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a b s t r a c t

This study investigates the effects on ball positioning because of the non-linear suspensions of an

automatic ball balancer (ABB) installed in a rotor system. A complete dynamic model of the ABB, focusing

on the non-linearity of the suspensions, is presented. The elastic behaviour of these suspensions is

assumed to be well characterised by equivalent non-linear springs. Herein, two Duffing-type non-linear

springs are considered: stiffness-softening and stiffness-hardening. Four types of asymptotic solutions

that represent the ball positions at steady state are obtained by employing the method of multiple scales.

The stabilities of all four types of solutions were found using Floquet theory. In contrast to the perfectly

balanced solutions (Type I), the other solution (Type II) is affected by non-linear stiffness suspension. After

properly designing the avoidable level of non-linearity, the balancing balls of the ABB still resided at the

positions required to reduce the expected vibrations in the steady state. Numerical simulations were

performed to validate the theoretical results. The results were also used to predict the level of residual

vibration, and design guidelines that would guarantee the desired performance of the ABB for high-

precision applications were formulated.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Imbalances are the standard cause of vibrations in high-speed
rotating equipment. To offset rotor imbalance, off-line balancing
methods are commonly used in industrial applications. However, if
the imbalance varies during operation, it cannot be eliminated only by
off-line balancing methods. The automatic ball balancer (ABB) is a
typical example of a passive-type system. Although the ABB is
effective in reducing vibrations, it still has consistency issues accord-
ing to previous works. The ABB, which consists of free-running balls
inside races, can almost completely eliminate radial vibrations via the
concept of counterbalancing. This is based on the fact that as the
spindle speed of a rotor exceeds the resonant frequency, the balls
inside the race are driven to the opposite of the imbalance by the
centrifugal and normal forces created by rotor rotation. Indeed,
significant counterbalancing can be achieved via this mechanism.

Thearle [1,2] presented an early analysis of various types of
balancing systems and found ball-type balancers to be superior to
other types due to low friction, low cost, and ease of implementation.
Majewski [3] found the negative effects of ball-rolling resistance, race
eccentricity, and external vibrations on the rotor/balancer system at
steady state. Rajalingham et al. [4] were the first to include the contact
friction of the balancing balls in a model. Huang et al. [5] introduced a
10 Published by Elsevier Ltd. All r
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simple stick-slip model and illustrated the unavoidable rolling friction
between the balancing balls and the race flange actually deterred the
balls from residing precisely at the desired positions. Lu and Hung [6]
explored a theoretical model with a three-ball ABB was constructed.
Rodrigues et al. [7] presented an analysis of a two-plane ABB for rigid
rotors. DeSmidt [8] developed the dynamics and stability of an
imbalanced flexible shaft equipped with an ABB. Liu and Ishida [9]
presented the vibration suppression method utilising the discontin-
uous spring characteristics together with an ABB. The non-linearity
will influence the amplitude and the phase angle of vibration.
Therefore, non-linearity is one of the key factors responsible for the
inconsistency and ball mispositioning of an ABB. Ehyaei and Moghad-
dam [10] developed a system of unbalanced flexible rotating shafts
equipped with n ABBs where the unbalanced masses were distributed
along the length of the shafts. Green et al. [11] presented the non-
linear bifurcation analysis of a two-ball automatic dynamic balancing
mechanism for eccentric rotors.

These previous studies only adopted linear stiffness models for
the suspension, neglecting the profound influence of suspension
non-linearity. However, there is non-linearity in many mechanical
systems and spring components. Chao et al. [12] was the first to
explore the non-linear dynamic effects of damping washers on the
performance of an ABB installed in optical disc drives.

This paper proposes a theoretical study of the effects of non-
linear suspension on the ball positioning for an ABB. This non-
linearity influences the amplitude and phase angle of suspension
vibration, which is considered as one of the key factors that affect
ball positioning when using an ABB. A complete dynamic model of
ights reserved.
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Nomenclature

GR Centre of gravity (C.G.) of the equivalent rotor
GS Centre of gravity of the equivalent stator
MR Mass of the equivalent rotor
MS Mass of the equivalent stator
OB Centre of a ball
OS Rotational centre of the rotor
OR Origin of the inertial coordinate
Or Centre of the circular runway of the balancer
r Runway eccentricity
e Imbalanced eccentricity
b Lead angle for imbalance
fi Lead angle of ball’s positions
Bi Number of balls

m Ball mass
r Ball radius
KX+gxX3 Non-linear stiffness in the X direction
KY+gyY3 Non-linear stiffness in the Y direction
Cx Damping in the X direction
Cy Damping in the Y direction
p Speed ratio o/on

e Scaling parameter.
ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
.

on Natural frequency of the suspension
t Normalised time scale
R Race radius
a1 Adhesive coefficient
a0 Rolling friction coefficient of the ball balancer
y Rotating angle of the disc

T.C. Chan et al. / International Journal of Non-Linear Mechanics 46 (2011) 415–424416
the ABB, focusing the non-linearity of the suspension on the ball
positioning of the ABB, is proposed. The method of multiple scales
was applied to find all possible steady-state ball positions and their
stabilities. Based on theoretical results, the design guidelines for
the implementation of an ABB were formulated.
2. Mathematical model

The amplitude and phase are key factors for ball positioning in
an ABB. The physical system of the rotor and the ball balancer can
be simplified as shown schematically in Fig. 1. The linear and non-
linear response curves are shown in Fig. 2.

