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Spatiotemporal dynamics in a large-Fresnel-number microchip laser
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Abstract

We experimentally observed the formation of
high-order transverse patterns in a microchip laser
with a high degree of frequency degeneracy.
With a doughnut pump profile, the spontaneous
transverse patterns are well localized on the
Lissajous trajectories. The observed transverse
patterns are reconstructed very well by using the
coherent state of quantum theory. The good
reconstruction suggests that the laser resonators
may be designed to obtain a more thorough
understanding of the quantum-classical connection.

Keywords: laser, transverse pattern, pattern
formation, classical-quantum correspondence

T eIy

It is well-known that the paraxial wave equation
for the spherical laser resonators has the identical
form with the Schrodinger equation for the
two-dimensional (2D) harmonic oscillator [1].
The eigenfucntion of the 2D quantum harmonic
oscillator can be analytically expressed as
Hermite-Gaussian ~ function  with  Cartesian
symmetry (x,y) or Laguerre-Gaussain function with
cylindrical symmetry (r,¢) [2]. Since the
functional forms of the 2D quantum oscillator and
the spherical resonators are similar, the higher

transverse modes of the spherical resonators can be
in terms of Hermite-Gaussian (HG) modes or
Laguerre-Gaussian (LG) modes.

The wave functions of HG mode native to a
spherical resonator are given by

(1
with the resonance frequencies
Vin =LAV, )+ (m+n+1)(Av,) (2)

where H () is a Hermite polynomial of order #,
@, is the laser beam waist, / is the longitudinal
mode index, m and n are the transverse mode
indices, Av, is the longitudinal mode spacing,
and Av, is the transverse mode spacing. For

a plano-concave resonator, as shown in Fig. 1, the
transverse mode spacing is given by

Av, =AVL|:lcos‘l[ /l—dﬂ . (3)
V4 R

where d is the cavity length and R is the radius of
curvature of the output coupler. Recently, we use
a doughnut-shaped pumped profile to generate the
LG modes in an a-cut Nd:YVO, laser [3] and to
generate the elliptical modes in a c-cut Nd:YVO,
laser [4]. Both LG and elliptical modes can be
considered as the superposition of the degenerate

HG eigenmodes HG , (x, Vs ZD'U) , where
K=0,1,2...N .
given by

For example, the LG,,, is

b ) -2 (V] (6 16, o)

K=0

Since the LG modes are formed by the
superposition of the degenerate HG eigenmodes,
we previously setup the resonator length to be as



short as possible for reaching single-longitudinal
mode operation, i.e. Av, >>Av,.

In this work, we study the spontaneous 2D
transverse modes in a frequency degenerate cavity.
As indicated in Eq. (3), adjusting the cavity length
d may result in the ratio AVL/AVT to be an

integer S. These cavity configurations constitute
a high degree of frequency degeneracy, as
lowering (raising) the longitudinal mode index / by
K, while simultaneously raising (lowering) the sum
of the transverse mode indices n+tm by Sx K,
will leave the frequency unaltered.  Although
configurations with a high degree of frequency
degeneracy have been shown to allow closed
geometric trajectories [5], so far the 2D transverse

modes studied in such cavities are never performed.

The experimental results reveal that the
spontaneous 2D transverse modes in a frequency
degenerate cavity are associated with the Lissajous
wave patterns. The observed transverse patterns
can be reconstructed very well.

The system schematic and the pump profile in
the laser system are shown in Fig. 1. The
experimental laser cavity that consists of one
planar Nd:YVOy4 surface, high-reflection coated at

1064 nm and high-transmission coated at 809 nm
for the pump light to enter the laser crystal, and a
spherical output mirror is analogous to the one
described in Ref. [3]. The gain medium in the
experiment is a-cut 2.0 at.% 1 mm length
Nd:YVO4 microchip crystal. The absorption

coefficient of the Nd:YVO4 crystal is about 40

mm™' at 809 nm. The radius of curvature of the
output coupler is 10 mm with the reflectivity of
98%. The pump source is a 1-W fiber-coupled
laser diode (Coherent, F-81-800C-100) with a
0.1-mm of core diameter. The pump spot size on
the crystal is controlled to be around 0.15~0.2 mm.
Note that the output intensity profile from an
ordinary fiber-coupled laser diode is a top-hat
distribution. The top-hat pump profile, as usual,
leads to a complicated multi-transverse HG mode
without locking.  With the special coupling
condition, a fiber-coupled laser diode can have a
doughnut output profile. Previously, we used the
doughnut pump profile to successfully generate the
pure LG mode.

