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一、中文摘要 

在眾多不同的基因組定序計劃執行之後，生

物序列等相關資料業已被大量產生，若再加上目前

生物檢測技術的日新月異，各式各樣的生物資料量

早已超越了過去生物學的傳統資料分析方法，雖然

我們已能夠迅速有效地產生製造有關的原始生物

資料，然而，我們對資料的瞭解卻仍然相當欠缺，

我們需要好的分析工具幫助我們儘速破解生物資

料之謎。 

縱使今日不管是學術界或產業界都竭盡心力

發展新的分析方法，但是，現今生物資訊分析工具

的評估與檢測仍是過於草率且欠缺標準，藉以實驗

檢測工具效能的資料大多由工具研發者自行蒐集

與挑選，加上沒有完整詳實的說明，其他人根本無

從重覆實驗以確定其真正的實用價值，例如，僅僅

簡述待測基因的名字，公共資料庫的網站等等，這

些都無法提供有用的訊息以供他人再利用，此外，

原始實驗資料的前、後置處理，例如，正規化

(normalization)，離散化(discretization)，以

及資料擷取(extraction)等，都會影響實驗的結

果。沒有確切的資料，詳實的資料說明，任何錯誤

的假設，造成資料準備的不確實，都將會造成不一

致的實驗結論。而建構一個新的生物資訊實驗與研

究測試平臺之目的，即是在提供一個標準的測試環

境，所有的使用者將可以使用相同的資料，完備的

準備程序，以維持實驗的客觀性與一致性。 

我們建構一個以網際網路為基礎的生物資訊

測試平臺，它將涵蓋主要的生物資料種類與分析內

容，我們預期它能成為一個客觀評估生物資訊分析

方法的公共環境，藉以凝聚來自不同研究領域的心

血，共同為生物資訊的發展做最大的努力。 

 

 

關鍵詞: 基因調控、基因家族、調控訊號 

 

Abstract 

Multiple various genome projects have 
produced an explosive amount of biosequence data. In 
addition, significant improvements and new 
developments of biology-related instrumentation have 
also generated a wide variety of biological data for 
further study. It requires tremendous efforts from 
various research fields to finally achieve this. Though 
the data could now be generated effectively and 
efficiently, it seems that our biological knowledge has 

not been able to increase in the same pace of the 
growth of biological data. This imbalance has 
consequently stimulated the development of many 
different analysis tools to bridge the gap. 

Despite that academia and industry have scaled 
up their data generating activities, and significant 
efforts have been made on the development of 
computational tools, so far bioinformatic data analysis 
research has been relatively limited and rather ad hoc 
in terms of the data in use. No matter what the data 
source is, a clear specification of the format and 
content of the data is crucial to any following study. 
Unfortunately, this type of descriptions is missed in 
most research papers. Note that information such as 
the names of the genes/ORFs used in experiments, 
references about who previously used the same data, 
vague descriptions of how the data is prepared, and so 
on, is not adequate for a precise reproduction of the 
experiments. Using the data in any other fashion than 
the way it was originally applied can lead to 
discrepancy in experiments. 

We have constructed an online bioinformatics 
test bed. Based on a clean definition of the data sets 
and their availability, this test bed can serve as a 
bridge to help attract more efforts from other research 
fields, and thus stimulate further progress in 
bioinformatics. In addition, the test bed can allow 
researchers to replicate experiments and studies as 
well as a common environment for exploratory 
research in bioinformatics by gathering more 
challenging problems in different application domains 
and motivating more researchers of various interests. It 
will accelerate the development of new techniques to 
extract and understand hidden information in the data. 
 