The equations of motion for the rotor system can then be
derived as follows:

M €XþCx
_XþKxXþgxX3 ¼MR½r €y sinyþr _y

2
cosy

þe €y sinðyþbÞþe _y
2

cosðyþbÞ�

þm
Xn

i ¼ 1

½r €y sinyþr _y
2

cosy

þRð €yþ €f iÞsinðyþfiÞ

þRð _yþ _f iÞ
2 cosðyþfiÞ�, ð1Þ
R

2φ

RX

RY

YC

XC

)0,0(RO

SY

SX
SO ),( YX

θ
rOρ

rX

rY

B1

β
RG

SG

e

1φ

B2

3
Y yK Xγ+

3
x xK Xγ+

Fig. 1. Mathematical model of an automatic ball balancer with non-linear

suspensions.
M €Y þCy
_Y þKyYþgyY3 ¼MR½�r €y cosyþr _y

2
siny

�e €y cosðyþbÞþe _y
2

sinðyþbÞ�

þm
Xn

i ¼ 1

½�r €y cosyþr _y
2

siny

�Rð €yþ €f iÞcosðyþfiÞ

þRð _yþ _f iÞ
2 sinðyþfiÞ�, ð2Þ

mþ
I

r2

� �
Rð €f iþ

€yÞ ¼m ð €X�r €y siny�r _y
2

cosyÞsinðfiþyÞ
h
�ð €Y þr €y cosy�r _y

2
sinyÞ � cosðfiþyÞ

i
�a1R _f i

�
Mf

r
signð _f iÞþ

ðRþrÞ

r2
I €y i¼ 1,2,3. . .,n: ð3Þ

where M¼MR+MS+nm with MR,MS, and m denoting the masses of the
equivalent rotor, stator, and ball, respectively. n denotes the number
of balls. The termsgxX

3 andgyY3 are the first non-linear stiffness terms
of the suspensions in the X and Y directions, respectively.
3. Asymptotic analysis

Approximate solutions are sought by assuming some scalings to
manipulate the equations of motion (1)–(3) and by applying
Fig. 2. Comparison of linear and non-linear response curves with respect to

amplitudes.
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techniques of asymptotic multiple-scale analysis

e¼
ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
, on ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
, ex¼ X=R, ey¼ Y=R,

p¼o=on, t¼ont, e2l1 ¼ r=R, e2l2 ¼ e=R,

ez1 ¼ a1=mon, m¼m=ðmþ I=r2Þ, ez¼ C=Mon,

ez0 ¼ a0=r, a¼MR=M, ex2 ¼ gxR2=Mon
2 ¼ gyR2=Mon

2,

el¼ ðrþRÞI=mr2R, ð4Þ

where the small parameter e serves as a small scaling parameter,
while t is a normalised time scale. Substituting Eq. (4) into the
system equations of motion (1)–(3) and considering the case of two
balls, i.e., n¼2, and a constant rotating speed at a steady state near
the linear resonance. Note that €y ¼ 0, _y ¼ p, y¼ pt. To facilitate
ensuing asymptotic analysis, the square of the speed ratio p is
represented by p2 ¼ 1þes, wheres captures the scaled deviation of
p2 from one. Note that the scaling p2 ¼ 1þes implies that the
analysis in the paper is only valid near the natural frequency of the
system. However, since no super or sub-harmonic resonance is
present due to weak excitation as shown in the equations, the
approximate solutions could be able to predict the dynamics away
from the primary resonance. Then, we obtain

€xþp2x¼ ef�x2x3�z _xþsxþap2½l1 cosptþl2 cosðptþbÞ�
þ2e2l1p2 cosptþ €f1 sinðptþf1Þþ

€f2 sinðptþf2Þ

þðpþ _f1Þ
2 cosðptþf1Þþðpþ

_f2Þ
2 cosðptþf2Þg,

€yþp2y¼ ef�x2y3�z _yþsyþap2½l1 sinptþl2 sinðptþbÞ�
þ2e2l1p2 sinpt� €f1 sinðptþf1Þ�

