, no matter what approach is adopted, the key point of 

damage detection is how to rapidly and correctly identify the possible damage state according to 

the measured data. Therefore, one can establish the damage features for every possible damage 

state via the analytical FEM. When the measured damage feature is available from measurement, 

the damage state can then be identified through finding the same or most similar damage features. 

In most previous methods, the damage case with the smallest discrepancy between the measured 

and analytical damage features is selected to be the possible damage state on the structure. 

However, the identification of damage state basing on certain measured damage features is an 

inverse problem; two similar but different damage scenarios could possibly result in similar 

measured damage features. The relationship from the damage features to the damage state should 

be fuzzy but not crisp. Therefore, the damage cases with sufficient degree of ‘similarity’ between 

the measured and analytical damage features are selected as candidates to identify the damage 

state on the structure. 

Note that, the Damage Localization Feature (DLF) was derived based on two assumptions: 

first, the higher order terms of ∆  in equation (3.2) were neglected; second, the damage extents 
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for multiple damages were identical when imposing equation (3.3) on equations (3.6). A 

consequence was made that the damage location is depended only on 
j
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. That means, no 

matter what the damage extents are, 
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 is invariant for the same damage class (i.e. different 

damage extent but same damage location). However, basing on the aforementioned two 

assumptions, the actual computed values, 
j

i

λ
φ

∆
∆

, will no longer be identical for a specific damage 

class. For example, the respectively computed values, 
j

i

λ
φ

∆
∆

, for the damage occurred at the 1st 

story with 10% and 20% damage extent will lead to a discrepancy between each other. The higher 

the difference in damage extent is, the more the discrepancy. Meanwhile, for the example of 

multiple damages, such as the damage occurred at the 1st and 2nd story with 10% and 20% 

damage extent, the computed 
j

i

λ
φ

∆
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 will also be different to that of the damage occurred at the 

same stories but with 20% and 10% damage extent. Even though, one can find out from the 

example that the DLF is still an effective feature for determining the damage location. 

Accordingly, the process of using DLF to find the damage location is more like pattern 

recognition than functional mapping. Consequently, instead of the most utilized supervised neural 

network (which is powerful for the functional mapping problems) in the related studies on 

damage detection or health motoring, this study employs an unsupervised-typed neural network 

model, the Unsupervised Fuzzy Neural Network (UFN) reasoning model, to implement the 

damage localization process. 

Together with the theories of DLF and the UFN reasoning model introduced in section 2.3, 

this study makes use of the DLF as the input variables and the existence of the damage site as the 

output vector for the UFN. Basing on the analytical model, the Analytic Damage Localization 

Feature (ADLF) for various possible damage cases can be calculated in advance to construct an 

ADLF instance base. With proper deployment of sensors, the vibration signals of the structure 

can be easily measured through ambient, free, or forced vibration tests, and the modal parameters 

can also be generated through the ANNSI model. When the modal parameters of the structure are 

available, the damage location can then be located by matching the Measured Damage 
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Localization Feature (MDLF) with the ADLF through the UFN reasoning.  

3.2.3 Input-Output Patterns for the Neural Network 

For the UFN, the ADLF is treated as input variable of the neural network. Moreover, the 

output vector for the UFN represents the condition of the structural elements. Herein, binary 

value is adopted to represent the condition of the structural element. If the element is damaged, 

the value is set to be 1 to the associate element; otherwise, the value is set to be 0 to indicate an 

undamaged element. An example is presented in the next section to examine the feasibility of the 

proposed approach. 

3.3  Estimation Of Damage Extent   

After the possible damage locations were identified via damage localization procedure, the 

damage extent for each damage location can be assessed by the estimation algorithms. Almost all 

of the proposed estimation algorithms of damage extent in previous works, such as Kaouk and 

Zimmermann [30], Stubbs and Kim [16], Messina et al. [18, 19], Shi et al. [11, 12, 20], and Law 

et al. [71], rely on an analytical model for the real structural system to provide certain basic 

information, such as modal mass and elemental stiffness matrix. Based on the analytical model, 

the estimation algorithms can be employed to assess the structural damage extent. Herein, a 

simple approach for assessing the damage extent is introduced as follow. 

The equation (4.2) cab be rewritten as 

0)]()()[( =∆−∆−−∆− iiii φφλλ MKK                                       (3.11) 

Expand this equation and then pre-multiply with T
iφ  yields 
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After imposed equation (3.3) on (3.12) and rearranged, equation (3.12) becomes 
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where iidi φφφ ∆−=  is the ith mode shape after the structure was damaged. Note that, if the 

higher order terms of ∆  were neglected, equation (3.13) leads to equation (3.6). Furthermore, if 

the mode shape of the damaged structure, diφ , is replaced by the mode shape of the undamaged 

structure, iφ , equation (3.13) becomes equation (3.6) 
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CHAPTER 4  SETUP FOR THE EXPERIMENTAL STUDY 

4.1  Introduction  

Researches in the theoretical development and the experimental study of structural damage 

diagnosis have been vigorously expanded during last two decades. Most objects of interest for 

analysis or experiment, however, were limited to simple structures [1-6], small-sized models or 

specimens [7-10], or bridge structures [11-17]. In the past years, despite Yao and his co-workers 

[18], Elkordy and his colleagues [19], and ASCE Structural Health Monitoring Committee [20], 

not too many researchers devoted themselves to the experiment investigation of the damage 

diagnosis in large-scaled building structures. As we know, the damage diagnosis for real-world 

civil structures is very difficult. Due to the inherent inconsistency between the model and real 

structure (especially when the size of the structure becomes larger), when the developed theories 

for the structural damage diagnosis were applied to practical cases, the results may not be as good 

as we expect, even though the theoretical analysis and the numerical results were perfect. 

Nevertheless, this work aims to investigate and exam the proposed methods through the 

conducted experiments to provide a full looks on the study of the structural health monitoring. 

Consequently, a scaled-down four-story steel frame has been employed to verify the damage 

detection study in this work. The conducted experiments aim to investigate the following topics. 

(1) To verify the proposed ANN-based system identification model or approach； 

(2) To verify the proposed damage detection/diagnosis strategies； 

(3) To investigate the capabilities of the fiber Bragg grating sensors for structure 

monitoring； 

(4) To explore the possibility of other damage related indicators； 

(5) To provide a reference for the experiment investigation of the damage diagnosis of 
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large-scaled building structures.  

Subsequently, the characterizations of the experimental specimen, the organization of the 

measuring instruments, the design of the simulated structural damage, the experiment layouts, 

and the preliminary analysis on the observed measurements are consecutively introduced in the 

following sections.  

4.2  Shaking Table And Experimental Specimen  

A series of shaking table tests of a steel frame structure for damage detection study was 

conducted in the laboratory in the department of civil engineering, National Chiao Tung 

University (NCTU). Table 4.1 depicts the basic description of the shaking table (or earthquake 

emulator) in NCTU. Figure 4.1 shows the appearance of the shaking table. This shaking table is a 

3m long, 3m wide, and 5 tons uni-axial earthquake simulator. The maximum weight capacity of 

the experimental specimen for this table to carry is about 10 tons. The shaking table can 

simulated any earthquake in the world to the intensity of ± 1 g.  

The Kobe earthquake, of which the intensity is reduced to 0.08g, is used as the input 

excitations to the shaking table throughout the damage detection study. Figure 4.2 shows the 

time-history and spectrum of the input excitation (Kobe earthquake with PGA 0.08g). 

A four-story steel frame was designed and constructed to perform the experiments of 

damage detection. The four-story test model is a 2m long, 2m wide, and 6.4m high steel frame. 

Lead blocks were piled on each floor such that the mass of each floor was approximately 

120 mskg /2− . The experimental specimen is designed to be a ‘soft structure’ for the sake of 

obtaining the modal parameters easily and explicitly. Figure 4.3 diagrams the four-story frame. 

The characterizations of the experimental specimen are listed in Table 4.2. The detailed cross 

sections of the members are shown in Figure 4.4. 

According to the parameters listed in Table 4.2, an analytical model was established and 

analyzed via the ETABS software. Table 4.3 shows the modal parameters of the analytical model. 
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Note that, because the experiments were designed to execute along the transverse direction (i.e. 

y-axis), Table 4.3 only shows the modal parameters of the model along the y-axis.  

Figure 4.5 shows the photo of the four-story steel frame after locked on the shaking table. 

The author would like to mention that, the steel frame shown in this photo which was constructed 

by the columns, beams, girders, and mass blocks but not installed with ‘strengthening column’ is 

termed as ‘clear frame’. The description about the strengthening column will be expanded later in 

Section 4.4. 

4.3  Sensing Instrumentations  

Three types of sensors, including accelerometers, electrical resistance strain gages (RSG), 

and optic fiber Bragg grating (FBG) sensors, were installed on the specimen to measure the 

structural responses during the shaking table tests. The basic information, such as the 

specifications and arrangements of the sensors, about the sensing instrumentations is briefly 

introduced in the followings. 

Five accelerometers were designed to monitor the acceleration responses of the test 

specimen when subjected to the simulated earthquakes. Figure 4.6 shows the deployment of the 

accelerometers. According to the figure, four accelerometers were placed along the central line of 

the frame at each floor to measure the structural responses, and one accelerometer was placed at 

the foot of the column to measure the input base excitation to the structure. Figure 4.7 and 4.8 

show the actual installations of the accelerometers at the 2nd floor and base, respectively. A 

simple description of the employed accelerometers is listed in Table 4.4 in which the symbols A1 

to A4 represent the accelerometers at the 1st to 4th floor, respectively, and the symbol Abase 

represents the accelerometer at the base. 

Fiber Bragg grating sensors are one of the most exciting developments in the field of optical 

fiber sensors in recent years. Since the pioneering work done by Meltz et al. [21], subsequent 

interest in FBG sensors has increased considerably. One of the probable main reasons for this is 

that, FBG sensors have great potential for a wide range of sensing applications for important 
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physical quantities, such as strain, temperature, pressure, acceleration [22-24], etc. It this work, 

the FBG sensors are used for measuring the strain responses of the structure during earthquakes. 

FBG sensors have a number of distinguishing advantages which make them a promising 

candidate for smart structures. When compared with RSG used for strain monitoring, FBG sensor 

have several distinguishing advantages, including [25] 

(1) much less intrusive mass and size; 

(2) much better immunity to electro-magnetic interference; 

(3) greater capacity of multiplexing a large number of sensors along a single fiber link, 

unlike RSGs which need a huge amount of wiring; 

(4) greater resistance to corrosion when used in open structures, such as bridges and dams;  

(5) higher temperature capacity (typically about 300 Co ); 

(6) longer lifetime for long term operation.  

These features have made FBG sensor very attractive for health monitoring of smart 

structures.  

Sensing principle of FBG sensor 

An FBG is written into a segment of Ge-doped single mode fiber in which a periodic 

modulation of the core refractive index is formed by exposure to a spatial pattern of ultraviolet 

light in the region of 244-248 nm. The lengths of FBG sensors are normally within the region of 

1-20mm and grating reflectivities can approach ~100%. Being a recent developed technique for 

civil engineering, the sensing principle of FBG sensor is briefly introduced herein. When the 

FBG is illuminated by a broadband light source, each FBG sensor in a fiber reflects a specific 

wavelength that shifts slightly depending on the strain applied to the sensor. The change in 

wavelength is directly proportional to the change in mechanical features such as strain or 

temperature.  
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In its simplest form a fiber Bragg grating consists of a periodic modulation of the refractive 

index in the core of a single-mode optical fiber (Figure 4.9). According to Bragg’s law, reflected 

Bragg wavelength, Bλ , is given by 

Λ= eff2nBλ                                                                 (4.1) 

where effn  represents the effective refractive index of the fiber core and Λ  is the period of the 

index modulation.  

The Bragg wavelength is the free space center wavelength of the input light that will be 

back-reflected from the Bragg grating. The Bragg grating resonance, which is the center 

wavelength of reflected light from a Bragg grating, depends on the effective index of refraction of 

the core and the periodicity of the grating. The effective index of refraction, as well as the 

periodic spacing between the grating planes, will be affected by changes in strain and temperature. 

While the strain effect, which corresponds to a change in the grating spacing and the strain-optic 

induced change in the refractive index, is considered (Figure 4.10), the Bragg wavelength change 

can be expressed as  

∆Λ=∆ *
eff2nBλ                                                               (4.2) 

where *
effn  is the changed effective refractive index. Hence the wavelength shift, 
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where εκ  is a strain-sensitive coefficient. Furthermore, the Bragg wavelength shift due to the 

temperature effect may be written as  

TT T
B

B ∆=∆+=
∆

καξ
λ
λ )(                                                     (4.4) 

where T∆  is the change in temperature; ξ  is the thermal optical coefficient; α  is the thermal 

expansion coefficient; and Tκ  represents the thermal-sensitive coefficient. Combining equations 
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(4.3) with (4.4), the Bragg wavelength shift due to strain and thermal effects can be expressed as 

TT
B

B ∆+=
∆

κεκ
λ
λ

ε                                                           (4.5) 

Further details about the FBG sensor technology and its applications can be found in related 

books or review articles, such as Othonos and Kalli [26], Kashyap [27], and Rao [25, 28]. 

According to the experiments the strain-sensitive and thermal-sensitive coefficients provided 

by the Prime Optical Fiber Corporation (POFC, Hsinchu, Taiwan) are about 0.80 and 5.88×10-6, 

respectively, which make equation (4.5) becomes  

T
B

B ∆×+=
∆ −61088.580.0 ε
λ
λ                                                   (4.6) 

Then the strain or temperature variation can be converted from the wavelength change by 

the following relationship. 

Cpm o1.0strain 8.01 ≈≈ µ                                                      (4.7) 

FBG Data Acquisition System 

An FBG data acquisition system, including the MOI’s (Micron Optics, Inc.) Fiber Bragg 

Grating Swept Laser Interrogator (FBG-SLI) and a notebook (Figure 4.11), is adopted to monitor 

and restore the FBG wavelength data.  

