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Abstract

Multiple various genome projects have
produced an explosive amount of biosequence data. In
addition, significant improvements and new
developments of biology-related instrumentation have
also generated a wide variety of biological data for
further study. It requires tremendous efforts from
various research fields to finally achieve this. Though
the data could now be generated effectively and
efficiently, it seems that our biological knowledge has
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not been able to increase in the same pace of the
growth of biological data. This imbalance has
consequently stimulated the development of many
different analysis toolsto bridge the gap.

Despite that academia and industry have scaled
up their data generating activities, and significant
efforts have been made on the development of
computational tools, so far bioinformatic data analysis
research has been relatively limited and rather ad hoc
in terms of the data in use. No matter what the data
source is, a clear specification of the format and
content of the data is crucial to any following study.
Unfortunately, this type of descriptions is missed in
most research papers. Note that information such as
the names of the genes’ORFs used in experiments,
references about who previously used the same data,
vague descriptions of how the data is prepared, and so
on, is not adequate for a precise reproduction of the
experiments. Using the data in any other fashion than
the way it was originally applied can lead to
diseréﬂglcy in experiments.

We have constructed an online bioinformatics
test bed. Based on a clean definition of the data sets
and their availability, this test bed can serve as a
bridge to help attract more efforts from other research
fields, and thus stimulate further progress in
bioinformatics. In addition, the test bed can alow
researchers to replicate experiments and studies as
well as a common environment for exploratory
research in bioinformatics by gathering more
challenging problems in different application domains
and motivating more researchers of various interests. It
will accelerate the development of new techniques to
extract and understand hidden information in the data.

Keywords:

Introduction

Muultiple various genome projects have produced
an explosive amount of biosequence data. In addition,
significant improvements and new developments of
biology-related instrumentation have also generated a
wide variety of biological data for further study, e.g.,
protein structures, protein-protein interactions, gene
expression levels, etc. (Lo Conte et a. 1999;
Marcotte et al., 1999; DeRis et a. 1997;
Wodicka et al. 1997) It requires tremendous
efforts from various research fields to finally



achieve this. Though the data could now be
generated effectively and efficiently, it seems
that our biological knowledge has not been able
to increase in the same pace of the growth of
biological data. This imbalance has consequently
stimulated the development of many different
analysis tools to bridge the gap. We can foresee
that once the Human Genome Project is complete,
the analysis tasks will be even more demanding
than ever. After al, the real success of this grand
project is determined by the degree to which we
solve the most difficult puzzle ever, i.e., to
understand every bit of the information hidden in
this god-sent book, the human genome. The only
way to get us closer to the goal is to develop
better analysis algorithms. Despite that academia
and industry have scaled up their data generating
activities, and significant efforts have been made
on the development of computational tools, so far
bicinformatics data analysis research has been
relatively limited and rather ad hoc in terms of
the data in use. The data to be anadyzed are
typically derived in two ways. First, the data may
be directly generated from some biological
laboratories. They produce and analyze the data
of their own interest. Second, the data may have
been studied and published in literatures, and
have been stored in some public databases for
free access. However, no matter what the data
source is, a clear specification of the format and
content of the data is crucia to any following
study. Unfortunately, this type of descriptions is
missed in most research papers. Note that
information such as the names of the genes/ORFs
used in experiments, references about who
previoudy used the same data, vague
descriptions of how the data is prepared, and so
on, is not adequate for a precise reproduction of
the experiments. Using the data in any other
fashion than the way it was originaly applied
can lead to discrepancy in experiments, eg.,
applying different physicochemical properties in
predicting protein functions may get different
classifications (King et al., 2001). Publishing
conclusions without providing access to the data
that support those conclusions is no science
(States, 2001).

We have constructed an online data archive
of biological data sets, and expect it to play the
following roles. First, based on a clean definition
of the data sets and their availability, this archive
can serve as a bridge to help attract more efforts
from other research fields, and thus stimulate
further progress in bioinformatics. Second, the
archive can serve as a test bed that alows
researchers to replicate experiments and studies.