€f2 sinðptþf2Þ

þðpþ _f1Þ
2 sinðptþf1Þþðpþ

_f2Þ
2 sinðptþf2Þg,

€f1 ¼ emfð €x�el1p2 cosptÞsinðptþf1Þ

�ð €y�el1p2 sinptÞcosðptþf1Þ�z1
_f�z0½ðpþ

_f1Þ
2

�eð €x�el1p2 cosptÞcosðptþf1Þ

�eð €y�el1p2 sinptÞsinðptþf1Þ�signð _f1Þg,
€f2 ¼ emfð €x�el1p2 cosptÞsinðptþf2Þ

�ð €y�el1p2 sinptÞcosðptþf2Þ�z1
_f�z0½ðpþ

_f2Þ
2

�eð €x�el1p2 cosptÞcosðptþf2Þ

�eð €y�el1p2 sinptÞsinðptþf2Þ�signð _f2Þg: ð5Þ

From this point, the case with a pair of balls in an ABB is
considered in this study because it is the simplest structure of an
ABB capable of reducing a wide range of inherent imbalances using
the disc–rotor system. The equations of motion in (5) are ready for a
multiple-scale analysis, which begins with the following expansion
of the dynamic variables:

xðt; eÞ ¼ x0ðT0,T1Þþex1ðT0,T1ÞþOðe2Þ,

yðt; eÞ ¼ y0ðT0,T1Þþey1ðT0,T1ÞþOðe2Þ,

f1ðt; eÞ ¼f10ðT0,T1Þþef11ðT0,T1ÞþOðe2Þ,

f2ðt; eÞ ¼f20ðT0,T1Þþef21ðT0,T1ÞþOðe2Þ, ð6Þ

where T0¼t is the fast time scale and T1¼et is the slow time scale.
The definitions of T0 and T1 yield

d

dt ¼D0þeD1þOðe2Þ,
d2

dt2
¼D2

0þ2eD0D1þOðe2Þ, ð7Þ

where Dn¼q/qTn for n¼0,1. Incorporating Eqs. (6) and (7) into the
scaled Eq. (5) of motion results in different orders of e. Collecting all
the terms in O(e0) and O(e1) leads to the equations

D2
0x0þp2x0 ¼ 0, D2

0y0þp2y0 ¼ 0, D2
0f10 ¼ 0, D2

0f20 ¼ 0, ð8Þ

and

D2
0x1þp2x1 ¼�2D0D1x0�zD0x0þap2½l1 cosðpT0Þþl2 cosðpT0þbÞ�

þsx0�x2x3
0þD2

0f10 sinðpT0þf10Þ
þðpþD0f10Þ
2 cosðpT0þf10ÞþD2

0f20 sinðpT0þf20Þ

þðpþD0f20Þ
2 cosðpT0þf20Þ,

D2
0y1þp2y1 ¼�2D0D1y0�zD0y0þap2½l1 sinðpT0Þþl2 sinðpT0þbÞ�

þsy0�x2y3
0�D2

0f10 cosðpT0þf10Þ

þðpþD0f10Þ
2 sinðpT0þf10Þ�D2

0f20 cosðpT0þf20Þ

þðpþD0f20Þ
2 sinðpT0þf20Þ,

D2
0f11 ¼�2D0D1f10þm½D2

0x0 sinðpT0þf10Þ�D2
0y0 cosðpT0þf10Þ

�z1D0f10�z0signðD0f10ÞðpþD0f10Þ
2
�,

D2
0f21 ¼�2D0D1f20þm½D2

0x0 sinðpT0þf20Þ�D2
0y0 cosðpT0þf20Þ

�z1D0f20�z0signðD0f20ÞðpþD0f20Þ
2
�: ð9Þ

The solutions of Eq. (8) is assumed to be in the form of

x0 ¼ A0ðT1Þe
ipT0þA0ðT1Þe

�ipT0 , y0 ¼ B0ðT1Þe
ipT0þB0ðT1Þe

�ipT0 ,

f10 ¼c10ðT1ÞT0þj10ðT1Þ, f20 ¼c20ðT1ÞT0þj20ðT1Þ, ð10Þ

where A0 and B0 denote the complex conjugates of A0 and B0.