The FBG-SLI is a high-power, fast, multi-sensor measurement system that provides a major 

advancement for mechanical sensing applications. The FBG-SLI combines the speed of MOI’s 

unique Swept Laser technology and the accuracy of the patented picoWave reference technique to 

resolve changes in optical wavelengths of approximately 1pm (<1µ  strain) and achieve high 

calibrated wavelength accuracy. It is a complete system that includes a swept source used to 

illuminate the FBG sensors and the four detectors, which simultaneously measure the reflected 

optical signals on each fiber. All sensors (maximum of 64 FBG sensors per fiber) on all channels 

are scanned simultaneously at a maximum rate of 108Hz. Table 4.5 lists the specification of the 

FBG-SLI.  
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A block diagram of the optical layout is shown in Figure 4.12. The swept laser illuminates 

the Bragg gratings and each FBG sensor reflects its corresponding wavelength. The Fiber 

Fabry-Perot Tunable Filter (FFP-TF) simultaneously scans the reflected wavelengths from the 

FBG sensors and the picoWave reference. Through the detector circuitry and software, the 

detected signals are converted to wavelengths. A PC or notebook provides the on-line calibration, 

data display/storage, and the FBG sensors under test. 

FBG sensors arrangement 

There are 12 FBG sensors along two fibers were employed in this work to monitor the strain 

responses of the test frame during excitations. Eight FBG sensors were arranged along one fiber 

link which was connected to the first channel (terms as Channel 1) of the FBG-SLI, and four 

FBG sensors were arranged along another fiber link which was connected to the second channel 

(terms as Channel 2) of the FBG-SLI. The descriptions of the specification and arrangement of 

the FBG sensors along Channel 1 and Channel 2 are shown in Tables 4.6 and 4.7 and Figure 4.13, 

respectively. Figures 4.14 and 4.15 display the transmission and reflection spectra of the FBG 

sensors on Channel 1 and Channel 2, respectively. 

The FBG sensors were attached to the columns at each story to measure the strain responses 

of the test frame. The FBG sensors along Channel 1 were located near the top and the bottom of 

the story columns on east side; meanwhile, the FBG sensors along Channel 2 were located near 

the bottom of the story columns on west side. A sketch of the deployment of the FBG sensors is 

also demonstrated in Figure 4.5. The actual attachments of FBG1 and FBG2 on Channel 1 and 

FBG9 on Channel 2 are shown in Figure 4.16, Figure 4.17, and Figure 4.18, respectively. Note 

that, FBG1 and RSG1 in Figure 4.16 were installed near the bottom of the column of 1st story on 

east side, FBG2 in Figure 4.17 was installed near the top of the column of 1st story on east side, 

and FBG9 in Figure 4.18 was installed near the bottom of the column of 1st story on west side. 

In addition to the FBG sensors, four RSGs were also adopted as a reference to the FBG 

sensors. Therefore, one RSG was attached right beside the FBG sensor to the bottom of the 
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column of each story, as shown in Figure 4.16. The RSGs configuration was also depicted in 

Figure 4.6.  

4.4  Damage Simulation  

There are several kinds of mechanisms for damage simulation according to the study 

objectives of interest. By reviewing the numerical or experimental studies in damage detection or 

assessment during these years, the simulations of structural damage are classified into the 

following categories.  

(1) For beams-like or bridge structures:  

─ decreasing the stiffness of the elements numerically [29]; 

─ reducing the thickness or cross-section of the selected elements [4, 14, 30-34]; 

─ support failure and/or crack degradation [2, 11, 35, 36]. 

(2) For truss structures:  

─ reducing the cross-section or Young’s modulus of the bars to simulate the axial stiffness 

failures [31, 37, 38]; 

─ loss of stiffness and mass of members [39].  

(3) For building or frame structures:  

─ loosing the beam-column joints to simulate joints failures [40, 41];  

─ weakening the story stiffness via the reduction in bracing areas [19];  

─ reducing the flexural stiffness of the beams belonging to the corresponding floors [42].  

4.4.1 Strengthening Column  

The damage in a structure is assumed in this work to be the change in story stiffness. In most 

experimental studies of damage detection which is based on such an assumption commonly used 
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bracing elements as simulations [19]. This work, however, employs a different type of 

mechanism, called the ‘strengthening column (SC for short)’, as simulations to the structural 

damage. 

Most of the past experimental studies focus on high-level damage extent, and most of the 

successful diagnoses were usually based on the high-level damage. Small extent damage is not as 

easy and evident as large extent damage to be identified and assessed because of many 

uncertainties and errors such as boundary conditions, measurement errors, ambient noise, and 

computation errors. Even though, this work attempts to investigate that if the small extent (or 

low-level) damage as well as the large extent (high-level) damage can be successfully identified 

and diagnosed.  

Compare with the experimental specimens in the works conducted by Elkordy [19] and Koh 

[7], the specimen in this work is heavier and bigger. Furthermore, according to the analysis result 

from ETABS software, even small cross-section of bracing can provide significant lateral 

stiffness which results in considerable changes in the natural frequencies of the structure. In order 

to investigate whether small damage in a structure can be detected and assessed, simulation on 

small damage scenario is also considered in this work. Consequently, instead of using the bracing, 

the SC is designed to provide the specimen with additional lateral stiffness. The element selected 

to perform as SC is the lightweight ‘C’ shape steel. Table 4.8 and Figure 4.19 show the detailed 

dimension of the SC and how the SC is connected to the beams, respectively. Note that, the 

symbols ‘SC-A’ and ‘SC-B’ in Table 4.8 denote the SCs whose cross sections are 

C 3.22050100 ×××  and C 3.2154575 ××× , respectively. The SC was fixed with 4 bolts at each 

end to the top and bottom of the story beams. The actual installation of the SC at the 1st story is 

depicted in Figure 4.20.  

The clear frame that combines with 6 SCs-A at the 1st to 3rd stories (2 SCs at each floor 

from 1st to 3rd stories) is defined as the ‘intact (or healthy) structure’. Figure 4.21 shows a photo 

of the intact structure. Alternatively, the frame that incorporated with smaller SCs (to simulate a 

slight damage scenario) or without SC (to simulate a considerable damage scenario) is treated as 
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‘damaged structure’. 

4.4.2 Simulated Damage Cases 

Herein, both single-site damage cases and multiple-site damage cases are simulated. Table 

5.9 lists all the damage cases in studying. For convenience and simplicity, certain notations to the 

damage cases are assigned. Refer to Table 4.9, the notation AAA represents an undamaged case in 

which the test frame was installed with 6 SCs-A at the 1st to 3rd stories (2 SCs at each floor). The 

rest cases which are pre-noted with ‘Dcase’ represent the damage cases. Furthermore, the 

symbols ‘A’ , ‘B’, and ‘N’ represent SC-A, SC-B, and without SC, respectively. For example, 

‘A-B-N’ of case Dcase_ABN means that the frame was installed with the SCs-A at the 1st story, 

the SCs-B at the 2nd story, and without SC at the 3rd story. It is seen from Table 4.9 that, 

Dcase_BAA and Dcase_NAA are damage cases in which the damage was induced by reduction in 

the story stiffness at the 1st story. Hence, the damage class for these cases is denoted by 

Dclass_k1. Similarly, if the SCs at the 1st and 2nd story were removed from the intact structure, 

this damage case and its corresponding damage class are denoted by Dcase_NNA and 

Dclass_k1&k2, respectively. 

4.5  Experimental Scheme  

Starting from the shaking table test of the intact structure, the simulated damage events, 

listed in Table 4.9, are then in turn implemented on the shaking table. The base excitation that 

inputs to the shaking table is the Kobe earthquake whose intensity is reduced to the level of PGA 

0.08g. The sampling rate of the acceleration and RSG records is 200Hz. Table 4.10 shows the 

operation sequence of the shaking table tests and how the response records are denoted for 

simplicity. 

4.6  Pre-Analysis Of The Measured Data  

Some statistical properties about the acceleration measurements are listed in Table 4.11. 

According to the statistics, several findings are discussed as follow. 
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(1) Because the input excitations for each shaking table test are the same, the influence of 

the induced damage to the test frame can be directly discussed basing on the structural 

response. 

(2) The effect of replacing the smaller SCs (SC-B in Table 4.8), according to Table 4.11, is 

much lesser than that of removing the SCs. For example, the measurements of the 

damage case Dcase_BAA are slightly higher than that of the intact case AAA (the 

max(acc.)= 0.001, 0.010, 0.009, 0.023); in contrast, the measurements of 

Dcase_NAA increase significantly (the max(acc.)= 0.012, 0.025, 0.039, 0.014). 

Similar situations also happen to other damage cases, such as Dcase_ABA and 

Dcase_ANA, Dcase_AAB and Dcase_AAN, etc. This phenomenon is welcome because 

it meets the requirement for studying both the low-level and high-level damage in the 

structure.  

(3) Due to the insignificance of replacing the SC-A with SC-B to the structure, the 

measurement discrepancy between each other is small (i.e. the responses are similar to 

each other), especially when the SCs were replaced from only one story. For instance, 

compare the case AAA with Dcase_AAB whose SCs at the 3rd story were replaced with 

SCs-B, the relative increments of the maximum response for each floor are only -3.9%, 

6.0%, 4.9%, and 0.8%. Similar situations also happen to Dcase_ANA and Dcase_BNA, 

Dcase_NAA and Dcase_NBA, and Dcase_AAN and Dcase_ABN, etc.  

(4) Following with the finding 3, this phenomenon could possibly lead to similar 

identification results of modal parameters. 

As mentioned previously, 12 FBG sensors were configured along two fiber links, Channel 1 

and Channel 2. These 12 FBG sensors are further classified, according to their locations, into 

three groups: the sensors which located near the bottom of the story columns on east side (i.e. 

FBG1, FBG3, FBG5, and FBG7) will be shortly called ‘sensors at BE’; the sensors which located 

near the top of the story columns on east side (i.e. FBG2, FBG4, FBG6, and FBG8) will be 
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shortly called ‘sensors at TE’; and the sensors which located near the bottom of the story columns 

on west side (i.e. FBG9 to FBG12) will be shortly called ‘sensors at BW’. Statistical results of the 

FBG sensors’ records, based on the three groups, are summarized in Tables 4.12 to 4.14, 

respectively. Meanwhile, statistical summaries of the RSGs’ records are shown in Table 4.15. 

Based on the summarized tables of the acceleration and strain measurements (Tables 4.11 to 4.15), 

certain findings are presented below. 

(1) Compare with the acceleration responses, the strain row data (from either FBG sensors 

or RSGs) shows more sensitivity to the system changes. The changes in maximum 

measurement of the acceleration responses (column IV, Table 4.11) are smaller than 

that of the strain responses (column IV, Tables 4.12 to 4.15). Take the case 

Dcase_NNN for example, the maximum relative increments in acceleration and strain 

responses are 68.5% (4F) and 122.3% (FBG5), respectively.  

(2) One of the major advantages of the FBG sensors is that they have better immunity to 

EM interference. Therefore, the signals of the FBG sensors is lesser noise-corrupted. 

This situation can be validated from two aspects. Firstly, according to the comparison 

between the FBG sensors’ and RSGs’ records, a number of disturbances containing in 

the RSGs records. Secondly, the ratio, (
)max(

)(std
ε
ε ), between the standard deviation of 

the response (std(ε )) and the maximum response (max(ε )) for the RSGs’ records 

(Table 5.15) is larger than that for the FBG sensors’ records (Table 4.12).  

(3) As mentioned before, one of the functions of the RSGs is to be a reference to the FBG 

sensors.  

(4) The FBG sensors at BE were placed at the opposite position of the story columns to 

the FBG sensors at TE. Therefore, the measurements they obtained should be with 

similar magnitude but negative phase. Take the case AAA once again for example, the 

correlation coefficients between the measurements of the FBG sensors at BE and the 

measurements of the FBG sensors at TE are 0.9995}- 0.9998,- 0.9998,- {-0.9993,  
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which mean that these two sets of data are highly correlated in negative phase.  

(5) Four FBG sensors (from FBG9 to FBG12) were placed at BW to have parallel location 

with the FBG sensors at BE so as to check torsional effect of the specimen. The 

correlation coefficients between the data of these two figures are 

0.9985} 0.9995, 0.9989, {0.9997,  which mean that these two sets of data are highly 

correlated. 
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CHAPTER 5  HEALTH MONITORING ON THE TEST 

FRAME 

5.1  Introduction  

In Chapters 3 and 4, neural network-based system identification methods and a two-stage 

damage assessment approach were proposed and examined by either numerical examples or 

laboratory measurements. The examined results have preliminarily shown their capabilities of 

dealing with the associated problems. By conducting a series of shaking table tests for the health 

monitoring study, the proposed methods and approach are further investigated by the 

experimental measurements.  

In implementing the health monitoring of the test structure, three strategies are carried out. 

By using the first strategy, the acceleration measurements of each simulated damage case are first 

analyzed using the ANNSI model to generate the modal frequencies and displacement modal 

shapes of the test structure. The structural condition of the specimen can then be diagnosed based 

on the identified modal data change. In the second strategy, the health monitoring of the test 

structure is basing on the changes in strain mode shape information. The strain mode shapes are 

extracted from the FBG sensors and RSGs measurements by also using the ANNSI model. 

Moreover, the global and decentralized monitoring networks are adopted for the purpose of 

health monitoring using the structural acceleration and strain measurements in the third strategy. 

The three strategies are sequentially introduced in the subsequent sections. Notably, according to 

the nature of the damage detection procedure in the strategy, the first strategy is model-based; 

while the second and third strategies are non-model-based. Moreover, though three different 

strategies for structural health monitoring are utilized, they should produce similar diagnostic 

results.  

5.2  Modal Analysis Using The ANNSI Model  

Based on the empirical and trail-and-error methods as well as the preliminarily analysis on 
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the Fourier spectra of the experimental measurements, the appropriate architecture of the modal 

analysis network (MAN) in ANNSI model is determined. The acceleration measurements are first 

analyzed to obtain the corresponding modal parameters. Subsequently, the strain measurements 

from the FBG sensors and RSGs are also analyzed to generate the strain mode shapes information. 

Those modal data will be further applied to monitor and assess the structural conditions. 

5.2.1 Modal Data of the Specimen Extracted from the Acceleration Measurements 

The acceleration measurements from the intact structure (i.e. AAA_acc, in Table 4.10) are 

first analyzed using the ANNSI model to obtain the baseline information. Figure 5.1 presents the 

response time-histories of the AAA_acc measurement. It is seen that, the larger responses 

happened to the time between 4.5 and 15 seconds. Therefore, the measurements between 5 and 

12.5 seconds (i.e. 1500 records with 200Hz sampling rate) are used throughout this chapter to 

train the neural networks. Figure 5.2 shows the excellent correspondence between the measured 

responses and the computed responses from the trained MAN.  

After the MAN was trained by the AAA_acc measurement, the modal parameters of the 

intact structure can be estimated based on the connective weights of the trained MAN. Table 5.1 

presents the identified baseline modal data extracted from the acceleration measurements.  