Keywords: 基因組，生物資訊，測試平臺 
 

Introduction 
Multiple various genome projects have produced 

an explosive amount of biosequence data. In addition, 
significant improvements and new developments of 
biology-related instrumentation have also generated a 
wide variety of biological data for further study, e.g., 
protein structures, protein-protein interactions, gene 
expression levels, etc. (Lo Conte et al. 1999; 
Marcotte et al., 1999; DeRisi et al., 1997; 
Wodicka et al. 1997) It requires tremendous 
efforts from various research fields to finally 
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achieve this. Though the data could now be 
generated effectively and efficiently, it seems 
that our biological knowledge has not been able 
to increase in the same pace of the growth of 
biological data. This imbalance has consequently 
stimulated the development of many different 
analysis tools to bridge the gap. We can foresee 
that once the Human Genome Project is complete, 
the analysis tasks will be even more demanding 
than ever. After all, the real success of this grand 
project is determined by the degree to which we 
solve the most difficult puzzle ever, i.e., to 
understand every bit of the information hidden in 
this god-sent book, the human genome. The only 
way to get us closer to the goal is to develop 
better analysis algorithms. Despite that academia 
and industry have scaled up their data generating 
activities, and significant efforts have been made 
on the development of computational tools, so far 
bioinformatics data analysis research has been 
relatively limited and rather ad hoc in terms of 
the data in use. The data to be analyzed are 
typically derived in two ways. First, the data may 
be directly generated from some biological 
laboratories. They produce and analyze the data 
of their own interest. Second, the data may have 
been studied and published in literatures, and 
have been stored in some public databases for 
free access. However, no matter what the data 
source is, a clear specification of the format and 
content of the data is crucial to any following 
study. Unfortunately, this type of descriptions is 
missed in most research papers. Note that 
information such as the names of the genes/ORFs 
used in experiments, references about who 
previously used the same data, vague 
descriptions of how the data is prepared, and so 
on, is not adequate for a precise reproduction of 
the experiments. Using the data in any other 
fashion than the way it was originally applied 
can lead to discrepancy in experiments, e.g., 
applying different physicochemical properties in 
predicting protein functions may get different 
classifications (King et al., 2001). Publishing 
conclusions without providing access to the data 
that support those conclusions is no science 
(States, 2001). 

We have constructed an online data archive 
of biological data sets, and expect it to play the 
following roles. First, based on a clean definition 
of the data sets and their availability, this archive 
can serve as a bridge to help attract more efforts 
from other research fields, and thus stimulate 
further progress in bioinformatics. Second, the 
archive can serve as a test bed that allows 
researchers to replicate experiments and studies. 

It also makes possible the quantitative 
comparisons between computational methods. 
Researchers not only have access to the exact 
data previously used, but also have full 
knowledge of how to correctly reuse them in 
experiments in order to avoid the undesirable 
biases and keep the required consistency. Finally, 
this archive will also serve as a common 
environment for exploratory research in 
bioinformatics by gathering more challenging 
problems in different application domains and 
motivating more researchers of various interests. 
It will accelerate the development of new 
techniques to extract and understand hidden 
information in the data. 
Background 

One can view science as a search through a 
space of theories which requires two basic 
components, a generator and a test (Kibler and 
Langley, 1990). A generator produces new 
theories, and a test yields information regarding 
the quality of the generated theories. As science 
puts its emphasis on observations, the purpose of 
the repeated generate-and-test procedure is to 
identify an ideal theory. A good theory is one 
that must not only accurately describe a large 
class of observations, but also make definite 
predictions about the results of future 
observations (Hawking, 1988). Normally we can 
consider any bioinformatics analysis tool as a 
theory generator, thus its result (i.e. its output) 
becomes a theory that is expected to accurately 
describe a significant number of observations, 
i.e., the data provided. To evaluate a theory, there 
is always a temptation to emphasize formal 
approaches. However, given the fact that many 
computational tools are too complex for formal 
analysis, and that biological behaviors are full of 
variables, empirical studies of these 
computational tools/algorithms must retain a 
central role. Through experimentation we can 
test the performance of the tools and also better 
understand under what conditions they perform 
the best. Just like the literature of the machine 
learning community in the early days prior to the 
creation of its data archives, most current 
bioinformatic research papers lack a clear 
description of the data used when introducing 
new analysis algorithms or tools. For example, 
some authors only cited the database where they 
retrieved the data, but they did not explain 
whether or how the data was actually processed 
and represented for later experiments. Note that 
even if the data is gatherer from the same source, 
it can be later described by different 
representations. As the expressiveness of 
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representations may not be the same, the data in 
use can carry different information, and 
consequently influence the final experimental 
results (Hu, 1998). Under such circumstances, it 
is very difficult for readers of interest to replicate 
the experiments, or further improve the 
algorithms. This will definitely hamper the 
progress of bioinformatics because researchers 
have no access to the correct data. The primary 
purpose of building a data archive is thus to 
provide the exact data used before, so researchers 
in all fields can use the same data as a test bed to 
evaluate existing or new algorithms. 
NCTU BioInfo Archive 
The creation of the NCTU BioInfo Archive is 
greatly motivated by the Machine Learning Data 
Repository and the KDD Archive both 
maintained by the Information and Computer 
Science Department of the University of 
California at Irvine. They are widely used by 
industrial and academic researchers, and have 
thus become the most frequently cited 
benchmark for empirical evaluation of new and 
existing learning and mining algorithms (Bay et 
al., 2000). Like these data archives, we envision 
for this new bioinformatics data archive to serve 
as a common playground for researchers to test 
algorithms of interest, and help gain insight into 
a wider class of problems. Adopting the design 
philosophy of the KDD Archive at UCI, the 
preliminary goal of the NCTU BioInfo Archive 
is to store the data sets ranging over a wide 
variety of data types and problem tasks related to 
bioinformatics. All the data sets are characterized 
and stored according to its data type and the 
associated analysis task with the aim of ensuring 
the precise reference and easy access for the 
users. In the following subsections, we will 
explain the data types, present the analysis tasks, 
and finally introduce the documentation. Unlike 
others, we further divide the data type into two 
classes, syntactic and biological. We use the 
syntactic data type to address the way the data is 
presented, and use the biological data type to 
indicate the biological meanings the data is 
related to. 