{A0,B0,A0,B0} are unknown parameters during the O(e0) analysis.
Their values can be determined during the O(e1) analysis by first
substituting the solution forms in Eq. (10) into the O(e1) equations
(Eq. (9)), yielding a set of new O(e1) equations

D2
0x1þp2x1 ¼ eipT0 �2pi

@A0

@T1
�zpiA0þsA0�3x2A2

0A0þ
ap2l1

2

�

þ
ap2l2eib

2
þ
ðpþc10Þ

2eif10

2
þ
ðpþc20Þ

2eif20

2

#

þe�ipT0 2pi
@A0

@T1
þzpiA0þsA0�3x2A0A

2

0þ
ap2l1

2

"

þ
ap2l2e�ib

2
þ
ðpþc10Þ

2e�if10

2
þ
ðpþc20Þ

2e�if20

2

#
,

D2
0y1þp2y1 ¼ eipT0 �2pi

@B0

@T1
�zpiB0þsB0�3x2B2

0B0�
iap2l1

2

�

�
iap2l2eib

2
�

iðpþc10Þ
2eif10

2
�

iðpþc20Þ
2eif20

2

#

þe�ipT0 2pi
@B0

@T1
þzpiB0þsB0�3x2B0B

2

0þ
iap2l1

2

"

þ
iap2l2e�ib

2
þ

iðpþc10Þ
2e�if10

2
þ

iðpþc20Þ
2e�if20

2

#

D2
0f11 ¼ eið2pT0þf10Þ

mp2ðiA0þB0Þ

2

� �
þe�ið2pT0þf10Þ

mp2ð�iA0þB0Þ

2

" #

þ �2
@c10

@T1
þe�if10

mp2ð�iA0þB0Þ

2

� �
þm �z1c10

��

�z0ðpþc10Þ
2sgnðc10Þ�

o
,

D2
0f21 ¼ eið2pT0þf20Þ

mp2ðiA0þB0Þ

2

� �
þe�ið2pT0þf20Þ

mp2ð�iA0þB0Þ

2

" #

þ �2
@c20

@T1
þe�if20

mp2ð�iA0þB0Þ

2

� �
þeif10

mp2ðiA0þB0Þ

2

" #(

þeif20
mp2ðiA0þB0Þ

2

" #
þm �z1c20�z0ðpþc20Þ

2 sgnðc20Þ

h i)
:

ð11Þ

The solutions of Eq. (11) x1, y1, f11, and f21 can be found as
follows:

x1 ¼ A1ðT1Þe
ipT0þA1ðT1Þe

�ipT0þ
1

2ip
A11ðT1ÞT0eipT0�A11ðT1ÞT0e�ipT0

h i
,
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y1 ¼ B1ðT1Þe
ipT0þB1ðT1Þe

�ipT0þ
1

2ip
B11ðT1ÞT0eipT0�B11ðT1ÞT0e�ipT0

h i
,

f11 ¼
eið2pT0þf10Þ

�ð2pþc10Þ
2

mp2ðiA0þB0Þ

2

� �
þ

e�ið2pT0 þf10Þ

�ð2pþc10Þ
2

mp2ð�iA0þB0Þ

2

" #

þ

(
�2

@c10

@T1
þe�if10

mp2ð�iA0þB0Þ

2

� �
þeif10

mp2ðiA0þB0Þ

2

" #

þm½�z1c10�z0ðpþc10Þ
2sgnðc10Þ�

)
T2

0

2
,

f21 ¼
eið2pT0þf20Þ

�ð2pþc20Þ
2

mp2ðiA0þB0Þ

2

� �
þ

e�ið2pT0 þf20Þ

�ð2pþc20Þ
2

mp2ð�iA0þB0Þ

2

" #

þ

(
�2

@c20

@T1
þe�if20

mp2ð�iA0þB0Þ

2

� �
þeif20

mp2ðiA0þB0Þ

2

" #

þm �z1c20�z0ðpþc20Þ
2sgnðc20Þ

h i) T2
0

2
: ð12Þ
Because T0 is the fast scale, and T1 is the slow scale, the
coefficients of the T0 and T2

0 terms are zero. If the coefficients are
not equal to zero, x1, y1, f11, and f21will be infinity. Next, we have

A11 ¼ �2pi
@A0

@T1
�zpiA0þsA0�3x2A2

0A0þ
ap2l1

2
þ
ap2l2eib

2

�

þ
ðpþc10Þ

2eif10

2
þ
ðpþc20Þ

2eif20

2

#
¼ 0,

B11 ¼ �2pi
@B0

@T1
�zpiB0þsB0�3x2B2

0B0�
iap2l1

2
�

iap2l2eib

2

�

�
iðpþc10Þ

2eif10

2
�

iðpþc20Þ
2eif20

2

#
¼ 0,

�2
@c10

@T1
þe�if10

mp2ð�iA0þB0Þ

2

� �
þeif10

mp2ðiA0þB0Þ

2

" #(

þm½�z1c10�z0ðpþc10Þ
2 sgnðc10Þ�

)
¼ 0,

�2
@c20

@T1
þe�if20

mp2ð�iA0þB0Þ

2

� �
þeif20

mp2ðiA0þB0Þ

2

" #(

þm½�z1c20�z0ðpþc20Þ
2sgnðc20Þ�

)
¼ 0: ð13Þ

Note that the exponential forms in Eq. (11) are used for
decomposing trigonometric functions for the convenience of the
ensuing computations. The removal of the secular terms of Eq. (11)
leads to four conditions. Incorporating formulations of A0,A0,B0,
and B0 with real and imaginary parts