Basing on the aforementioned MAN structure, each of the rest acceleration measurements 

obtained from the shaking table tests on the simulated damaged structures is trained by a MAN 

and then extracted the corresponding modal parameters from it. Tables 5.2 to 5.25 show the 

modal parameters for each simulated damage case listed in Table 6.9. Note that, the MAC values 

in those tables were computed with respect to the mode shapes of the intact structure. 

According to the tables, some discussions are addressed below. 

(1) As discussed in section 4.6, the effect of replacing the smaller SCs is much lesser than 

that of removing the SCs; therefore, the modal parameters changed more when the SCs 

were removed from the test structure.  
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(2) According to Tables 5.1, 5.2, 5.4, and 5.6, the 1st modal frequencies of the low-level 

damage scenarios are very close to each other. In addition, the 1st and 2nd modal 

frequencies of Dcase_ABA are slightly higher than the baseline values. As known, the 

loss of mass and enhancement of stiffness increase the natural frequencies. Though the 

stiffness provided by the SC-A is more than by the SC-B, the SC-A is heavier than the 

SC-B. Accordingly, the reason for the above circumstance may be that the 

effectiveness of the stiffness to the 1st and 2nd modes of Dcase_ABA is lower than that 

of the mass. 

(3) Since the structures of the cases of Dclass_k1&k2 are damaged at the 1st and 2nd 

stories, they should exhibit the properties of Dclass_k1 and Dclass_k2 mentioned in last 

discussion. In Dcase_NBA, the structure was damaged at the 1st and 2nd stories, and 

the damage extent at the 1st story is higher than at the 2nd story. Therefore, the 

amounts of changes in modal frequencies for all modes exceed 3%. Moreover, the 

structure damaged more seriously at the 2nd story than at the 1st story in Dcase_BNA, 

which causes changes in modal frequencies for all modes except for the 2nd mode 

exceed 3%. Similar situations also happen to the cases of Dclass_k1&k3 and 

Dclass_k2&k3. 

(4) Though certain measurements produced the same identified results on the 1st modal 

frequency, such as Dcase_NAA, Dcase_BNA, Dcase_NAB, and Dcase_NBB, the rest 

modal frequencies of these cases are different from each others because they belong to 

different damage classes. Therefore, it is quite difficult to detect structural damage 

basing only on one modal frequency in the modal-based damage detection methods. 

5.2.2 Modal Data of the Specimen Extracted from the RSGs Measurements 

Since the structural strains can reflect local changes in a structure, the strain mode shapes 

(SMSs) would be a sensitive indicator for identifying the location of the structural damage. In the 

experiments of this work, two sets of strain data from the RSGs and the FBG sensors were 
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recorded. The ANNSI model is also applied to the observed strain measurements to obtain the 

SMSs of the specimen. 

The strain measurements from the RSGs were first analyzed. The identified modal 

parameters are listed in Tables 5.26 to 5.50. According to the experiences during modal analysis 

and these tables, some observations are discussed below. 

(1) The order needed for the 1st and 2nd modes to be identified is lower than that for the 

3rd and 4th modes. This may caused by the noise that contaminated in the RSGs 

measurements. 

(2) Compare with the modes been identified from the acceleration measurements, only the 

first three modes can be identified from the RSGs measurements for most cases except 

for Dcase_NNA, Dcase_BAB, and Dcase_ANN.  

(3) The 1st and 2nd modal frequencies been identified from acceleration and RSGs 

measurements are almost identical. Though the 3rd modal frequency been identified 

from the RSGs measurements is slight differ from that from the acceleration 

measurements, the maximum discrepancy between them is lesser than 1.2% 

(Dcase_AAN). 

(4) The modal damping been identified from the RSGs measurements is close to the one 

from the acceleration measurements. 

5.2.3 Modal Data of the Specimen Extracted from the FBG Sensors Measurements 

Aforementioned, FBG sensors have much better immunity to electro-magnetic interference; 

therefore, the noise effect when using FBG sensors is much smaller than when using RSGs. This 

has been first discussed in section 4.6, and will be further examined here. Following the same 

procedure when analyzing the RSGs measurements, the FBG sensors measurements are also 

analyzed to obtain the corresponding strain mode shapes information. Only the records from the 

FBG sensors on Channel 1 (i.e. FBG1 to FBG8) are used for modal analysis. The identified 
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results obtained from the FBG sensors measurements for each simulated damage case are shown 

in Tables 5.51 to 5.75.  

Before discussing the identified results, certain important things should be noted in advance. 

Although the rate for sampling the FBG sensors measurements is set to be 106Hz, the sampling 

rate did not stay constant during the test; it fluctuated around 106Hz. While the sampling rate for 

the input excitation is set to be constant 200Hz. The input excitations for each damage case are 

re-sampled with 106Hz by using linear interpolation method before they are used for modal 

analysis due to the inconsistent in sampling rates of the structural responses and input excitation. 

Theoretically, no matter what measurements (such as structural displacement, velocity, 

acceleration, and strain) are used for modal analysis, the identified modal frequencies for the 

same structure should be identical to each other. Subject to the problems of fluctuant sampling 

rate and data re-sampling, however, the identified modal parameters extracted from the FBG 

sensors measurements could be different to those based on the RSGs measurements. According to 

the identifications, it can be concluded that: 

(1) Generally, the signal noise increases the difficulty of system identification. More 

explicitly, since the signals from the FBG sensors are cleaner than those from the 

RSGs, the order needed for the ANNSI model when using the FBG sensors 

measurements is much lesser than when using the RSGs measurements. The number of 

order needed for identifying the lower modes is quite small. This feature is attractive in 

on-line system identification because smaller order implies quicker identification.  

(2) Unlike the identification results obtained from the RSGs measurements, four modes in 

most cases can be successfully identified by using the FBG sensors measurements. 

This feature is advantaged in the cases of higher modes are needed. For example, it has 

been seen that the changes in lower modes for slight damage scenarios are not distinct 

enough to indicate damage, while the changes in higher modes, though their accuracies 

are lower, are distinguishable to signify possible damage. 
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5.3  Damage Detection With The Monitoring Networks  

The global and decentralized monitoring networks were preliminarily examined by either 

laboratory or numerical example, respectively, in previous sections. The results had shown their 

potentials for applying to the practical situations. In this section, they are further investigated by 

the experimental data obtained from the conducted shaking table tests on a four-story steel frame 

structure. Acceleration measurements as well as strain measurements from FBG sensors are used 

for investigations. 

For health monitoring purpose, the MAN that had been trained by the measurements from an 

intact structure is employed to play the role of monitoring unit. The trained MAN should be 

capable of generating the system outputs from it within a tolerable error range if the structure 

does not change. On the contrary, if the structural characteristics of target structure changed 

significantly, the trained MAN for the intact structure will no more suitable for representing the 

current state of the structure; as a result, the generated outputs from the trained MAN will differ 

from the measured responses from the damaged structure.  

The health monitoring approach of using global monitoring network is applied to the 

acceleration and strain measurements, respectively. Notably, the strain measurements used in this 

section are the ones observed from the FBG sensors (FBG1 to FBG8). Start from the acceleration 

measurements, each set of measurements of the 24 damage cases is fed into the MAN trained by 

the AAA_acc measurement. The relative changes in prediction error are shown in Figure 5.3. 

Since the global monitoring network provides global view on structural condition, the prediction 

error is derived by calculating the average of MAEs of every DOF. It is seen from Figure 5.3 that 

the structural damage indeed increases the prediction error of the monitoring network. However, 

it is not easy to affirm structural damage from comparing any two of data, especially when the 

damage is not significant. Therefore, continuous monitoring on a structure is essential.  

If the FBG sensors measurements are used for health monitoring by using global monitoring 

network, the prediction errors of the 24 damage cases are depicted in Figure 5.5. Likewise, the 
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results of the six cases for simulating the degradation development in a structure are shown in 

Figure 5.6. Compare the results of these two figures with those of Figures 5.3 and 5.4, the results 

show the similar trend while the structure was damaged though there were slight difference 

existed between them. Moreover, the increments in prediction error of strain measurements are 

larger than those of acceleration in serious damage cases. For examples, the relative increments in 

prediction error of acceleration and strain measurements for Dcase_NAA are within 100% and 

beyond 300%, respectively; the maximum values in Figures 5.3 and 5.5 are about 175% and 

870%, respectively. 
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 CHAPTER 6  CONCLUDING REMARKS  

The main purpose of this work attempts to assemble a framework of a health monitoring 

system for smart structures based on ANN models. By investigating from analytical study to 

experimental study, the proposed framework for an ANN-based integrated system for structural 

monitoring and damage diagnosis is revealed adaptive and feasible. According to the study results 

shown in this research, they are summarized and discussed in the succeeding sections.  

(1) The ANNSI model successfully identified the structural modal parameters of the 

specimen under various damage states from the measurements of the accelerometers, 

FBG sensors, and RSGs. The identified results show consistency between each of 

them. 

(2) The induced damage can be reflected by the changes in structural modal parameters of 

the specimen. However, the modal parameters changes of the lower mode are not 

significant in the structure with slight damage.  

(3) The FBG sensors do show their potentials in system identification and monitoring. The 

noise effect of the FBG sensors measurements is much smaller than that of the RSGs 

and accelerometers. This will make the identification easier when using the FBG 

sensors data. Furthermore, the distinguishing advantages of much less mass and great 

capacity of multiplexing a large number of sensors along a single fiber link make FBG 

sensors promising for health monitoring of practical structures. 

(4) Compare with the CMS that based on the displacement mode shapes, the CSMS that 

based on the strain mode shapes is more sensitive to the structural damage. Moreover, 

the location of damage can be reflected by the sensing stations with larger value of 

CSMS. By using this approach, the damage location for the most simulated damage 
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cases can be identified. 

(5) The damage detection strategy that based on the prediction errors from the monitoring 

networks is easy to implement without limitation on the number of sensors. The 

increasing prediction error from the global monitoring network in the simulation of 

degradation development signifies deterioration of the structural integrity. Moreover, 

the larger prediction errors from the decentralized neural networks indicate the locality 

of the structural damage. 

(6) Although the damage detection method that based on the DLF and the UFN model 

failed to be applied to the experimental measurements due to the problem of without a 

suitable analytical model, the damage diagnosis of the structure can still be carried out 

by other proposed strategies. If a suitable analytical model is available, the damage 

diagnosis of the structure will be improved and enhanced. 

(7) Since the methods and approaches involved in the system are mainly based on ANNs, 

the system is adaptive because ANNs are expected to improve their performance as 

they experience more episodes form the reality. 

(8) The damage detection mechanism of the system was designed to integrate different 

diagnosis strategies to implement the similar tasks. In this way, even one of the 

diagnosis strategies fails to perform its duty, the system can still work properly. 

(9) The system is independent of the methods used in each mechanism and is expandable. 

Any effective or improved method can be added to the corresponding mechanism to 

enhance the performance of the whole system. 
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Table 4.1  Specifications of the shaking table in NCTU 

Item Value 

Table size ( 2m ) 33×  

Weight of table (kg) 5000 

Max. specimen weight (kg) 10,000 

Max. displacement (cm) ± 12.5 

Max. velocity (cm/sec) ± 60 

Max. acceleration (g) ± 1 

 

 

Table 4.2 The characterizations of the experimental specimen 

Item Value 

Plane size (m2) 22×  

Story height (m) 1.6 

Weight (kg) ≈5000 

Cross section of the column (mm) 8660125 ×××  

Cross section of the beam (mm) 8660125 ×××  

Cross section of the girder (mm) 7550100 ×××  

Size of the mass block (mm) 3213601360 ××  

Mass at 4th floor ( mskg /2− ) 117.06 

Mass at 3rd floor ( mskg /2− ) 121.21 

Mass at 2nd floor ( mskg /2− ) 121.21 

Mass at 1st floor ( mskg /2− ) 121.54 
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Table 4.3 Analytical modal parameters of the test model in the transverse direction 

Mode 1 2 3 4 

Frequency (Hz) 1.18 3.48 5.45 6.80 

Damping ratio (%) 5 5 5 5 

4F 1.000 1.000 0.664 0.380 

3F 0.879 0.011 -0.846 -0.903 

2F 0.648 -0.998 -0.348 1.000 
Mode shape 

1F 0.332 -0.976 1.000 -0.659 

 

Table 4.4 Specifications of the accelerometers 

 TYPE Axes Span (g) 

A4 CrossBow CXL02LF1 X 2±  

A3 CrossBow CXL02LF1 X 2±  

A2 CrossBow CXL01LF1 X 1±  

A1 CrossBow CXL01LF1 X 1±  

Abase CrossBow CXL01LF1 X 1±  
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Table 4.5 Specifications of the FBG-SLI 

Optical  
Number of Optical Channels 4 

Maximum Number of FBG Sensors/Channel 64 (256 total across 4 channels) 

Wavelength Range 1525 - 1565 nm 

Absolute Accuracy +/- 5 pm (~4.2 µ ) typ, +/ - 10 pm max 

Repeatability +/- 2 pm (~1.7 µ ) typ, +/ - 5 pm max 

Optical Power/Channel -10 dBm approx. 