It also makes possible the quantitative
comparisons between computational methods.
Researchers not only have access to the exact
data previoudy used, but aso have full
knowledge of how to correctly reuse them in
experiments in order to avoid the undesirable
biases and keep the required consistency. Finally,
this archive will also serve as a common
environment for exploratory research in
bicinformatics by gathering more challenging
problems in different application domains and
motivating more researchers of various interests.
It will accelerate the development of new
techniques to extract and understand hidden
information in the data.
Background

One can view science as a search through a
space of theories which requires two basic
components, a generator and a test (Kibler and
Langley, 1990). A generator produces new
theories, and a test yields information regarding
the quality of the generated theories. As science
puts its emphasis on observations, the purpose of
the repeated generate-and-test procedure is to
identify an ideal theory. A good theory is one
that must not only accurately describe a large
class of observations, but also make definite
predictions about the results of future
observations (Hawking, 1988). Normally we can
consider any bioinformatics analysis tool as a
theory generator, thus its result (i.e. its output)
becomes a theory that is expected to accurately
describe a significant number of observations,
i.e., the data provided. To evaluate a theory, there
is dways a temptation to emphasize formal
approaches. However, given the fact that many
computational tools are too complex for formal
analysis, and that biological behaviors are full of
variables, empirical studies  of these
computational toolg/algorithms must retain a
central role. Through experimentation we can
test the performance of the tools and also better
understand under what conditions they perform
the best. Just like the literature of the machine
learning community in the early days prior to the
creation of its data archives, most current
bicinformatic research papers lack a clear
description of the data used when introducing
new analysis algorithms or tools. For example,
some authors only cited the database where they
retrieved the data, but they did not explain
whether or how the data was actually processed
and represented for later experiments. Note that
even if the data is gatherer from the same source,
it can be later described by different
representations. As the expressiveness of



representations may not be the same, the data in
use can cary different information, and
consequently influence the final experimental
results (Hu, 1998). Under such circumstances, it
is very difficult for readers of interest to replicate
the experiments, or further improve the
agorithms. This will definitely hamper the
progress of bioinformatics because researchers
have no access to the correct data. The primary
purpose of building a data archive is thus to
provide the exact data used before, so researchers
in all fields can usethe same data as a test bed to
evaluate existing or new algorithms.

NCTU Biolnfo Archive

The creation of the NCTU Biolnfo Archive is
greatly motivated by the Machine Learning Data
Repository and the KDD Archive both
maintained by the Information and Computer
Science Department of the University of
Cdlifornia a Irvine. They are widely used by
industrial and academic researchers, and have
thus become the most frequently cited
benchmark for empirical evaluation of new and
existing learning and mining algorithms (Bay et
a., 2000). Like these data archives, we envision
for this new bioinformatics data archive to serve
as a common playground for researchers to test
algorithms of interest, and help gain insight into
a wider class of problems. Adopting the design
philosophy of the KDD Archive at UCI, the
preliminary goal of the NCTU Biolnfo Archive
is to store the data sets ranging over a wide
variety of datatypes and problem tasks related to
bioinformatics. All the data sets are characterized
and stored according to its data type and the
associated analysis task with the aim of ensuring
the precise reference and easy access for the
users. In the following subsections, we will
explain the data types, present the analysis tasks,
and finally introduce the documentation. Unlike
others, we further divide the data type into two
classes, syntactic and biological. We use the
syntactic data type to address the way the data is
presented, and use the biological data type to
indicate the biological meanings the data is
related to.

We define the syntactic data type as the
underlying representation of data, including the
attributes used to describe the data and the
structure of the attributes. This data type is only
concerned about what the data look like rather
than the implied biological meanings. For those
researchers from other communities than
biological sciences, without the burden of
biology jargons, the syntactic data type is
sufficient for conducting analysis of these data.

Take a DNA sequence data set represented as a
FASTA file for example. The syntactic data type
shows that each instance in the data set is
described as a series of symbolic attributes with
four possible values (i.e. A, G, C and T). This
information is adequate for a computer scientist
or a statistician to apply an appropriate method to
DNA motif prediction. Any domain knowledge
about the nucleotides or the FASTA format is not
needed. The key point of separating syntactic
from biological is to attract more efforts from
other research fields which may otherwise be
discouraged by those unnecessary biological
terms.

The amount of new types of biological data
has been increasing as the advent of new
technologies. This not only provides more data to
work on, but also opens new doors for research.
For instance, prior to the existence of
microarrays and biochips, there was little study
of gene expressions on a genomic scale. In order
to accommodate a wide variety of data, we also
organize the data sets based on their basic
biologica meanings. Though there are many
different criteria by which we can partition the
data, we currently characterize the data into the
following three simple types. We notice that
tremendous efforts have been put into the
development of bioinformatics ontology. An
ontological description of data certainly conveys
more information than our current biological
types. Nevertheless, the ontologies used within
the community to provide knowledge are very
different and specific to their intended use
(Ashburner et al., 2000; Pouliot et a., 2001;
Baker et al., 1999; Chen et a., 1997). For
example, TaO (Baker et a., 1998) is an ontology
of bioinformatics tasks and thus includes
concepts such as Proteinid and
AccessionNumber, which are not really part of
molecular biology. It cannot be substituted for
EcoCyc's (Karp and Paley, 1996) ontology,
which was specifically designed to cover E. coli.
genes, metabolism, regulation and signa
transduction. Since at the present there is no
ontology available that is capable of covering the
whole of molecular biology and bioinformatics
tasks, we do not incorporated any ontological
terms in the data types. Simple biological data
types like the following are enough for
distinguishing between different biological data
without compromising the aim of our data
archive as a general data resource for research
and experimentation.