A0 ¼ aðT1Þþ ibðT1Þ, A0 ¼ aðT1Þ�ibðT1Þ,

B0 ¼ cðT1Þþ idðT1Þ, B0 ¼ cðT1Þ�idðT1Þ, ð14Þ

into the four secular-term-removal conditions leads to

@a

@t ¼
e

2p
�zpaþsb�3x2ða

2bþb3Þþ
al2p2

2
sinb

�

þ
ðpþc10Þ

2

2
sinf10þ

ðpþc20Þ
2

2
sinf20

#
,

@b

@t ¼�
e

2p
zpbþsa�3x2ða

3þab2Þþ
al1p2

2
þ
al2p2

2
cosb

�

þ
ðpþc10Þ

2

2
cosf10þ

ðpþc20Þ
2

2
cosf20

#
,

@c

@t ¼
e

2p
�zpcþsd�3x2ðc

2dþd3Þ�
al1p2

2
�
al2p2

2
cosb

�

�
ðpþc10Þ

2

2
cosf10�

ðpþc20Þ
2

2
cosf20

#
,

@d

@t
¼�

e
2p

zpdþsc�3x2ðc
3þcd2Þþ

al2p2

2
sinb

�

þ
ðpþc10Þ

2

2
sinf10þ

ðpþc20Þ
2

2
sinf20

#
,

@c10

@t
¼
em
2

n
�z1c10�z0 signðc10Þðpþc10Þ

2

þp2 ðbþcÞcosf10þð�aþdÞsinf10

� 	o
,

@c20

@t
¼
em
2

n
�z1c20�z0 signðc20Þðpþc20Þ

2

þp2 ðbþcÞcosf20þð�aþdÞsinf20

� 	o
,

@f10

@t
¼c10,

@f20

@t ¼c20: ð15Þ

where {a, b, c, d} are the real and imaginary parts of {A0, B0, A0, B0},
respectively.

For the purpose of obtaining the steady-state solutions, to attainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s þb2
s

q
sinðfs10�vÞ ¼ 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s þb2
s

q
sinðfs20�vÞ ¼ 0: ð16Þ

Various steady-state solutions and the stability of the slow
dynamic equation of the system (Eq. 15) were sought to predict the
balancing ball positions and residual vibrations and to evaluate the
performance of the balancer system.

Setting Eq. (15) equal to zero and acknowledging that
cS10¼cS20¼0, i.e., the balls are motionless at steady state, we obtain
four types of different solutions based on the parameters of rotating
speed, inherent rotating imbalance, and counter balance, which are
shown in Fig. 3. The solutions surrounded with dash lines are stable,
and the detailed derivations will be discussed in the following sections.

3.1. Type I solutions

There exist trivial solutions for the motion of suspension, i.e.,
as ¼ bs ¼ cs ¼ ds ¼ 0. The corresponding ball positions can easily be
found by numerically solving

sinfS10þsinfS20 ¼�al2 sinb,

cosfS10þcosfS20 ¼�al1�al2 cosb, ð17Þ

which leads to

sin2
ðfS10�fS20Þ ¼ 1�

a2ðl2
1þl

2
2Þ

2
þa2l1l2cosb�1

" #2

:

Based on the form of Eq. (16), two balls stick together below the
natural frequency of the suspension and diverge to distinct
positions above the natural frequency at the steady state. For this
type of solution, because as ¼ bs ¼ cs ¼ ds ¼ 0; the system exhibits
almost no residual vibrations, and this solution is the desired
solution to minimize radial vibrations.

3.2. Type II solutions

There exist two different types of solutions that possess
identical ball angular positions at the steady state. The first type
of solution can easily be found by numerically solving

aS ¼�dS,bS ¼ cS, sinu¼ bS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

Sþb2
S

q
, cosu¼ aS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

Sþb2
S

q
,



Steady-state positions of 
balls 

Counter-balance 2mR  MRe 2mR  MReRotating 
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Fig. 3. Illustration of four types of steady-state positions for a pair of balancing balls.
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�zpaSþsbS�3x2ða
2
s bSþb3

S Þþ
ap2l2 sinb

2
þp2 sinu¼ 0,

zpbSþsaS�3x2ða
3
s þaSb2

S Þþ
ap2l1

2
þ
ap2l2 cosb

2
þp2 cosu¼ 0,

fS10 ¼fS20 ¼ 0:

where u has two distinct solutions, denoted by u1 and u2, which lead to
two solution sets containing the different steady states offS10,fS20, aS,
and bS.