Dynamic Range (4 software-controlled gain settings) 30 dB 

Resolution <1 pm (~0.8µ )  

Scan Frequency 108 Hz max 

Minimum FBG Spacing 0.5 nm 

Optical Connector FC/APC 

Hardware and Software  

Computer Interface Card PCI or PC CARD (PCMCIA) 

Interface Cable Included 

FBG-IS Software for Windows  
95, 98, 2000, NT and XP 

Included 

Electrical  

Power Supply 95-135 VAC or 190-265 VAC, 15W 

Uncalibrated Analog Output - BNC Connectors Test, sync and scan 

Mechanical  

Operating Temperature 10o – 40oC 

Dimensions 69 x 277 x 267 mm 

Weight 4.1 kg 

Options  

Test Processor 
Laptop computer/data  
management system 

Custom Optical Connectors FC/SPC 

Custom Computer Interface Cards ISA 
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  Table 4.6 Center wavelength of the FBG sensors along Channel 1 

 FBG1 FBG2 FBG3 FBG4 FBG5 FBG6 FBG7 FBG8

Wavelength 
(nm) 

1542 1545 1548 1551 1554 1557 1560 1563 

 

 

   Table 4.7 Center wavelength of the FBG sensors along Channel 2 

 FBG9 FBG10 FBG11 FBG12 

Wavelength 
(nm) 

1530 1533 1539 1536 

 

 

Table 4.8 Dimension of the SC 

 
Cross section 

(mm) 
Area 
(cm2) 

Mass 
(kg/m) 

Ix 
(cm4) 

SC-A 3.22050100 ×××  5.14 4.06 80.7 

SC-B 3.2154575 ×××  4.14 3.25 37.1 
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Table 4.9 Characterizations of the simulated damage cases 

No. 
Notation of the 

damage case 
SC arrangement 

(1F-2F-3F) 
Notation of the 
damage class 

1 AAA A-A-A Intact 
2 Dcase_BAA B-A-A Dclass_k1 

3 Dcase_NAA N-A-A Dclass_k1 

4 Dcase_ABA A-B-A Dclass_k2 

5 Dcase_ANA A-N-A Dclass_k2 

6 Dcase_AAB A-A-B Dclass_k3 

7 Dcase_AAN A-A-N Dclass_k3 

8 Dcase_BBA B-B-A Dclass_k1&k2 

9 Dcase_BNA B-N-A Dclass_k1&k2 

10 Dcase_NBA N-B-A Dclass_k1&k2 

11 Dcase_NNA N-N-A Dclass_k1&k2 

12 Dcase_BAB B-A-B Dclass_k1&k3 

13 Dcase_BAN B-A-N Dclass_k1&k3 

14 Dcase_NAB N-A-B Dclass_k1&k3 

15 Dcase_NAN N-A-N Dclass_k1&k3 

16 Dcase_ABB A-B-B Dclass_k2&k3 

17 Dcase_ABN A-B-N Dclass_k2&k3 

18 Dcase_ANB A-N-B Dclass_k2&k3 

19 Dcase_ANN A-N-N Dclass_k2&k3 

20 Dcase_BBB B-B-B Dclass_k1&k2&k3 

21 Dcase_BBN B-B-N Dclass_k1&k2&k3 

22 Dcase_NBB N-B-B Dclass_k1&k2&k3 

23 Dcase_BNN B-N-N Dclass_k1&k2&k3 

24 Dcase_NNB N-N-B Dclass_k1&k2&k3 

25 Dcase_NNN N-N-N Dclass_k1&k2&k3 
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Table 4.10 Operation sequence of the shaking table tests 

Case Save acc. data as Save RSG data as Save FBG data as 

AAA AAA_acc AAA_RSG AAA_FBG 
Dcase_BAA BAA_acc BAA_RSG BAA_FBG 

Dcase_NAA NAA_acc NAA_RSG NAA_FBG 

Dcase_ABA ABA_acc ABA_RSG ABA_FBG 

Dcase_ANA ANA_acc ANA_RSG ANA_FBG 

Dcase_AAB AAB_acc AAB_RSG AAB_FBG 

Dcase_AAN AAN_acc AAN_RSG AAN_FBG 

Dcase_BBA BBA_acc BBA_RSG BBA_FBG 

Dcase_BNA BNA_acc BNA_RSG BNA_FBG 

Dcase_NBA NBA_acc NBA_RSG NBA_FBG 

Dcase_NNA NNA_acc NNA_RSG NNA_FBG 

Dcase_BAB BAB_acc BAB_RSG BAB_FBG 

Dcase_BAN BAN_acc BAN_RSG BAN_FBG 

Dcase_NAB NAB_acc NAB_RSG NAB_FBG 

Dcase_NAN NAN_acc NAN_RSG NAN_FBG 

Dcase_ABB ABB_acc ABB_RSG ABB_FBG 

Dcase_ABN ABN_acc ABN_RSG ABN_FBG 

Dcase_ANB ANB_acc ANB_RSG ANB_FBG 

Dcase_ANN ANN_acc ANN_RSG ANN_FBG 

Dcase_BBB BBB_acc BBB_RSG BBB_FBG 

Dcase_BBN BBN_acc BBN_RSG BBN_FBG 

Dcase_NBB NBB_acc NBB_RSG NBB_FBG 

Dcase_BNN BNN_acc BNN_RSG BNN_FBG 

Dcase_NNB NNB_acc NNB_RSG NNB_FBG 

Dcase_NNN NNN_acc NNN_RSG NNN_FBG 
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Table 4.11 Statistical summaries of the acceleration records 

I.  Max. response (g) 
.)max(acc  

II.  Standard deviation (g) 
.)(std acc  Case 

1F 2F 3F 4F 1F 2F 3F 4F 

AAA 0.095 0.119 0.131 0.177 0.016 0.023 0.028 0.035

Dcase_BAA 0.096 0.129 0.140 0.200 0.018 0.027 0.034 0.041

Dcase_NAA 0.107 0.144 0.170 0.191 0.028 0.038 0.046 0.057

Dcase_ABA 0.093 0.124 0.142 0.181 0.020 0.030 0.036 0.045

Dcase_ANA 0.095 0.145 0.160 0.204 0.021 0.038 0.047 0.056

Dcase_AAB 0.091 0.126 0.137 0.178 0.019 0.028 0.034 0.042

Dcase_AAN 0.117 0.149 0.157 0.180 0.021 0.030 0.037 0.045

Dcase_BBA 0.094 0.123 0.144 0.175 0.019 0.030 0.038 0.045

Dcase_BNA 0.093 0.143 0.167 0.202 0.021 0.037 0.048 0.056

Dcase_NBA 0.106 0.143 0.166 0.207 0.028 0.042 0.052 0.062

Dcase_NNA 0.102 0.156 0.184 0.244 0.033 0.058 0.074 0.085

Dcase_BAB 0.102 0.138 0.160 0.184 0.022 0.032 0.039 0.048

Dcase_BAN 0.137 0.172 0.159 0.218 0.028 0.036 0.04 0.052

Dcase_NAB 0.104 0.148 0.192 0.216 0.027 0.043 0.054 0.063

Dcase_NAN 0.143 0.189 0.188 0.235 0.036 0.048 0.056 0.070

Dcase_ABB 0.097 0.131 0.141 0.184 0.022 0.033 0.039 0.048

Dcase_ABN 0.115 0.150 0.152 0.181 0.023 0.034 0.043 0.052

Dcase_ANB 0.095 0.161 0.171 0.225 0.023 0.040 0.051 0.060

Dcase_ANN 0.100 0.158 0.162 0.230 0.026 0.043 0.055 0.066

Dcase_BBB 0.089 0.129 0.152 0.184 0.024 0.035 0.042 0.051

Dcase_BBN 0.130 0.170 0.160 0.221 0.030 0.041 0.046 0.058

Dcase_NBB 0.103 0.159 0.201 0.227 0.036 0.059 0.074 0.087

Dcase_BNN 0.135 0.171 0.179 0.265 0.034 0.053 0.065 0.078

Dcase_NNB 0.098 0.148 0.193 0.248 0.043 0.079 0.099 0.115

Dcase_NNN 0.133 0.184 0.210 0.298 0.050 0.084 0.109 0.127
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Table 4.11 (Continue) 

III.  .)max(acc∆  (g) 
(=damage case – baseline) 

IV.  baselineacc /.)max(∆  (%)
Case 

1F 2F 3F 4F 1F 2F 3F 4F 

AAA / / / /  /  /  /   /  

Dcase_BAA 0.001 0.010 0.009 0.023 0.6 8.3 6.9  13.0 

Dcase_NAA 0.012 0.025 0.039 0.014 12.3 21.0 29.5  7.9 

Dcase_ABA -0.002 0.005 0.011 0.004 -1.8 4.3 8.0  2.0 

Dcase_ANA 0.000 0.026 0.029 0.027 0.2 21.7 22.1  15.0 

Dcase_AAB -0.004 0.007 0.006 0.001 -3.9 6.0 4.9  0.8 

Dcase_AAN 0.022 0.030 0.026 0.003 23.6 24.8 19.8  1.5 

Dcase_BBA -0.001 0.004 0.013 -0.002 -1.6 3.0 10.2  -1.4 

Dcase_BNA -0.002 0.024 0.036 0.025 -1.9 20.0 27.5  13.9 

Dcase_NBA 0.011 0.024 0.035 0.030 11.2 20.1 27.0  16.9 

Dcase_NNA 0.007 0.037 0.053 0.067 7.4 31.1 40.5  37.9 

Dcase_BAB 0.007 0.019 0.029 0.007 7.5 15.9 22.1  4.1 

Dcase_BAN 0.042 0.053 0.028 0.041 44.7 44.8 21.4  23.4 

Dcase_NAB 0.009 0.029 0.061 0.039 9.2 24.5 46.9  22.2 

Dcase_NAN 0.048 0.070 0.057 0.058 50.5 58.7 43.3  32.6 

Dcase_ABB 0.002 0.012 0.010 0.007 2.6 10.3 7.3  3.7 

Dcase_ABN 0.020 0.031 0.021 0.004 21.4 25.7 15.8  2.1 

Dcase_ANB 0.000 0.042 0.040 0.048 0.4 35.4 30.5  26.9 

Dcase_ANN 0.005 0.039 0.031 0.053 5.3 32.8 23.7  29.9 

Dcase_BBB -0.006 0.010 0.021 0.007 -6.3 8.4 16.0  4.0 

Dcase_BBN 0.035 0.051 0.029 0.044 36.7 43.2 22.1  25.0 

Dcase_NBB 0.008 0.040 0.070 0.050 8.0 33.6 53.5  28.1 

Dcase_BNN 0.040 0.052 0.048 0.088 42.1 43.7 36.6  49.7 

Dcase_NNB 0.003 0.029 0.062 0.071 2.7 24.6 47.5  40.0 

Dcase_NNN 0.038 0.065 0.079 0.121 40.0 54.5 60.2  68.5 
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Table 4.12 Statistical summaries of the strain records from the FBG sensors at BE 

I.  Max. response (µ  strain) 
)max(ε  

II. Standard deviation (µ  strain)
)(std ε  Case 

FBG1 FBG3 FBG5 FBG7 FBG1 FBG3 FBG5 FBG7

AAA 238.1 184.2 143.1 109.6 44.5 36.8 28.2  20.5 

Dcase_BAA 256.4 197.7 155.2 121.2 56.9 47.1 35.7  25.1 

Dcase_NAA 337.4 245.2 173.4 121.5 92.0 64.4 50.2  34.2 

Dcase_ABA 272.0 215.7 135.6 117.2 62.8 53.3 33.2  27.6 

Dcase_ANA 296.9 296.7 154.3 134.8 83.9 89.4 44.6  36.0 

Dcase_AAB 264.7 212.4 144.2 114.4 52.8 45.3 31.6  23.5 

Dcase_AAN 285.5 209.7 196.3 114.6 65.5 55.9 52.5  28.5 

Dcase_BBA 293.0 219.3 155.0 113.0 69.7 55.3 38.8  26.7 

Dcase_BNA 296.0 296.6 175.8 136.2 81.5 86.5 49.8  34.6 

Dcase_NBA 349.3 275.7 192.6 131.9 105.9 79.9 56.4  38.1 

Dcase_NNA 376.5 350.5 222.4 164.3 132.4 118.2 69.1  46.2 

Dcase_BAB 302.1 230.9 152.0 117.1 75.2 59.1 40.5  29.7 

Dcase_BAN 332.0 242.9 233.0 140.4 75.9 59.8 55.7  30.9 

Dcase_NAB 370.2 283.6 182.7 134.5 112.4 83.5 56.0  39.3 

Dcase_NAN 392.9 281.5 242.5 143.5 112.6 83.0 77.0  41.3 

Dcase_ABB 274.6 212.6 148.4 118.1 65.7 55.8 39.0  28.9 

Dcase_ABN 298.3 227.0 200.3 114.4 72.8 62.1 59.0  32.2 

Dcase_ANB 312.3 306.0 177.9 138.0 87.4 93.0 52.1  37.5 

Dcase_ANN 315.0 315.0 262.2 150.6 94.6 100.4 76.7  40.5 

Dcase_BBB 313.2 246.1 163.0 121.5 78.8 62.5 42.8  30.5 

Dcase_BBN 350.8 255.7 243.7 140.1 86.3 67.9 62.2  34.5 

Dcase_NBB 421.1 304.2 212.4 152.2 152.5 108.6 77.4  54.1 

Dcase_BNN 353.8 335.5 293.1 174.4 113.0 107.6 81.4  43.3 

Dcase_NNB 419.7 385.1 230.2 171.5 220.5 196.9 107.1  75.4 

Dcase_NNN 427.8 385.8 318.0 187.0 195.7 176.9 129.8  66.9 
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Table 4.12 (Continue) 

III.  
)max(

)(std
ε
ε  (%) IV.  baseline/)max(ε∆  (%) 

Case 
FBG1 FBG3 FBG5 FBG7 FBG1 FBG3 FBG5 FBG7

AAA 18.7 20.0 19.7 18.7  /  /  /   /  

Dcase_BAA 22.2 23.8 23.0 20.7 7.7 7.4 8.5  10.6 

Dcase_NAA 27.3 26.3 28.9 28.1 41.7 33.1 21.2  10.9 

Dcase_ABA 23.1 24.7 24.5 23.6 14.2 17.1 -5.2  6.9 

Dcase_ANA 28.3 30.1 28.9 26.7 24.7 61.1 7.9  23.0 

Dcase_AAB 19.9 21.3 21.9 20.5 11.2 15.3 0.8  4.4 

Dcase_AAN 23.0 26.7 26.8 24.8 19.9 13.8 37.2  4.6 

Dcase_BBA 23.8 25.2 25.0 23.7 23.1 19.1 8.4  3.1 

Dcase_BNA 27.5 29.2 28.3 25.4 24.3 61.1 22.9  24.3 

Dcase_NBA 30.3 29.0 29.3 28.9 46.7 49.7 34.6  20.4 

Dcase_NNA 35.2 33.7 31.1 28.1 58.1 90.3 55.4  49.9 

Dcase_BAB 24.9 25.6 26.6 25.4 26.9 25.4 6.3  6.9 

Dcase_BAN 22.9 24.6 23.9 22.0 39.4 31.9 62.9  28.1 

Dcase_NAB 30.4 29.4 30.6 29.3 55.5 54.0 27.7  22.7 

Dcase_NAN 28.7 29.5 31.8 28.8 65.0 52.9 69.5  30.9 

Dcase_ABB 23.9 26.3 26.3 24.5 15.3 15.4 3.7  7.7 

Dcase_ABN 24.4 27.3 29.4 28.1 25.3 23.2 40.0  4.4 

Dcase_ANB 28.0 30.4 29.3 27.2 31.2 66.1 24.4  25.9 

Dcase_ANN 30.0 31.9 29.2 26.9 32.3 71.0 83.3  37.4 

Dcase_BBB 25.2 25.4 26.3 25.1 31.5 33.6 14.0  10.9 

Dcase_BBN 24.6 26.5 25.5 24.6 47.4 38.8 70.3  27.8 

Dcase_NBB 36.2 35.7 36.4 35.5 76.9 65.2 48.4  38.9 

Dcase_BNN 31.9 32.1 27.8 24.8 48.6 82.2 104.8  59.1 

Dcase_NNB 52.5 51.1 46.5 44.0 76.3 109.1 60.9  56.5 

Dcase_NNN 45.7 45.9 40.8 35.8 79.7 109.5 122.3  70.6 
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Table 4.13 Statistical summaries of the strain records from FBG the sensors at TE 