We define the syntactic data type as the 
underlying representation of data, including the 
attributes used to describe the data and the 
structure of the attributes. This data type is only 
concerned about what the data look like rather 
than the implied biological meanings. For those 
researchers from other communities than 
biological sciences, without the burden of 
biology jargons, the syntactic data type is 
sufficient for conducting analysis of these data. 

Take a DNA sequence data set represented as a 
FASTA file for example. The syntactic data type 
shows that each instance in the data set is 
described as a series of symbolic attributes with 
four possible values (i.e. A, G, C and T). This 
information is adequate for a computer scientist 
or a statistician to apply an appropriate method to 
DNA motif prediction. Any domain knowledge 
about the nucleotides or the FASTA format is not 
needed. The key point of separating syntactic 
from biological is to attract more efforts from 
other research fields which may otherwise be 
discouraged by those unnecessary biological 
terms. 

The amount of new types of biological data 
has been increasing as the advent of new 
technologies. This not only provides more data to 
work on, but also opens new doors for research. 
For instance, prior to the existence of 
microarrays and biochips, there was little study 
of gene expressions on a genomic scale. In order 
to accommodate a wide variety of data, we also 
organize the data sets based on their basic 
biological meanings. Though there are many 
different criteria by which we can partition the 
data, we currently characterize the data into the 
following three simple types. We notice that 
tremendous efforts have been put into the 
development of bioinformatics ontology. An 
ontological description of data certainly conveys 
more information than our current biological 
types. Nevertheless, the ontologies used within 
the community to provide knowledge are very 
different and specific to their intended use 
(Ashburner et al., 2000; Pouliot et al., 2001; 
Baker et al., 1999; Chen et al., 1997). For 
example, TaO (Baker et al., 1998) is an ontology 
of bioinformatics tasks and thus includes 
concepts such as ProteinId and 
AccessionNumber, which are not really part of 
molecular biology. It cannot be substituted for 
EcoCyc’s (Karp and Paley, 1996) ontology, 
which was specifically designed to cover E. coli. 
genes, metabolism, regulation and signal 
transduction. Since at the present there is no 
ontology available that is capable of covering the 
whole of molecular biology and bioinformatics 
tasks, we do not incorporated any ontological 
terms in the data types. Simple biological data 
types like the following are enough for 
distinguishing between different biological data 
without compromising the aim of our data 
archive as a general data resource for research 
and experimentation. 

Sequence Data: It is the most basic data 
type, including DNA sequences, RNA sequences 
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and protein sequences. For example, a sequence 
data set may consist of the regulatory regions of 
a gene family (van Helden et al., 1998). 