3.3. Type III solutions

In this solution u also has two distinct solutions, denoted by u1

and u2, which lead to two solution sets containing different steady
states for fS10, fS20, aS, and bS. The steady-state dynamics with the
Type II and Type III solutions are identical to the case with a single
ball-type balancer system that reaches favourable balancing only if
the total mass of the balancing balls is sized almost perfectly. In
other words, the counterbalancing generated by the balls is almost
equal to that by C.G. eccentricity, which is difficult to achieve
because of manufacturing tolerance.

3.4. Type IV solutions

The Type IV solutions generate no counterbalance because of an
exact mutual cancellation of the two counterbalancing forces
generated by the two balls at steady state. Then, we use the
perturbation methods to linearise Eq. (15) and assume that each
solution a, b, c, d, f10, f20, c10, and c20 has a small perturbation
value of Da, Db, Dc, Dd, Df1, Df2, Dc1, and Dc2. Substituting each
solution and small perturbation value into Eq. (15) yields the
perturbation equations.

D _a ¼
e

2p

"
�zpDa�6x2asbsDaþsDb�3x2ða

2
s Dbþ3b2

s DbÞ

þpsinfS10Dc1þpsinfS20Dc2þ
p2 cosfS10Df1

2
þ

p2 cosfS20Df2

2

#
,

D _b ¼
�e
2p

"
sDa�3x2ð3a2

s Daþb2
s DaÞþzpDb�6x2asbsDb

þpcosfS10Dc1þpcosfS20Dc2�
p2 sinfS10Df1

2
�

p2 sinfS20Df2

2

#
,

D_c ¼
e

2p

"
�zpDc�6x2csdsDcþsDd�3x2ðc

2
s Ddþ3d2

s DdÞ

�pcosfS10Dc1�pcosfS20Dc2þ
p2 sinfS10Df1

2
þ

p2 sinfS20Df2

2

#
,

D _d ¼
�e
2p

"
sDc�3x2ð3c2

s Dcþd2
s DdÞþzpDd�6x2csdsDd

þpsinfS10Dc1þpsinfS20Dc2þ
p2 cosfS10Df1

2
þ

p2 cosfS20Df2

2

#
,

D _c1 ¼ e
(
mp2

2
�DasinfS10þDbcosfS10�DccosfS10þDdsinfS10

�

�ðbsþcsÞsinfs10Df1þðds�asÞcosfs10Df1

	
�
mz1

2
Dc1�mz0pDc1

)
,



Fig. 4. Stability diagram of scaling parameter e, speed ratio p and x2 (x2¼�0.2,

x2¼�0.1, x2¼0, x2¼0.1 and x2¼0.2) for Type I solutions.
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D _c2 ¼ e
mp2

2
�DasinfS20þDbcosfS20�DccosfS20þDdsinfS20

��

�ðbsþcsÞsinfs20Df2þðds�asÞcosfs20Df2

	
�
mz1

2
Dc2�mz0pDc2

)
,

D _f1 ¼Dc1,

D _f2 ¼Dc2: ð18Þ

Then, we can determine the stability of each steady-state
solution on the basis of Eq. (18). If the solution converges to zero,
we can assume that the steady-state solution is true. Eq. (18)
represents a set of first-order differential equations, and thus we
can rewrite it in a matrix form

D _X ðtÞ ¼ AxDX ðtÞ, ð19Þ

Then, we find matrix Ax as follows:

Ax ¼

N1 0 N5 N8

0 N2 N6 N9

0 0 0 N10

N3 N4 N7 N11

2
66664

3
77775

and

N1½ � ¼

�
ez
2
�

3ex2asbs

P

es
2p
�

3ex2ða
2
s þ3b2

s Þ

2p

�
es
2p
þ

3ex2ð3a2
s þb2

s Þ

2p
�
ez
2
þ

3ex2asbs

P

2
6664

3
7775,

N2½ � ¼

�
ez
2
�

3ex2csds

P

es
2p
�

3ex2ð3c2
s þd2

s Þ

2P

�
es
2p
þ

3ex2ð3c2
s þd2

s Þ

2P
�
ez
2
þ

3ex2csds

P

2
6664

3
7775,

N3½ � ¼

�
emp2

2
sinfS10

emp2

2
cosfS10

�
emp2

2
sinfS20

emp2

2
cosfS20

2
6664

3
7775;

N4½ � ¼

emp2

2
cosfS10

emp2

2
sinfS10

emp2

2
cosfS20

emp2

2
sinfS20

2
6664

3
7775;

N5½ � ¼

ep
4

cosfS10

ep
4

cosfS20

ep
4

sinfS10

ep
4

sinfS20

2
64

3
75;
Table 1
Values of system parameters.