I.  Max. response (µ  strain) 
)max(ε  

II. Standard deviation (µ  strain)
)(std ε  Case 

FBG2 FBG4 FBG6 FBG8 FBG2 FBG4 FBG6 FBG8

AAA 241.5 188.2 151.5 111.6 46.1 37.8 30.1  20.9 

Dcase_BAA 266.8 202.7 163.5 122.5 60.1 48.3 38.1  25.5 

Dcase_NAA 350.3 251.7 186.6 124.2 95.9 66.8 53.5  34.7 

Dcase_ABA 277.1 219.3 146.0 119.2 64.8 54.3 35.9  28.2 

Dcase_ANA 299.0 300.2 169.0 136.1 85.2 90.7 49.4  36.4 

Dcase_AAB 269.4 216.7 154.7 117.6 54.6 46.1 34.2  24.0 

Dcase_AAN 287.3 210.9 208.8 119.6 67.7 56.3 55.6  29.9 

Dcase_BBA 298.9 224.3 166.3 115.1 71.5 56.4 41.8  27.3 

Dcase_BNA 300.8 294.6 193.6 138.5 83.7 86.2 54.7  35.2 

Dcase_NBA 358.1 280.3 209.4 133.3 109.2 81.7 60.8  38.7 

Dcase_NNA 384.2 350.1 243.3 167.2 135.5 118.2 75.8  47.2 

Dcase_BAB 307.5 236.6 163.4 118.8 77.4 60.9 43.6  30.3 

Dcase_BAN 331.2 245.0 245.6 147.1 77.9 60.8 58.7  32.5 

Dcase_NAB 379.7 291.9 196.4 137.0 116.6 86.3 60.4  39.9 

Dcase_NAN 397.6 286.1 254.7 150.5 116.5 84.8 80.7  43.5 

Dcase_ABB 277.9 215.9 159.2 120.6 67.7 56.7 42.0  29.7 

Dcase_ABN 302.6 226.7 211.3 118.9 75.3 62.3 62.6  33.8 

Dcase_ANB 314.0 307.7 195.5 140.1 88.8 94.0 57.3  38.1 

Dcase_ANN 315.8 317.0 279.4 159.1 96.2 100.7 81.7  42.7 

Dcase_BBB 319.8 249.5 174.6 126.0 81.0 63.9 45.9  31.3 

Dcase_BBN 353.6 258.2 257.5 147.0 88.7 68.7 65.7  36.2 

Dcase_NBB 427.0 314.4 229.6 153.4 155.8 113.2 83.5  54.5 

Dcase_BNN 354.9 336.9 312.2 183.1 114.8 108.0 86.9  45.7 

Dcase_NNB 429.7 387.2 251.8 174.6 226.1 198.1 118.1  76.8 

Dcase_NNN 434.72 384.2 338.5 196.8 201.2 176.7 138.7  70.8 
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Table 4.13 (Continue) 

III.  
)max(

)(std
ε
ε  (%) IV.  baseline/)max(ε∆  (%) 

Case 
FBG2 FBG4 FBG6 FBG8 FBG2 FBG4 FBG6 FBG8

AAA 19.1 20.1 19.8 18.7  /  /  /   /  

Dcase_BAA 22.5 23.8 23.3 20.8 10.5 7.7 7.9  9.8 

Dcase_NAA 27.4 26.6 28.7 28.0 45.0 33.7 23.2  11.3 

Dcase_ABA 23.4 24.8 24.6 23.6 14.7 16.5 -3.6  6.9 

Dcase_ANA 28.5 30.2 29.3 26.7 23.8 59.5 11.5  22.0 

Dcase_AAB 20.3 21.3 22.1 20.4 11.5 15.1 2.1  5.5 

Dcase_AAN 23.6 26.7 26.6 25.0 18.9 12.0 37.8  7.2 

Dcase_BBA 23.9 25.1 25.2 23.7 23.8 19.2 9.8  3.2 

Dcase_BNA 27.8 29.3 28.2 25.4 24.6 56.5 27.8  24.2 

Dcase_NBA 30.5 29.1 29.0 29.0 48.3 48.9 38.2  19.5 

Dcase_NNA 35.3 33.8 31.2 28.2 59.1 86.0 60.6  49.9 

Dcase_BAB 25.2 25.7 26.7 25.5 27.3 25.7 7.9  6.5 

Dcase_BAN 23.5 24.8 23.9 22.1 37.1 30.2 62.1  31.9 

Dcase_NAB 30.7 29.6 30.8 29.1 57.2 55.1 29.6  22.8 

Dcase_NAN 29.3 29.6 31.7 28.9 64.6 52.0 68.1  34.9 

Dcase_ABB 24.4 26.3 26.3 24.6 15.0 14.7 5.1  8.1 

Dcase_ABN 24.9 27.5 29.6 28.4 25.3 20.4 39.5  6.6 

Dcase_ANB 28.3 30.5 29.3 27.2 30.0 63.4 29.0  25.6 

Dcase_ANN 30.5 31.8 29.2 26.8 30.7 68.4 84.4  42.6 

Dcase_BBB 25.3 25.6 26.3 24.9 32.4 32.6 15.3  13.0 

Dcase_BBN 25.1 26.6 25.5 24.6 46.4 37.2 70.0  31.8 

Dcase_NBB 36.5 36.0 36.4 35.5 76.8 67.0 51.5  37.5 

Dcase_BNN 32.3 32.0 27.8 24.9 46.9 79.0 106.1  64.2 

Dcase_NNB 52.6 51.2 46.9 44.0 77.9 105.7 66.2  56.5 

Dcase_NNN 46.3 46.0 41.0 36.0 80.0 104.1 123.4  76.4 

 

 

 



 60

 

Table 4.14 Statistical summaries of the strain records from the FBG sensors at BW 

I.  Max. response (µ  strain) 
)max(ε  

II. Standard deviation (µ  strain)
)(std ε  Case 

FBG9 FBG10 FBG11 FBG12 FBG9 FBG10 FBG11 FBG12

AAA 250.0 190.1 142.8 98.1 47.0 38.2 28.5  19.2 

Dcase_BAA 275.6 205.4 155.8 108.1 61.2 48.8 36.1  23.4 

Dcase_NAA 362.6 256.5 179.5 111.2 99.5 65.9 50.3  31.5 

Dcase_ABA 285.4 221.7 136.5 109.7 66.1 54.9 33.9  26.4 

Dcase_ANA 314.2 306.3 154.4 127.0 89.0 92.2 44.7  33.8 

Dcase_AAB 278.2 219.8 144.6 106.9 55.8 46.8 32.0  22.4 

Dcase_AAN 299.1 217.2 195.7 112.5 69.4 58.0 52.7  26.2 

Dcase_BBA 310.6 227.3 159.4 108.4 73.8 57.1 40.4  25.0 

Dcase_BNA 315.1 307.3 178.6 129.0 86.9 89.4 50.5  31.4 

Dcase_NBA 371.6 277.5 198.5 126.1 113.2 80.7 57.6  34.9 

Dcase_NNA 402.2 355.0 225.7 156.1 141.3 119.7 70.5  41.8 

Dcase_BAB 322.4 239.6 154.4 114.3 80.4 61.4 41.1  28.3 

Dcase_BAN 352.2 252.2 236.4 138.4 81.1 62.4 56.2  28.6 

Dcase_NAB 398.3 287.4 181.6 130.8 121.1 84.8 56.0  37.0 

Dcase_NAN 418.1 286.3 240.8 141.3 120.9 84.4 76.4  38.4 

Dcase_ABB 287.4 220.2 149.7 108.7 69.2 57.7 39.6  26.7 

Dcase_ABN 313.6 236.7 201.9 104.9 77.0 64.4 59.2  29.6 

Dcase_ANB 330.6 315.5 179.3 129.3 92.8 96.0 52.1  33.9 

Dcase_ANN 332.7 325.6 260.5 150.1 100.7 103.7 76.1  37.4 

Dcase_BBB 332.2 254.0 169.2 124.2 83.6 64.2 44.4  29.8 

Dcase_BBN 371.2 264.9 248.0 138.8 91.9 70.5 63.7  31.9 

Dcase_NBB 449.3 313.1 212.3 143.4 163.1 112.3 76.8  49.3 

Dcase_BNN 375.5 348.2 290.1 172.1 121.2 111.7 80.8  40.2 

Dcase_NNB 449.3 389.6 233.2 167.7 235.9 199.2 108.1  70.6 

Dcase_NNN 455.1 390.6 316.5 185.3 209.9 179.1 129.5  62.7 
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Table 4.14 (Continue) 

III.  
)max(

)(std
ε
ε  (%) IV.  baseline/)max(ε∆  (%) 

Case 
FBG9 FBG10 FBG11 FBG12 FBG9 FBG10 FBG11 FBG12

AAA 18.8 20.1 20.0 19.5  /  /  /   /  

Dcase_BAA 22.2 23.7 23.2 21.7 10.2 8.0 9.1 10.2

Dcase_NAA 27.5 25.7 28.0 28.3 45.0 34.9 25.7 13.3

Dcase_ABA 23.1 24.8 24.8 24.1 14.2 16.6 -4.4 11.8

Dcase_ANA 28.3 30.1 28.9 26.6 25.7 61.1 8.1 29.4

Dcase_AAB 20.1 21.3 22.1 21.0 11.3 15.6 1.3 8.9

Dcase_AAN 23.2 26.7 26.9 23.3 19.7 14.2 37.1 14.6

Dcase_BBA 23.8 25.1 25.3 23.0 24.3 19.6 11.6 10.4

Dcase_BNA 27.6 29.1 28.3 24.3 26.0 61.6 25.1 31.4

Dcase_NBA 30.5 29.1 29.0 27.7 48.7 46.0 39.0 28.4

Dcase_NNA 35.1 33.7 31.2 26.8 60.9 86.7 58.0 59.0

Dcase_BAB 24.9 25.6 26.6 24.8 29.0 26.0 8.1 16.4

Dcase_BAN 23.0 24.7 23.8 20.7 40.9 32.7 65.5 41.0

Dcase_NAB 30.4 29.5 30.8 28.3 59.3 51.2 27.2 33.3

Dcase_NAN 28.9 29.5 31.7 27.2 67.2 50.6 68.6 44.0

Dcase_ABB 24.1 26.2 26.5 24.6 15.0 15.8 4.8 10.8

Dcase_ABN 24.5 27.2 29.3 28.2 25.5 24.5 41.4 6.9

Dcase_ANB 28.1 30.4 29.1 26.2 32.2 66.0 25.6 31.8

Dcase_ANN 30.2 31.8 29.2 24.9 33.1 71.3 82.4 52.9

Dcase_BBB 25.2 25.3 26.2 24.0 32.9 33.6 18.5 26.5

Dcase_BBN 24.7 26.6 25.7 23.0 48.5 39.4 73.7 41.4

Dcase_NBB 36.3 35.9 36.2 34.4 79.7 64.7 48.7 46.1

Dcase_BNN 32.3 32.1 27.8 23.3 50.2 83.2 103.1 75.3

Dcase_NNB 52.5 51.1 46.3 42.1 79.7 104.9 63.3 70.9

Dcase_NNN 46.1 45.9 40.9 33.8 82.1 105.4 121.6 88.8
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Table 4.15 Statistical summaries of the strain records from the RSGs  

I.  Max. response (µ  strain) 
)max(ε  

II. Standard deviation (µ  
strain) 

)(std ε  Case 

RSG1 RSG2 RSG3 RSG4 RSG1 RSG2 RSG3 RSG4

AAA 166.4 144.9 121.3 96.2 36.6 33.5 27.5  21.1 
Dcase_BAA 185.4 156.3 129.1 103.9 45.4 41.5 33.8  25.3 
Dcase_NAA 236.7 196.3 152.0 112.6 73.8 57.1 47.8  34.0 
Dcase_ABA 192.3 169.1 116.0 113.7 48.9 45.5 31.1  27.2 
Dcase_ANA 214.7 235.9 139.4 123.9 63.5 73.7 39.9  33.6 
Dcase_AAB 188.6 167.6 121.9 107.8 45.7 43.1 32.5  25.5 
Dcase_AAN 203.1 167.2 169.0 112.8 49.4 46.3 46.5  26.7 
Dcase_BBA 210.1 179.5 137.6 117.6 56.9 49.6 37.5  27.3 
Dcase_BNA 210.9 232.8 164.2 119.6 64.9 75.2 46.4  33.9 
Dcase_NBA 246.4 215.3 175.2 131.8 83.5 69.5 52.5  37.1 
Dcase_NNA 266.8 273.6 188.8 136.9 119.3 114.7 73.4  50.6 
Dcase_BAB 213.6 184.3 135.4 105.5 58.1 50.1 36.8  28.7 
Dcase_BAN 240.7 188.6 194.1 123.8 60.1 52.0 51.9  30.3 
Dcase_NAB 266.3 221.2 165.4 137.5 86.7 70.9 51.1  37.6 
Dcase_NAN 278.4 221.1 201.9 134.5 89.4 72.6 72.0  40.5 
Dcase_ABB 195.7 171.4 128.2 102.9 52.3 48.8 36.9  28.7 
Dcase_ABN 210.7 186.2 171.5 105.8 55.7 52.2 53.1  30.6 
Dcase_ANB 222.9 240.5 151.1 131.8 68.6 79.4 47.9  36.1 
Dcase_ANN 225.4 243.4 212.1 129.0 73.9 85.1 69.5  38.4 
Dcase_BBB 223.6 191.6 148.2 114.6 63.3 55.1 40.8  30.6 
Dcase_BBN 253.7 205.6 208.3 129.7 68.7 59.3 58.2  33.9 
Dcase_NBB 302.4 234.4 186.6 145.6 121.5 94.7 72.5  52.8 
Dcase_BNN 255.0 260.0 244.2 147.9 96.7 99.8 81.0  45.0 
Dcase_NNB 298.8 300.9 207.0 148.0 162.8 158.3 92.3  67.6 
Dcase_NNN 307.1 302.7 273.2 171.8 173.4 170.7 134.2  72.6 
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Table 4.15 (Continue) 