Gene Expression Data: It is probably the 
most widely discussed data type these days. 
According to how the data is generated and 
collected, it may convey different biological 
meanings. For a specific gene, it could be the 
expression level change over time as represented 
by a single time series if recorded continually at 
different time points in a single experiment 
(DeRisi et al., 1997). On the other hand, the 
expression data may be gathered from various 
experiments for each gene as a concatenation of 
different and independent mRNA expression 
measurements (Brown et al., 1999). 

Physicochemical Data: This may include all 
kinds of physicochemical properties that can be 
used to present biological meanings or functions 
of biological activities. For example, researchers 
used sequential hydrophilicity profiles (Hopp 
and Woods, 1981), surface tension and charge 
(Lo Conte et al., 1999) to characterize 
proteinprotein interactions. 

The complexity of biological process in life 
has generated a wide variety of problem tasks of 
interest. Thus besides the data type, we also 
organize the data based on its analysis task. We 
roughly divide the problem tasks into four 
categories, and for each category, we present the 
related studies and potential research. 

Classification: Classification is a task that 
involves an accurate prediction of the value of a 
categorical variable typically named “class”. 
Many problems in bioinformatics belong to this 
task such as protein functional class prediction, 
protein structure prediction, protein interaction 
prediction, and so on. Given a previously unseen 
data item, the goal of classification is to assign 
the most appropriate class to it. 

Regression: Similar to classification, 
regression is also a prediction of the value of a 
target variable. However unlike classification the 
target variable in regression is continuous instead 
of categorical. Some possible applications of 
regression include predicting the protein 
structure in terms of its 3D coordinates, the gene 
expression level at a particular time point, and so 
on.  

Clustering: The goal of clustering is to 
partition the data into meaningful groups based 
on some predefined measure, and it usually 
provides a basis for bootstrapping further 
analysis process of the data. For example, based 
on the assumption that genes falling into the 
same expression cluster are likely to share 

functions, clusters of coexpressed genes render 
the basis for further study of transcription 
coregulation. 

Pattern Discovery: The rationale behind 
pattern discovery is to identify the implied 
regularity in the data. With this regularity as 
potential data characteristics, it is easier to carry 
out further analysis of the existing and the new 
data. Besides, the patterns found can be used as 
new attributes to transform the original data 
representation (Hu et al., 2000). The typical 
research related to pattern discovery is common 
motif detection in biosequences. These motifs 
are believed to reveal specific biological 
meanings such as protein structures, functions, 
regulation of transcription and translation, etc. 

The success of an archive depends on not 
only the availability of data, but also on the good 
documentation. In the archive, each data set is 
associated with a documentation file that 
provides other information than the data itself to 
increase the usefulness of the data. The 
documentation file contains the following 
information when available. 

Data Description: This is the major part of 
the documentation file. It includes the 
information of syntactic and biological data types 
of the data set, to what application area the data 
belongs, from what organism the data set was 
derived, etc. 

Goals: This describes the goals of the 
experiments in which the data set is used. To be 
more precise, the goal specifies the problem task, 
e.g., to find some target motifs in the sequence 
data set. 

Previous Experimental Results: It is 
necessary to have the correct previous 
experimental results in order to carry out a fair 
comparative study. If available, we keep the 
related previous results for researchers to 
perform further experiments and studies.  

Literature References: In addition to the 
experimental results, researchers may be 
interested in other useful information, such as the 
biological background of the data, the reasons for 
the data generation and its representation as well 
as the validation and suggested future work. 

Data Preprocess and Postprocess: Data 
preprocess means how the data is prepared for 
and used by the tools/algorithms. The data may 
be different from the raw data originally 
generated from a biological laboratory after noise 
filtering and normalization. On the other hand, 
data postprocess is done on the output of the 
tool/algorithm. The original data output from the 
algorithm may require modification before it can 
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be used to draw the final conclusion. As these 
processes add biases (Mitchell, 1997), they can 
significantly affect the results. We include the 
information of data processes for later 
experiments to keep the consistency. 
Donors: The contributors are recorded for 
reference. 

The NCTU BioInfo Archive currently 
contains more than 40 data sets. To ensure the 
validity of data, we only collect those data sets 
that have been published or maintained in 
wellknown public databases.  
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