Sequence Data: It is the most basic data
type, including DNA sequences, RNA sequences



and protein sequences. For example, a sequence
data set may consist of the regulatory regions of
agene family (van Helden et al., 1998).

Gene Expression Data: It is probably the
most widely discussed data type these days.
According to how the data is generated and
collected, it may convey different biological
meanings. For a specific gene, it could be the
expression level change over time as represented
by a single time series if recorded continually at
different time points in a single experiment
(DeRis et a., 1997). On the other hand, the
expression data may be gathered from various
experiments for each gene as a concatenation of
different and independent mRNA expression
measurements (Brown et al., 1999).

Physicochemical Data: This may include all
kinds of physicochemical properties that can be
used to present biological meanings or functions
of biological activities. For example, researchers
used sequential hydrophilicity profiles (Hopp
and Woods, 1981), surface tension and charge
(Lo Conte et d. 1999) to -characterize
proteinprotein interactions.

The complexity of biological processin life
has generated a wide variety of problem tasks of
interest. Thus besides the data type, we aso
organize the data based on its analysis task. We
roughly divide the problem tasks into four
categories, and for each category, we present the
related studies and potential research.

Classification: Classification is a task that
involves an accurate prediction of the value of a
categorical variable typically named “class’.
Many problems in biocinformatics belong to this
task such as protein functional class prediction,
protein structure prediction, protein interaction
prediction, and so on. Given a previously unseen
data item, the goal of classification is to assign
the most appropriate classto it.

Regression:  Similar to classification,
regression is also a prediction of the value of a
target variable. However unlike classification the
target variable in regression is continuous instead
of categorical. Some possible applications of
regression include predicting the protein
structure in terms of its 3D coordinates, the gene
expression level at a particular time point, and so
on.

Clustering: The goa of clustering is to
partition the data into meaningful groups based
on some predefined measure, and it usualy
provides a basis for bootstrapping further
analysis process of the data. For example, based
on the assumption that genes faling into the
same expression cluster are likely to share

functions, clusters of coexpressed genes render
the basis for further study of transcription
coregulation.

Pattern Discovery: The rationale behind
pattern discovery is to identify the implied
regularity in the data. With this regularity as
potential data characteristics, it is easier to carry
out further analysis of the existing and the new
data. Besides, the patterns found can be used as
new attributes to transform the origina data
representation (Hu et al., 2000). The typica
research related to pattern discovery is common
motif detection in biosequences. These motifs
are believed to reveal specific biologica
meanings such as protein structures, functions,
regulation of transcription and trandation, etc.

The success of an archive depends on not
only the availability of data, but also on the good
documentation. In the archive, each data set is
associated with a documentation file that
provides other information than the data itself to
increase the usefulness of the data The
documentation file contains the following
information when available.

Data Description: This is the mgjor part of
the documentation file. It includes the
information of syntactic and biological datatypes
of the data set, to what application area the data
belongs, from what organism the data set was
derived, etc.

Goals: This describes the goals of the
experiments in which the data set is used. To be
more precise, the goal specifies the problem task,
e.g., to find some target motifs in the sequence
data set.

Previous Experimental Results: It is
necessary to have the correct previous
experimental results in order to carry out a fair
comparative study. If available, we keep the
related previous results for researchers to
perform further experiments and studies.

Literature References. In addition to the
experimental results, researchers may be
interested in other useful information, such as the
biological background of the data, the reasons for
the data generation and its representation as well
as the validation and suggested future work.

Data Preprocess and Postprocess. Data
preprocess means how the data is prepared for
and used by the toolg/algorithms. The data may
be different from the raw data originaly
generated from abiological laboratory after noise
filtering and normalization. On the other hand,
data postprocess is done on the output of the
tool/algorithm. The original data output from the
algorithm may require modification before it can



be used to draw the final conclusion. As these
processes add biases (Mitchell, 1997), they can
significantly affect the results. We include the

information  of

data processes for later

experiments to keep the consistency.
Donors; The contributors are recorded for
reference.

The NCTU Biolnfo Archive currently

contains more than 40 data sets. To ensure the
validity of data, we only collect those data sets
that have been published or maintained in
wellknown public databases.
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