III.  
)max(

)(std
ε
ε  (%) IV.  baseline/)max(ε∆  (%) 

Case 
RSG1 RSG2 RSG3 RSG4 RSG1 RSG2 RSG3 RSG4

AAA 22.0 23.1 22.7 21.9  /  /  /   /  

Dcase_BAA 24.5 26.5 26.2 24.4 11.4 7.9 6.4 8.0

Dcase_NAA 31.2 29.1 31.4 30.2 42.3 35.5 25.4 17.0

Dcase_ABA 25.4 26.9 26.8 23.9 15.6 16.7 -4.3 18.3

Dcase_ANA 29.6 31.2 28.6 27.1 29.1 62.8 15.0 28.9

Dcase_AAB 24.2 25.7 26.6 23.6 13.4 15.7 0.6 12.1

Dcase_AAN 24.3 27.7 27.5 23.7 22.1 15.4 39.3 17.3

Dcase_BBA 27.1 27.6 27.3 23.2 26.3 23.9 13.5 22.3

Dcase_BNA 30.8 32.3 28.3 28.4 26.8 60.7 35.4 24.4

Dcase_NBA 33.9 32.3 30.0 28.1 48.1 48.6 44.5 37.1

Dcase_NNA 44.7 41.9 38.9 37.0 60.4 88.9 55.7 42.4

Dcase_BAB 27.2 27.2 27.2 27.2 28.4 27.2 11.7 9.7

Dcase_BAN 25.0 27.6 26.7 24.5 44.7 30.2 60.1 28.8

Dcase_NAB 32.5 32.0 30.9 27.3 60.0 52.7 36.4 43.0

Dcase_NAN 32.1 32.9 35.7 30.1 67.3 52.6 66.5 39.8

Dcase_ABB 26.7 28.5 28.8 27.9 17.7 18.3 5.7 7.0

Dcase_ABN 26.4 28.1 31.0 28.9 26.7 28.5 41.4 10.0

Dcase_ANB 30.8 33.0 31.7 27.4 34.0 66.0 24.6 37.0

Dcase_ANN 32.8 35.0 32.8 29.8 35.5 68.0 74.9 34.2

Dcase_BBB 28.3 28.7 27.5 26.7 34.4 32.3 22.2 19.2

Dcase_BBN 27.1 28.8 27.9 26.1 52.5 41.9 71.8 34.8

Dcase_NBB 40.2 40.4 38.8 36.3 81.8 61.8 53.9 51.4

Dcase_BNN 37.9 38.4 33.2 30.4 53.3 79.5 101.4 53.8

Dcase_NNB 54.5 52.6 44.6 45.7 79.6 107.7 70.7 53.8

Dcase_NNN 56.5 56.4 49.1 42.3 84.6 108.9 125.3 78.6
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Table 5.1 Modal parameters of the test structure in healthy condition (AAA) 

Mode 1 2 3 4 

Frequency (Hz) 1.69  5.04  8.14  10.22  

Damping ratio (%) 3.32  1.38  1.40  2.01  

A4 1.000 1.000 0.427 0.288 

A3 0.846 -0.130 -0.729 -0.729 

A2 0.628 -0.914 -0.137 1.000 
Mode shape 

A1 0.336 -0.830 1.000 -0.705 

 

Table 5.2 Modal parameters of Dcase_BAA 

Mode 1 2 3 4 
Frequency (Hz) 1.68 4.94 7.89 10.17 

Damping ratio (%) 2.54 1.23 0.54 3.04 
A4 1.000 1.000 0.557 0.254 
A3 0.844 -0.100 -0.893 -0.775 
A2 0.629 -0.935 -0.206 1.000 

Mode shape 

A1 0.340 -0.887 1.000 -0.672 
MAC 1.000 0.999 0.989 0.998 

 

Table 5.3 Modal parameters of Dcase_NAA 

Mode 1 2 3 4 
Frequency (Hz) 1.60 4.78 7.77 9.88 

Damping ratio (%) 1.80 0.28 0.49 2.53 
A4 1.000 1.000 0.582 0.317 
A3 0.857 -0.035 -0.870 -0.809 
A2 0.649 -0.879 -0.303 1.000 

Mode shape 

A1 0.370 -0.932 1.000 -0.618 
MAC 1.000 0.992 0.979 0.993 
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Table 5.4 Modal parameters of Dcase_ABA 

Mode 1 2 3 4 
Frequency (Hz) 1.70 5.09 7.93 10.15 

Damping ratio (%) 2.11 0.50 1.27 2.68 
A4 1.000 1.000 0.449 0.249 
A3 0.843 -0.149 -0.769 -0.871 
A2 0.648 -0.835 -0.197 1.000 

Mode shape 

A1 0.344 -0.786 1.000 -0.757 
MAC 1.000 0.998 0.998 0.993 

 

Table 5.5 Modal parameters of Dcase_ANA 

Mode 1 2 3 4 

Frequency (Hz) 1.63  5.02  7.84  9.85  
Damping ratio (%) 1.78  0.69  4.64  4.26  

A4 1.000  1.000  0.415  0.388  

A3 0.856  -0.121  -0.614  -0.923  

A2 0.671  -0.823  -0.214  1.000  
Mode shape 

A1 0.326  -0.829  1.000  -0.640  

MAC 0.999  0.998  0.989  0.982  

 

Table 5.6 Modal parameters of Dcase_AAB 

Mode 1 2 3 4 

Frequency (Hz) 1.68  5.03  7.97  10.10  
Damping ratio (%) 2.80  0.33  2.23  1.32  

A4 1.000  1.000  0.609  0.277  

A3 0.852  -0.119  -0.951  -0.836  

A2 0.638  -0.885  -0.176  1.000  
Mode shape 

A1 0.337  -0.827  1.000  -0.709  

MAC 1.000  1.000  0.981  0.996  
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Table 5.7 Modal parameters of Dcase_AAN 

Mode 1 2 3 4 

Frequency (Hz) 1.63  4.84  7.70  9.65  
Damping ratio (%) 2.92  0.28  1.22  1.64  

A4 1.000  0.955  0.692  0.284  

A3 0.852  -0.042  -1.000  -0.723  

A2 0.602  -1.000  -0.134  1.000  
Mode shape 

A1 0.317  -0.909  0.928  -0.866  

MAC 1.000  0.993  0.955  0.991  

 

Table 5.8 Modal parameters of Dcase_BBA 

Mode 1 2 3 4 

Frequency (Hz) 1.62  4.89  7.72  10.08  
Damping ratio (%) 2.50  1.64  0.53  2.52  

A4 1.000  1.000  0.558  0.351  

A3 0.855  -0.075  -0.829  -0.807  

A2 0.649  -0.855  -0.252  1.000  
Mode shape 

A1 0.354  -0.832  1.000  -0.565  

MAC 1.000  0.998  0.988  0.986  

 

Table 5.9 Modal parameters of Dcase_BNA 

Mode 1 2 3 4 

Frequency (Hz) 1.60  4.91  7.49  9.68  
Damping ratio (%) 1.75  1.03  0.56  1.32  

A4 1.000  1.000  0.532  0.361  

A3 0.859  -0.086  -0.755  -0.954  

A2 0.654  -0.934  -0.294  1.000  
Mode shape 

A1 0.319  -0.855  1.000  -0.547  

MAC 1.000  0.999  0.985  0.967  
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Table 5.10 Modal parameters of Dcase_NBA 

Mode 1 2 3 4 

Frequency (Hz) 1.58  4.76  7.59  9.49  
Damping ratio (%) 1.47  0.50  0.65  3.27  

A4 1.000  1.000  0.564  0.312  

A3 0.863  -0.025  -0.807  -0.826  

A2 0.657  -0.883  -0.336  1.000  
Mode shape 

A1 0.363  -0.957  1.000  -0.685  

MAC 1.000  0.990  0.977  0.996  

 

Table 5.11 Modal parameters of Dcase_NNA 

Mode 1 2 3 4 

Frequency (Hz) 1.55  4.72  7.38  9.62  
Damping ratio (%) 0.72  0.66  0.34  0.62  

A4 1.000  1.000  0.520  0.352  

A3 0.868  -0.014  -0.682  -0.982  

A2 0.668  -0.918  -0.382  1.000  
Mode shape 

A1 0.349  -0.934  1.000  -0.546  

MAC 1.000  0.992  0.964  0.962  

 

Table 5.12 Modal parameters of Dcase_BAB 

Mode 1 2 3 4 

Frequency (Hz) 1.63  4.90  7.81  10.04  
Damping ratio (%) 2.31  0.25  0.88  1.08  

A4 1.000  1.000  0.610  0.294  

A3 0.855  -0.063  -0.920  -0.808  

A2 0.653  -0.844  -0.205  1.000  
Mode shape 

A1 0.355  -0.824  1.000  -0.671  

MAC 1.000  0.997  0.983  0.997  
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Table 5.13 Modal parameters of Dcase_BAN 

Mode 1 2 3 4 

Frequency (Hz) 1.59  4.72  7.74  9.70  
Damping ratio (%) 2.58  0.11  0.31  2.17  

A4 1.000  0.985  0.675  0.246  

A3 0.859  -0.014  -1.000  -0.948  

A2 0.619  -1.000  -0.094  1.000  
Mode shape 

A1 0.335  -0.946  0.863  -0.847  

MAC 1.000  0.991  0.941  0.985  

 

Table 5.14 Modal parameters of Dcase_NAB 

Mode 1 2 3 4 

Frequency (Hz) 1.60  4.84  7.71  9.99  
Damping ratio (%) 1.49  0.21  0.79  0.62  

A4 1.000  1.000  0.632  0.289  

A3 0.860  -0.044  -0.942  -0.808  

A2 0.667  -0.835  -0.273  1.000  
Mode shape 

A1 0.371  -0.889  1.000  -0.603  

MAC 0.999  0.993  0.975  0.992  

 

Table 5.15 Modal parameters of Dcase_NAN 

Mode 1 2 3 4 

Frequency (Hz) 1.56  4.63  7.67  9.65  
Damping ratio (%) 1.42  0.04  0.20  2.33  

A4 1.000  0.978  0.698  0.282  

A3 0.862  0.026  -1.000  -0.703  

A2 0.627  -0.959  -0.163  1.000  
Mode shape 

A1 0.348  -1.000  0.803  -0.771  

MAC 1.000  0.983  0.923  0.998  
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Table 5.16 Modal parameters of Dcase_ABB 

Mode 1 2 3 4 

Frequency (Hz) 1.68  5.02  7.86  10.07  
Damping ratio (%) 2.31  0.31  1.67  1.12  

A4 1.000  1.000  0.559  0.262  

A3 0.848  -0.118  -0.871  -0.832  

A2 0.637  -0.888  -0.171  1.000  
Mode shape 

A1 0.337  -0.815  1.000  -0.680  

MAC 1.000  1.000  0.991  0.995  

 

Table 5.17 Modal parameters of Dcase_ABN 

Mode 1 2 3 4 

Frequency (Hz) 1.64  4.84  7.77  9.58  
Damping ratio (%) 2.08  0.16  0.24  1.76  

A4 1.000  0.953  0.660  0.332  

A3 0.853  -0.049  -1.000  -0.760  

A2 0.598  -1.000  -0.068  1.000  
Mode shape 

A1 0.313  -0.876  0.890  -0.780  

MAC 0.999  0.994  0.952  0.998  

 

Table 5.18 Modal parameters of Dcase_ANB 

Mode 1 2 3 4 

Frequency (Hz) 1.61  4.90  7.68  9.76  
Damping ratio (%) 1.59  0.21  1.65  0.70  

A4 1.000  1.000  0.483  0.277  

A3 0.859  -0.075  -0.702  -0.826  

A2 0.660  -0.858  -0.211  1.000  
Mode shape 

A1 0.321  -0.867  1.000  -0.492  

MAC 1.000  0.997  0.995  0.974  

 



 70

 

Table 5.19 Modal parameters of Dcase_ANN 

Mode 1 2 3 4 

Frequency (Hz) 1.57  4.74  7.59  9.26  
Damping ratio (%) 1.51  0.31  0.28  0.43  

A4 1.000  0.987  0.626  0.411  

A3 0.861  -0.027  -0.853  -0.929  

A2 0.623  -1.000  -0.182  1.000  
Mode shape 

A1 0.303  -0.920  1.000  -0.670  

MAC 0.999  0.993  0.985  0.982  

 

Table 5.20 Modal parameters of Dcase_BBB 

Mode 1 2 3 4 

Frequency (Hz) 1.62  4.88  7.79  9.90  
Damping ratio (%) 2.24  0.36  0.76  1.40  

A4 1.000  1.000  0.559  0.304  

A3 0.856  -0.061  -0.895  -0.919  

A2 0.653  -0.845  -0.198  1.000  
Mode shape 

A1 0.355  -0.840  1.000  -0.642  

MAC 1.000  0.997  0.989  0.985  

 

Table 5.21 Modal parameters of Dcase_BBN 

Mode 1 2 3 4 

Frequency (Hz) 1.58  4.72  7.74  9.60  
Damping ratio (%) 2.05  0.24  0.08  2.96  

A4 1.000  0.990  0.669  0.309  

A3 0.860  -0.025  -1.000  -0.713  

A2 0.620  -1.000  -0.098  1.000  
Mode shape 

A1 0.337  -0.929  0.934  -0.795  

MAC 1.000  0.993  0.958  0.997  
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Table 5.22 Modal parameters of Dcase_NBB 

Mode 1 2 3 4 

Frequency (Hz) 1.60  4.82  7.63  9.92  
Damping ratio (%) 0.81  0.29  0.50  0.57  

A4 1.000  1.000  0.608  0.342  

A3 0.859  -0.044  -0.893  -0.796  

A2 0.662  -0.837  -0.301  1.000  
Mode shape 

A1 0.373  -0.874  1.000  -0.578  

MAC 0.999  0.994  0.977  0.989  

 

Table 5.23 Modal parameters of Dcase_BNN 

Mode 1 2 3 4 

Frequency (Hz) 1.54  4.65  7.54  9.25  
Damping ratio (%) 0.98  0.08  0.28  0.41  

A4 1.000  1.000  0.612  0.391  

A3 0.867  0.019  -0.866  -0.934  

A2 0.636  -0.985  -0.195  1.000  
Mode shape 

A1 0.324  -0.970  1.000  -0.671  

MAC 1.000  0.987  0.986  0.983  

 