Properties Symbol V

Natural frequency of the linear spring on 1

Mass of the equivalent stator MS 1

Mass of the equivalent rotor MR 4

Ball mass m 0

Ball radius r 1

Race radius R 1

Equivalent suspension damping CX and CY C

Damping ratio z 0

C.G. eccentricity e 0

Race eccentricity r 0

Adhesive coefficient a1 2
N6½ � ¼

ep
4

sinfS10

ep
4

sinfS20

�
ep
4

cosfS10 �
ep
4

cosfS20

2
64

3
75;
alues (unit) Reference values from commercial optic drives

1.2 Hz 8–40 Hz

10 g M¼Ms+MR+nm

0 g Total mass M : 100–150 g

.2 g Disc mass : around 15.8 g

mm 1.25 mm

6.5 mm 15 mm

X¼CYE2zMon CX¼CYE2zMon

.025 0.1 for rubber

0.05 for plastic

0.025 for metal
.1 mm

Around 0.1 mm
.01 mm

0.001–0.05 mm
� 10�5 N sec

m2


 �

2� 10�5 N sec
m2


 �



Fig. 5. Stability diagram of damping ratio z versus speed ratio p for Type I solutions.

Fig. 6. Stability diagram of Type I and II

Fig. 7. Stability diagram of Type I and II solution
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N7½ � ¼

emp2

2 ð�ðbsþcsÞsinfs10þðds�asÞcosfs10Þ 0

0 emp2

2 ð�ðbsþcsÞsinfs20þðds�asÞcosfs20Þ

2
4

3
5,

N8½ � ¼

e
2 sinfS10

e
2 sinfS20

� e
2 cosfS10 � e

2 cosfS20

" #
,

N9½ � ¼
� e

2 cosfS10 � e
2 cosfS20

� e
2 sinfS10 � e

2 sinfS20

" #
,

N10½ � ¼
1 0

0 1

� �
, N11½ � ¼

�
emðz1þ2z0pÞ

2 0

0 �
emðz1þ2z0pÞ

2

2
4

3
5,

DXðtÞ ¼ Da Db Dc Dd Df1 Df2 Dc1 Dc2

h iT
:

If DX ðtÞ ¼ est, then ½Ax�IS�DX ðtÞ ¼ 0. S is the eigenvalue,
½Ax�I S� ¼ 0 is the perturbation characteristic equation, and I is a
unit matrix. If the real parts of all eigenvalues are lower than zero,
the system is stable. Otherwise, the system is unstable.
solutions for a linear spring (x2¼0).

s for a stiffness hardening spring (x2¼0.2).



Fig. 9. Stability diagram of Type II solutions for large section of non-linear stiffness

spring (x2¼�0.4, x2¼�0.3, x2¼�0.2, x2¼�0.1, x2¼0, x2¼0.1, and x2¼0.2).

T.C. Chan et al. / International Journal of Non-Linear Mechanics 46 (2011) 415–424422
4. Stability analysis

The parameters listed in Table 1 are related to optical disc drives
manufactured by Lite-On IT Corporation, Taiwan. The values of the
system parameters employed in this study. Fig. 4 shows the stability
diagram for Type I solutions that, on the basis of the conclusion drawn
in Fig. 4, render the best radial vibration reduction compared to the
other solutions. To ensure the stability of the Type I solution, we need
to design a balancing system such that (p,e) falls within the dot-
shaded region in Fig. 4(a). The Type I (perfectly balanced solutions)
and their existence region cannot be modified by non-linearity in this
paper because of as ¼ bs ¼ cs ¼ ds ¼ 0; the system exhibits almost no
residual vibrations, and this solution is the desired solution to
minimize radial vibrations. We can see the results in Fig. 4(b). Type
I solution cannot be modified by non-linearity (x2¼�0.2, x2¼�0.1,
x2¼0, x2¼0.1, x2¼0.2).

This requires that three conditions related to the system
parameters be satisfied. First, the system has to operate above
the resonance frequency, i.e., p41. Second, the maximal counter-
balance (two balls sticking together) has to be greater than the
inherent imbalance, i.e., 2mR4MRe, which corresponds to the area
e40.035 in Fig. 4. Third, the total mass of the balls has to be
sufficiently small for e to not exceed a certain level to deteriorate
stability, which corresponds to the curve prescribing the
upper boundary of the dot-shaded region in Fig. 4. The stability
diagram is not influenced by the non-linear characteristics of the
suspension in the Type I solution because the residual vibration
approaches zero. When the damping ratio (z) changes from 0.001 to
0.1, we find that the stability area in Fig. 5 varies with respect to the
speed ratio.