For a stable cavity, the minimum integer S is
in general equal to 3. With R=10 mm, the

condition of Av, /Av, =3 can be obtained by
setting the cavity length to be d~7.5 mm.

Under the condition of Av,/Av, =3, the

transverse patterns are found to change drastically
with the fine tune of the output coupler. Slightly
adjusting the pump position and finely tuning the
output coupler, several typical transverse patterns
on the concave mirror are obtained and shown in
Fig.2 (a)-(f). Although the different sharp pattern
is obtained at a different cavity length, each pattern
is related with a specific value of the cavity length
and can be reproduced as long as the pump profile
is a doughnut distribution.  The difference
between the cavity lengths of two sharp patterns is
approximately 30-um. The difference of the
cavity lengths for different sharp patterns mainly
arises from the fact that the effective cavity length
depends on the order of the transverse mode, even
though the dependence is very weak. The range
of the cavity length for each sharp pattern to be
structure stable is around 10-um. When the
cavity length does not meet the range of the
locking modes, the transverse pattern is usually
irregular and vague. It can be seen that the
observed patterns are completely unlike a HG or
LG mode. Interestingly, these patterns are well
localized on the Lissajous figures that are classical
periodic orbits for a 2D anisotropic harmonic
oscillator with commensurate frequencies. The
measurement of the optical spectrum evidences
that all observed patterns are single frequency
emissions. In other words, the transverse pattern
formation can be interpreted as a spontaneous
process of cooperative frequency locking.
However, it is worthwhile to note that the
frequency locking in the present experiment occurs
among different transverse order with the help of
different longitudinal order, while the generation

of LG,y modes is the frequency locking within
the same family of transverse modes operating in a

single longitudinal mode.
Since the present cavity is set at the length of

Av,/Av, =3, the family of the transverse
modes HGpKﬁq(NfK)(x, Vs ZD'O) for a given index
N and p—¢g =23 can be frequency locked by
different longitudinal index [/=LF K for a
given index L, where K=0,1,2....N. Substituting
m=pK , n=q(N-K) , [=LFK |,
p—g=13,and Av,/Av, =3 into Eq. (2), the
laser frequency of the family
HGPK,q(N_K)(x, v wo) can be found to be locked

at v,y =L(Av,)+(gN +1)(Av,).

numerical analysis, the transverse patterns shown
in Fig. 2 are found to be associated with the
partially coherent states:

From the
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where the index M =N —2J +1 represents the
number of eigenstates used in the state

kS5 (x,y;@,). Note that the condition of

p —q =13 must be satisfied to correspond to the

observed patterns.  Fig. 3 shows the numerically
reconstructed patterns for the results shown in Fig.
2. Itis clear that only 3~5 eigenstates are already
sufficient to localize the wave patterns on the
classical trajectories, even for high-order periodic
orbits. In fact, Eq. (5) is the special case in the
representation of the SU(2) coherent state [4,6,7]
that is used to make the connection between wave
functions and classical periodic trajectories in 2D
confined systems. The words “partially coherent
state” mean a partial sum of the SU(2) coherent
state. The good agreement between the
experimental and reconstructed patterns confirms
that the interrelation between wave optics and
geometrical optics is somewhat similar to that
between quantum and classical mechanics. ~ Such
an analogy enables us to employ quantum theory
in analyzing the formation of high-order laser
transverse modes [4].  Reversely, the Ilaser
resonators can be deliberately designed to simulate
the quantum phenomenon in mesoscopic physics
[8-10]. Recently, Doya ef a/ [10] have introduced
the paraxial approximation to establish an analogy
between light propagation along a multimode fiber
and quantum confined systems. We believe that
these analogies will continue to be exploited for
understanding the physics of mesoscopic systems.
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In conclusion, the formation of high-order
transverse patterns in a laser resonator with a high
degree of frequency degeneracy has been
investigated. With a doughnut pump profile, the
spontaneous transverse patterns are found to be
associated with the Lissajous trajectories. With
the partially coherent states, the observed
transverse patterns can be explained very well.
The nice explanation suggests that the laser
resonators with identical functional form can be
used to attain a more thorough understanding of
the quantum-classical connection.
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