Table 5.24 Modal parameters of Dcase_NNB 

Mode 1 2 3 4 

Frequency (Hz) 1.56  4.81  7.36  9.81  
Damping ratio (%) 0.38  0.10  0.12  1.86  

A4 1.000  1.000  0.568  0.370  

A3 0.866  -0.042  -0.745  -0.985  

A2 0.678  -0.850  -0.380  1.000  
Mode shape 

A1 0.355  -0.890  1.000  -0.473  

MAC 0.999  0.994  0.966  0.946  
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Table 5.25 Modal parameters of Dcase_NNN 

Mode 1 2 3 4 

Frequency (Hz) 1.52  4.64  7.33  9.23  
Damping ratio (%) 0.23  0.10  0.17  0.50  

A4 1.000  1.000  0.656  0.368  

A3 0.870  0.025  -0.845  -0.924  

A2 0.643  -0.980  -0.360  1.000  
Mode shape 

A1 0.334  -0.970  1.000  -0.640  

MAC 1.000  0.987  0.964  0.983  

 

Table 5.26 Modal parameters of Dcase_AAA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.69  5.04  8.15  / 

Damping ratio (%) 3.72  1.87  2.53  / 

RSG4 0.524  1.000  1.000  / 
RSG3 0.731  0.594  -0.478  / 
RSG2 0.914  -0.110  -0.842  / 

SMS 

RSG1 1.000  -0.740  0.805  / 

 

Table 5.27 Modal parameters of Dcase_BAA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.68  4.96  7.97  / 

Damping ratio (%) 2.77  1.83  2.57  / 

RSG4 0.521  1.000  1.000  / 
RSG3 0.733  0.633  -0.328  / 
RSG2 0.922  -0.130  -0.580  / 

SMS 

RSG1 1.000  -0.724  0.629  / 
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Table 5.28 Modal parameters of Dcase_NAA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.60  4.79  7.76  / 

Damping ratio (%) 1.91  0.40  1.07  / 

RSG4 0.431  1.000  1.000  / 
RSG3 0.651  0.771  -0.446  / 
RSG2 0.793  0.033  -0.828  / 

SMS 

RSG1 1.000  -0.881  0.647  / 

 

Table 5.29 Modal parameters of Dcase_ABA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.70  5.09  7.92  / 

Damping ratio (%) 2.24  0.61  1.82  / 

RSG4 0.505  1.000  1.000  / 
RSG3 0.607  0.551  -0.553  / 
RSG2 0.934  -0.069  -0.806  / 

SMS 

RSG1 1.000  -0.729  0.762  / 

 

Table 5.30 Modal parameters of Dcase_ANA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.63  5.01  / / 

Damping ratio (%) 1.79  0.85  /  / 

RSG4 0.437  1.000  /  / 
RSG3 0.535  0.550  /  / 
RSG2 1.000  -0.031  /  / 

SMS 

RSG1 0.868  -0.779  /  / 
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Table 5.31 Modal parameters of Dcase_AAB using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.68  5.03  /  / 

Damping ratio (%) 2.98  0.33  /  / 

RSG4 0.510  1.000  /  / 
RSG3 0.688  0.621  /  / 
RSG2 0.947  -0.083  /  / 

SMS 

RSG1 1.000  -0.763  /  / 

 

Table 5.32 Modal parameters of Dcase_AAN using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.63  4.81  7.79  / 

Damping ratio (%) 3.04  0.18  2.27  / 

RSG4 0.504  1.000  1.000  / 
RSG3 0.929  0.922  -0.548  / 
RSG2 0.947  -0.149  -0.523  / 

SMS 

RSG1 1.000  -0.964  0.443  / 

 

Table 5.33 Modal parameters of Dcase_BBA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.62  4.88  7.74  / 

Damping ratio (%) 2.42  2.03  1.04  / 

RSG4 0.454  1.000  1.000  / 
RSG3 0.648  0.684  -0.395  / 
RSG2 0.871  -0.050  -0.729  / 

SMS 

RSG1 1.000  -0.845  0.662  / 
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Table 5.34 Modal parameters of Dcase_BNA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.60  4.90  7.52  / 

Damping ratio (%) 1.72  1.36  2.01  / 

RSG4 0.437  1.000  1.000  / 
RSG3 0.623  0.704  -0.259  / 
RSG2 1.000  -0.097  -0.985  / 

SMS 

RSG1 0.872  -0.784  0.745  / 

 

Table 5.35 Modal parameters of Dcase_NBA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.58  4.76  7.61  / 

Damping ratio (%) 1.56  0.56  3.84  / 

RSG4 0.428  1.000  1.000  / 
RSG3 0.638  0.780  -0.525  / 
RSG2 0.852  0.051  -0.974  / 

SMS 

RSG1 1.000  -0.927  0.921  / 

 

Table 5.36 Modal parameters of Dcase_NNA using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.55  4.72  7.39  9.65  

Damping ratio (%) 0.79  0.77  0.90  1.74  

RSG4 0.420  1.000  0.929  -0.614  
RSG3 0.627  0.869  -0.207  1.000  
RSG2 0.966  -0.023  -1.000  -0.652  

SMS 

RSG1 1.000  -0.887  0.696  0.277  
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Table 5.37 Modal parameters of Dcase_BAB using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.63  4.90  7.89  10.08  

Damping ratio (%) 2.52  0.55  1.40  2.79  

RSG4 0.452  1.000  1.000  -0.728  
RSG3 0.617  0.686  -0.582  1.000  
RSG2 0.870  -0.048  -0.689  -0.810  

SMS 

RSG1 1.000  -0.780  0.652  0.263  

 

Table 5.38 Modal parameters of Dcase_BAN using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.59  4.72  7.80  / 

Damping ratio (%) 2.62  0.35  1.18  / 

RSG4 0.446  1.000  1.000  / 
RSG3 0.843  0.960  -0.503  / 
RSG2 0.881  -0.080  -0.525  / 

SMS 

RSG1 1.000  -0.975  0.486  / 

 

Table 5.39 Modal parameters of Dcase_NAB using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.60  4.84  7.74  / 

Damping ratio (%) 1.51  0.71  1.44  / 

RSG4 0.421  1.000  1.000  / 
RSG3 0.586  0.641  -0.432  / 
RSG2 0.838  0.027  -0.734  / 

SMS 

RSG1 1.000  -0.832  0.571  / 
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Table 5.40 Modal parameters of Dcase_NAN using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.56  4.63  7.68  / 

Damping ratio (%) 1.37  0.02  1.12  / 

RSG4 0.419  0.936  1.000  / 
RSG3 0.797  0.937  -0.398  / 
RSG2 0.846  0.055  -0.549  / 

SMS 

RSG1 1.000  -1.000  0.438  / 

 

Table 5.41 Modal parameters of Dcase_ABB using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.68  5.02  7.90  / 

Damping ratio (%) 2.30  0.17  2.93  / 

RSG4 0.503  1.000  1.000  / 
RSG3 0.687  0.618  -0.404  / 
RSG2 0.939  -0.094  -0.698  / 

SMS 

RSG1 1.000  -0.738  0.646  / 

 

Table 5.42 Modal parameters of Dcase_ABN using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.64  4.83  7.77  / 

Damping ratio (%) 2.04  0.26  0.93  / 

RSG4 0.510  1.000  1.000  / 
RSG3 0.939  0.894  -0.532  / 
RSG2 0.946  -0.145  -0.531  / 

SMS 

RSG1 1.000  -0.906  0.463  / 
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Table 5.43 Modal parameters of Dcase_ANB using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.62  4.91  7.69  / 

Damping ratio (%) 1.58  0.73  3.62  / 

RSG4 0.439  1.000  0.986  / 
RSG3 0.598  0.659  -0.336  / 
RSG2 1.000  -0.033  -1.000  / 

SMS 

RSG1 0.872  -0.841  0.759  / 

 

Table 5.44 Modal parameters of Dcase_ANN using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.57  4.75  7.58  9.29  

Damping ratio (%) 1.53  0.30  1.49  1.84  

RSG4 0.429  1.000  1.000  -0.780  
RSG3 0.808  0.956  -0.442  1.000  
RSG2 1.000  -0.085  -0.792  -0.854  

SMS 

RSG1 0.878  -0.919  0.654  0.312  

 

Table 5.45 Modal parameters of Dcase_BBB using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.62  4.87  7.82  / 

Damping ratio (%) 2.28  0.65  2.28  / 

RSG4 0.443  1.000  1.000  / 
RSG3 0.628  0.687  -0.409  / 
RSG2 0.875  -0.027  -0.812  / 

SMS 

RSG1 1.000  -0.822  0.770  / 
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Table 5.46 Modal parameters of Dcase_BBN using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.58  4.72  7.76  / 

Damping ratio (%) 2.12  0.29  0.86  / 

RSG4 0.440  1.000  1.000  / 
RSG3 0.823  0.991  -0.530  / 
RSG2 0.875  -0.081  -0.541  / 

SMS 

RSG1 1.000  -0.956  0.496  / 

 

Table 5.47 Modal parameters of Dcase_NBB using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.60  4.82  7.60  / 

Damping ratio (%) 0.80  0.29  1.37  / 

RSG4 0.429  1.000  1.000  / 
RSG3 0.604  0.696  -0.398  / 
RSG2 0.791  -0.036  -0.789  / 

SMS 

RSG1 1.000  -0.837  0.576  / 

 

Table 5.48 Modal parameters of Dcase_BNN using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.54  4.63  7.58  / 

Damping ratio (%) 1.13  0.13  1.64  / 

RSG4 0.425  0.981  1.000  / 
RSG3 0.799  0.983  -0.343  / 
RSG2 1.000  -0.032  -0.806  / 

SMS 

RSG1 0.972  -1.000  0.633  / 
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Table 5.49 Modal parameters of Dcase_NNB using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.56  4.81  7.38  / 

Damping ratio (%) 0.41  0.60  0.68  / 

RSG4 0.414  1.000  0.942  / 
RSG3 0.573  0.659  -0.195  / 
RSG2 0.977  0.018  -1.000  / 

SMS 

RSG1 1.000  -0.831  0.679  / 

 

Table 5.50 Modal parameters of Dcase_NNN using RSGs measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.53  4.64  7.34  / 

Damping ratio (%) 0.31  0.12  0.63  / 

RSG4 0.412  1.000  1.000  / 
RSG3 0.776  0.985  -0.296  / 
RSG2 0.992  -0.038  -0.864  / 

SMS 

RSG1 1.000  -0.986  0.624  / 

 

Table 5.51 Modal parameters of Dcase_AAA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.71 5.29 8.37 10.66  
Damping ratio (%) 2.89 2.26 2.43 3.13  

FBG8 0.416 -0.996 -0.962 -0.901  
FBG7 -0.406 1.000 1.000 1.000  
FBG6 0.635 -0.678 0.517 0.348  
FBG5 -0.594 0.650 -0.481 -0.265  
FBG4 0.814 0.087 0.751 -0.587  
FBG3 -0.793 -0.128 -0.828 0.767  
FBG2 1.000 0.710 -0.733 0.769  

SMS 

FBG1 -0.966 -0.859 0.789 -0.600  
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Table 5.52 Modal parameters of Dcase_BAA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.70 5.21 8.18 / 
Damping ratio (%) 2.57 3.85 2.06 / 

FBG8 0.404 -1.000 -0.973 / 
FBG7 -0.397 0.994 1.000 / 
FBG6 0.623 -0.736 0.548 / 
FBG5 -0.583 0.702 -0.522 / 
FBG4 0.802 0.080 0.787 / 
FBG3 -0.782 -0.107 -0.864 / 
FBG2 1.000 0.731 -0.601 / 

SMS 

FBG1 -0.946 -0.883 0.665 / 

 

Table 5.53 Modal parameters of Dcase_NAA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.65 4.97 8.11 / 
Damping ratio (%) 1.76 0.89 0.95 / 

FBG8 0.340 -1.000 -0.991 / 
FBG7 -0.334 0.999 1.000 / 
FBG6 0.553 -0.788 0.486 / 
FBG5 -0.519 0.759 -0.450 / 
FBG4 0.699 -0.086 0.831 / 
FBG3 -0.674 0.071 -0.905 / 
FBG2 1.000 0.820 -0.687 / 

SMS 

FBG1 0.957 -0.959 0.715 / 
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Table 5.54 Modal parameters of Dcase_ABA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.73 5.35 8.27 / 
Damping ratio (%) 2.88 0.54 1.96 / 

FBG8 0.401 -1.000 -0.932 / 
FBG7 -0.392 0.999 0.978 / 
FBG6 0.538 -0.588 0.571 / 
FBG5 -0.497 0.550 -0.510 / 
FBG4 0.832 -0.018 0.919 / 
FBG3 -0.817 -0.051 -1.000 / 
FBG2 1.000 0.584 -0.753 / 

SMS 

FBG1 -0.967 -0.771 0.816 / 

 

Table 5.55 Modal parameters of Dcase_ANA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.67 5.19 / / 
Damping ratio (%) 1.82 0.77 / / 

FBG8 0.391 -1.000 / / 
FBG7 -0.387 1.000 / / 
FBG6 0.542 -0.629 / / 
FBG5 -0.489 0.593 / / 
FBG4 1.000 -0.105 / / 
FBG3 -0.986 0.069 / / 
FBG2 0.941 0.668 / / 

SMS 

FBG1 -0.926 -0.843 / / 
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Table 5.56 Modal parameters of Dcase_AAB using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.71 5.21 8.27 10.48  
Damping ratio (%) 2.91 1.26 3.78 2.25  

FBG8 0.408 -0.998 -0.944 -0.548  
FBG7 -0.398 1.000 1.000 0.616  
FBG6 0.612 -0.699 0.673 0.960  
FBG5 -0.566 0.667 -0.629 -1.000  
FBG4 0.841 0.063 0.856 -0.838  
FBG3 -0.826 -0.081 -0.960 0.872  
FBG2 1.000 0.664 -0.522 0.347  

SMS 

FBG1 -0.964 -0.828 0.628 -0.497  

 

Table 5.57 Modal parameters of Dcase_AAN using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.64 4.96 7.98 10.00  
Damping ratio (%) 3.28 0.92 1.99 2.56  