Figs. 6–8, respectively, show the stabilities of steady-state
solutions with different characteristics of the suspensions, i.e.,
linear, non-linear stiffness hardening and softening springs. We can
observe that the stability diagrams are affected by the non-linear
suspension near resonance frequency. The stiffness hardening
spring (x2¼0.2) enlarges the stable region of Type II-1 and Type
II-3 to the region with the high-speed ratio, as shown in Fig. 7,
which is larger than that of the linear spring in Fig. 6. In addition,
Fig. 7 also illustrates overlapped region consists of Type II-1, II-2,
and II-3. However, if we increase stiffness hardening stiffness factor
(x2), the unwanted stability regions for Type II-1 and Type II-3 will
Fig. 8. Stability diagram of Type I and II solution
overlapped to Type I region. The overlapped region will cause
inconsistency in ball positioning to counteract the inherent imbal-
ance. The non-linear softening spring (x2¼�0.2) causes the stable
region of Type II-2 to approach the region of the low speed ratio as
shown in Fig. 8, which is also different from that of the linear spring,
as shown in Fig. 6.

The increased stability region of the Type II-2 solution is affected
by the non-linear stiffness softening spring and overlaps the Type
II-1 solution in the region with a lower speed ratio. Therefore, one
can observe that the balance behaviour still occurs even though the
rotor speed is less than the natural frequency of the linear spring. In
addition, the unwanted stability regions for Type II-1 and Type II-3
increase because of the stiffness hardening suspension but
decrease due to the effect of the softening suspension, as shown
in Figs. 7 and 8, respectively.

The analysis of the effect of the cubic coefficient is shown in Fig. 9.
Simulation results are shown for a selection of xi (x2) to verify the
potential area where softening supports may extend the stability
region of the balanced state to subcritical rotor speeds. From the
results, we can see the trend of stability boundaries for a large section
of xi (x2). The non-linear softening spring (x2¼�0.4, x2¼�0.3,
s for a stiffness softening spring (x2¼�0.2).
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x2¼�0.2, x2¼�0.1) causes the stable regions of Type II-2 to
approach the region of low speed ratio as shown in Fig. 9. The
stiffness hardening spring (x2¼0.2, x2¼0.1) enlarges the stable
regions of Type II-1 and Type II-3 to the region of high-speed ratio,
as shown in Figs. 7 and 9. One ought to avoid design in the overlapped
region because the bi-stable phenomena may cause uncertain
balanced performance of the ABB system for applications.

The non-linear suspension via time domain simulations of the
response results is shown in Fig. 10 to verify the balanced
performance and the bi-stable phenomena due to the non-linear
suspension. The black dashed lines denote the desired settling ball
positions of Type II-1 and Type II-2 solutions, which render to raise
the imbalance and counteract the inherent imbalance, respectively.
The two balancing balls can shorten time to reach desired settling
ball positions when increasing speed ratio (p). The overlapping
stable regions indicate that the Type II-1 and Type II-2 regions
coexist and are both stable. The phase angles of the Type II-1
solution is

tan�1 zp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s þb2
s

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s þb2
s

q
p2�1
e


 �
�3z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s þb2
s

q 3

þp2

� ��

and that of the Type II-2 solution is

tan�1 zp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s þb2
s

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s þb2
s

q
p2�1
e


 �
�3z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s þb2
s

q 3

þp2

� �
þp

�

Type II-1 will cause more residual vibration than Type II-2,
because of desired settling position of the two balancing ball.
However, the Type II-2 solution can counterbalance part of
imbalanced mass, although it still cannot achieve perfect balance
because of 2mRoMRe. The system converges to type II-2 solutions
with two balancing balls settled at the same positions eliminate
radial vibrations via the counterbalancing.
5. Conclusions

This study investigated the non-linear dynamic effects of the
suspension on the performance of an ABB. The positions where the
balls reside in the ABB in the case of a non-linear suspension were
different than those in a linear suspension. The stability diagram of
Type I solution is not influenced by the non-linear suspension
because the residual vibration approaches zero. When the damping
ratio (z) changes, we observe that the stability area changes with
respect to the speed ratio.

We can also observe that the stability diagrams are affected by
the non-linear characteristics of the suspension. In contract to the
perfectly balanced (Type I) solutions, the other solution (Type II)
solution is affected by non-linear stiffness suspension. The non-
linear stiffness hardening spring results in a larger stable region for
Type II-1 and II-3 solutions with an increasing speed ratio than that
of the linear spring. On the other hand, the non-linear softening
spring causes a smaller stable region in the neighbourhood of the
natural frequency. The increased stability region of Type II-2
solution affected by the non-linear stiffness softening spring
overlaps that of the Type II-1 solution. Hence, the balance
behaviour still occurs even though the rotor speed is less than
the natural frequency of the linear spring. In addition, the over-
lapped stable region will cause the inconsistency in ball positioning
to counteract the inherent imbalance. The non-linear softening
suspension is preferred over the non-linear hardening suspension
for the design of an ABB.
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