FBG8 0.414 -1.000 -0.962 -0.291  
FBG7 -0.392 0.982 1.000 0.340  
FBG6 0.803 -0.990 0.686 1.000  
FBG5 -0.757 0.970 -0.662 -0.983  
FBG4 0.829 0.092 0.635 -0.836  
FBG3 -0.825 -0.110 -0.721 0.875  
FBG2 1.000 0.818 -0.446 0.257  

SMS 

FBG1 -0.967 -0.975 0.489 -0.263  
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Table 5.58 Modal parameters of Dcase_BBA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.64 5.09 8.04 10.52  
Damping ratio (%) 2.41 3.64 2.62 2.86  

FBG8 0.366 -0.998 -0.968 -0.443  
FBG7 -0.358 1.000 1.000 0.557  
FBG6 0.576 -0.754 0.521 1.000  
FBG5 -0.533 0.723 -0.469 -0.955  
FBG4 0.783 -0.090 0.854 -0.525  
FBG3 -0.767 0.078 -0.940 0.639  
FBG2 1.000 0.704 -0.696 0.373  

SMS 

FBG1 -0.976 -0.851 0.753 -0.526  

 

Table 5.59 Modal parameters of Dcase_BNA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.65 5.19 7.75 10.00  
Damping ratio (%) 1.29 3.81 1.50 1.57  

FBG8 0.399 -1.000 -0.795 -0.607  
FBG7 -0.393 0.998 0.818 0.656  
FBG6 0.632 -0.747 0.338 0.963  
FBG5 -0.575 0.710 -0.299 -1.000  
FBG4 0.997 0.073 0.893 -0.901  
FBG3 -1.000 -0.087 -1.000 0.914  
FBG2 0.975 0.706 -0.607 0.004  

SMS 

FBG1 -0.949 -0.871 0.617 -0.009  
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Table 5.60 Modal parameters of Dcase_NBA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.63 4.90 7.86 / 
Damping ratio (%) 1.07 0.74 2.30 / 

FBG8 0.342 -0.981 -0.966 / 
FBG7 -0.336 0.979 0.998 / 
FBG6 0.554 -0.841 0.344 / 
FBG5 -0.513 0.808 -0.304 / 
FBG4 0.749 -0.102 0.886 / 
FBG3 -0.733 0.098 -1.000 / 
FBG2 1.000 0.860 -0.732 / 

SMS 

FBG1 -0.968 -1.000 0.778 / 

 

Table 5.61 Modal parameters of Dcase_NNA using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.59 4.79 7.60 9.96  
Damping ratio (%) 0.34 2.18 1.25 1.79  

FBG8 0.344 -0.961 -0.779 -0.583  
FBG7 -0.337 0.954 0.800 0.620  
FBG6 0.567 -0.922 0.262 0.977  
FBG5 -0.517 0.894 -0.217 -1.000  
FBG4 0.872 -0.075 0.900 -0.841  
FBG3 -0.873 0.082 -1.000 0.854  
FBG2 1.000 0.855 -0.494 0.104  

SMS 

FBG1 -0.977 -1.000 0.505 -0.126  
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Table 5.62 Modal parameters of Dcase_BAB using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.66 5.05 8.09 10.35  
Damping ratio (%) 2.31 1.56 1.36 1.47  

FBG8 0.365 -1.000 -0.976 -0.630  
FBG7 -0.357 0.999 1.000 0.666  
FBG6 0.551 -0.741 0.502 1.000  
FBG5 -0.510 0.716 -0.479 -0.999  
FBG4 0.783 -0.070 0.687 -0.834  
FBG3 -0.760 -0.072 -0.768 0.870  
FBG2 1.000 0.722 -0.644 0.331  

SMS 

FBG1 -0.970 -0.880 0.682 -0.355  

 

Table 5.63 Modal parameters of Dcase_BAN using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.63 4.85 8.03 10.02  
Damping ratio (%) 2.24 0.34 0.42 3.17  

FBG8 0.375 -0.961 -0.974 -0.804  
FBG7 -0.355 0.941 1.000 0.855  
FBG6 0.733 -0.987 0.452 0.699  
FBG5 -0.694 0.968 -0.443 -0.739  
FBG4 0.785 0.057 0.437 -0.940  
FBG3 -0.773 -0.067 -0.503 1.000  
FBG2 1.000 0.851 -0.468 0.693  

SMS 

FBG1 -0.969 -1.000 0.488 -0.788  
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Table 5.64 Modal parameters of Dcase_NAB using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.64 4.91 8.05 10.38  
Damping ratio (%) 0.94 2.77 0.85 3.01  

FBG8 0.336 -1.000 -0.970 -0.665  
FBG7 -0.331 0.999 1.000 0.707  
FBG6 0.515 -0.788 0.563 0.993  
FBG5 -0.477 0.754 -0.527 -1.000  
FBG4 0.744 -0.212 0.839 -0.867  
FBG3 -0.720 0.201 -0.927 0.910  
FBG2 1.000 0.786 -0.482 0.278  

SMS 

FBG1 -0.964 -0.924 0.514 -0.350  

 

Table 5.65 Modal parameters of Dcase_NAN using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.61 4.78 8.00 10.00  
Damping ratio (%) 0.82 0.32 1.26 1.62  

FBG8 0.346 -0.885 -0.970 -0.397  
FBG7 -0.327 0.865 1.000 0.439  
FBG6 0.681 -0.933 0.549 1.000  
FBG5 -0.649 0.912 -0.536 -0.986  
FBG4 0.740 -0.066 0.512 -0.621  
FBG3 -0.725 0.071 -0.605 0.639  
FBG2 1.000 0.865 -0.475 0.347  

SMS 

FBG1 -0.963 -1.000 0.490 -0.364  

 

 

 

 

 



 88

 

Table 5.66 Modal parameters of Dcase_ABB using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.71 5.22 8.22 10.47  
Damping ratio (%) 2.31 1.15 2.24 1.93  

FBG8 0.405 -1.000 -0.954 -0.265  
FBG7 -0.393 1.000 1.000 0.293  
FBG6 0.604 -0.695 0.614 0.986  
FBG5 -0.561 0.667 -0.571 -1.000  
FBG4 0.835 0.025 0.836 -0.630  
FBG3 -0.822 -0.066 -0.932 0.657  
FBG2 1.000 0.663 -0.612 0.158  

SMS 

FBG1 -0.968 -0.827 0.646 -0.096  

 

Table 5.67 Modal parameters of Dcase_ABN using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.66 4.97 8.04 9.88  
Damping ratio (%) 1.67 0.66 0.46 2.00  

FBG8 0.423 -1.000 -0.954 -0.279  
FBG7 -0.401 0.983 1.000 0.300  
FBG6 0.815 -0.977 0.628 0.978  
FBG5 -0.767 0.960 -0.609 -1.000  
FBG4 0.827 0.102 0.568 -0.784  
FBG3 -0.824 -0.127 -0.646 0.812  
FBG2 1.000 0.824 -0.440 0.174  

SMS 

FBG1 -0.964 -0.986 0.473 -0.161  
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Table 5.68 Modal parameters of Dcase_ANB using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.66 5.03 7.82 10.21  
Damping ratio (%) 1.67 2.48 3.82 3.84  

FBG8 0.396 -1.000 -0.920 -0.724  
FBG7 -0.390 0.996 0.941 0.695  
FBG6 0.607 -0.748 0.373 1.000  
FBG5 -0.551 0.719 -0.354 -0.937  
FBG4 1.000 -0.096 0.899 -0.734  
FBG3 -0.989 0.079 -1.000 0.779  
FBG2 0.954 0.772 -0.807 0.685  

SMS 

FBG1 -0.939 -0.938 0.834 -0.694  

 

Table 5.69 Modal parameters of Dcase_ANN using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.62 4.87 7.85 9.68  
Damping ratio (%) 1.29 0.64 1.54 1.64  

FBG8 0.409 -0.958 -0.970 -0.755  
FBG7 -0.387 0.939 1.000 0.800  
FBG6 0.802 -0.981 0.359 0.981  
FBG5 -0.752 0.961 -0.335 -0.995  
FBG4 1.000 0.044 0.732 -0.976  
FBG3 -0.997 -0.045 -0.845 1.000  
FBG2 0.962 0.839 -0.555 0.300  

SMS 

FBG1 -0.946 -1.000 0.533 -0.291  
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Table 5.70 Modal parameters of Dcase_BBB using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.67 5.05 8.08 10.26  
Damping ratio (%) 2.14 1.37 1.38 2.03  

FBG8 0.361 -1.000 -0.961 -0.442  
FBG7 -0.351 0.998 1.000 0.434  
FBG6 0.554 -0.748 0.560 1.000  
FBG5 -0.516 0.725 -0.524 -0.982  
FBG4 0.787 -0.037 0.858 -0.640  
FBG3 -0.769 0.016 -0.943 0.667  
FBG2 1.000 0.742 -0.526 0.169  

SMS 

FBG1 -0.971 -0.898 0.567 -0.240  

 

Table 5.71 Modal parameters of Dcase_BBN using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.62 4.88 8.02 9.97  
Damping ratio (%) 1.91 0.48 0.97 2.79  

FBG8 0.369 -0.970 -0.953 -0.793  
FBG7 -0.350 0.950 1.000 0.775  
FBG6 0.720 -0.989 0.635 0.904  
FBG5 -0.680 0.972 -0.612 -0.902  
FBG4 0.778 0.055 0.574 -0.944  
FBG3 -0.768 -0.070 -0.650 1.000  
FBG2 1.000 0.849 -0.555 0.880  

SMS 

FBG1 -0.969 -1.000 0.575 -0.926  
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Table 5.72 Modal parameters of Dcase_NBB using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.65 4.92 7.92 10.32  
Damping ratio (%) 0.63 1.27 0.89 1.66  

FBG8 0.346 -1.000 -0.981 -0.568  
FBG7 -0.343 0.997 1.000 0.633  
FBG6 0.536 -0.801 0.437 1.000  
FBG5 -0.496 0.777 -0.389 -0.987  
FBG4 0.730 -0.113 0.789 -0.717  
FBG3 -0.700 0.100 -0.876 0.822  
FBG2 1.000 0.768 -0.675 0.275  

SMS 

FBG1 -0.979 -0.909 0.685 -0.179  

 

Table 5.73 Modal parameters of Dcase_BNN using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.58 4.76 7.78 9.59  
Damping ratio (%) 0.42 0.74 1.09 0.89  

FBG8 0.376 -0.922 -0.958 -0.618  
FBG7 -0.356 0.902 1.000 0.666  
FBG6 0.741 -0.981 0.506 1.000  
FBG5 -0.693 0.959 -0.462 -0.994  
FBG4 0.936 -0.031 0.814 -0.682  
FBG3 -0.932 0.031 -0.940 0.696  
FBG2 1.000 0.853 -0.676 0.490  

SMS 

FBG1 -0.983 -1.000 0.704 -0.479  
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Table 5.74 Modal parameters of Dcase_NNB using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.60 4.88 7.63 / 
Damping ratio (%) 0.27 2.58 0.66 / 

FBG8 0.338 -1.000 -0.946 / 
FBG7 -0.332 0.997 0.967 / 
FBG6 0.525 -0.869 0.252 / 
FBG5 -0.476 0.837 -0.214 / 
FBG4 0.875 -0.189 0.880 / 
FBG3 -0.870 0.196 -1.000 / 
FBG2 1.000 0.722 -0.743 / 

SMS 

FBG1 -0.976 -0.843 0.743 / 

 

Table 5.75 Modal parameters of Dcase_NNN using FBG sensors measurements 

Mode 1 2 3 4 

Frequency (Hz) 1.57 4.80 7.59 9.52  
Damping ratio (%) 0.20 0.86 0.80 0.91  

FBG8 0.349 -0.919 -0.979 -0.704  
FBG7 -0.329 0.897 1.000 0.783  
FBG6 0.688 -0.968 0.362 1.000  
FBG5 -0.644 0.949 -0.321 -0.973  
FBG4 0.879 -0.020 0.876 -0.919  
FBG3 -0.880 0.019 -0.988 0.951  
FBG2 1.000 0.860 -0.615 0.260  

SMS 

FBG1 -0.973 -1.000 0.605 -0.267  
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Figure 1.1 Relationship between system identification and damage assessment techniques 

 
 
 
 

 

Figure 1.2 The frame of the health monitoring system  
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Figure 3.1 Process of the UFN reasoning 
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Figure 4.1 Earthquake simulator- the shaking table system in NCTU 
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Figure 4.2 Time-history and frequency spectrum of the 0.08g Kobe earthquake 
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Figure 4.3 Schematic diagrams of the four-story frame (unit: mm) 
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Figure 4.4 Member cross section of the test model (unit: mm) 

 

 

 

Figure 4.5 A photo of the four-story clear frame 
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Figure 4.6 Displacement of the sensing instrumentations 
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Figure 4.7 Accelerometer at the 2nd floor of the test frame 

 

 

Figure 4.8 Accelerometer at the base of the test frame 

 



 100

 

 

Figure 4.9 A schematic representation of a fiber Bragg grating (extracted from Othonos and Kalli, 

1999 [26]) 

 

 

 

Figure 4.10 Illustration of a fiber Bragg grating with strain effect 
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Figure 4.11 FBG data acquisition system 

 

 

Figure 4.12 Block diagram of the optical layout (extracted from FBG-SLI Instruction Manual, 

Version 4.0) 
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Figure 4.13 Configurations of the FBG sensors 
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   Figure 4.14 Transmission and reflection spectra of Channel 1 (POFC provided) 
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   Figure 4.15 Transmission and reflection spectra of Channel 2 (POFC provided) 
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Figure 4.16 Locations of the FBG1 and RSG1 

 

 

Figure 4.17 Location of the FBG2 
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Figure 4.18 Location of the FBG9 
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Figure 4.19 Schematic diagrams of the SC and its connection 
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Figure 4.20 Connections of the SC at the 1st story (left) and the 2nd floor (right) 

 

 

 

Figure 4.21 A photo of the intact structure 
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Figure 5.1 Response histories of the AAA_acc measurement 
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Figure 5.2 Comparison between the measured (solid line) and computed (dash line) responses for 

the AAA_acc measurement 
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Figure 5.3 Relative increments in prediction error in all damage cases based on acceleration 

measurements 
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Figure 5.4 Relative increments in prediction error in the structure of degradation based on 

acceleration measurements 
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Figure 5.5 Relative increments in prediction error in all damage cases based on strain 

measurements (from FBG sensors) 
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Figure 5.6 Relative increments in prediction error in the structure of degradation based on strain 

measurements (from FBG sensors) 
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