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一、中文摘要： 
 
本計畫之主要目的是實現供密集波長多

工光纖通訊系統採用的波長可調且能快速切

換的多波長雷射（λ= 1.55μm）。雷射（以
半導體雷射二極體或摻鉺光纖為增益介質）

的設計是基於一種特殊的外腔結構。共振腔

中的主要元件組是光柵與透鏡及其所構成的

折疊式望遠鏡式 4-f 成像系統及在此成像系
統的焦平面位置的可程式控制的液晶畫素反

射鏡。我們實現了波長可快速切換，相鄰頻

道頻率間隔滿足DWDM 之 ITU 頻道間隔之
多波長半導體雷射。此一設計亦被發展為其

他 DWDM 用的主動元件，如電控濾光器及
多工器。未來，並可指定此雷射輸出某一 ITU 
頻道，乃至於將雷射頻率與銫原子鐘之類的

頻率標準鎖定。整個雷射系統並可以微光機

電技術製成一緊緻之系統。 
本計畫之另一重要成果為提出一新型之

可調波長雷射結構。我們在 Littman結構外腔
式半導體雷射系統的腔內置入一平行配向絲

狀液晶相位板，利用其對於不同偏壓液晶分

子旋轉角度變化產生不同的相位變化，造成

雷射系統腔長的改變，因而達到微調雷射輸

出波長的目的。我們並將此方法應用於雷射

中心波長為 1556 nm望遠鏡式折疊式外腔半
導體雷射系統，在腔長 60 cm的腔內置入厚
度為 52.3 µm 的液晶相位板，改變加在液晶
相位板上的電壓，得到可調雷射輸出波長

1.89 GHz，使得系統除了原先利用液晶像素
反射鏡可選擇切換輸出波長的功能外，亦擴

增波長微調的範圍。此雷射系統完全以電控

的方式達成，未來對於指定中心波長及頻道

間隔的調整將更容易。 
 
關鍵詞：密集波長多工，多波長，外腔式半

導體雷射，絲狀液晶，液晶相位板，液晶像

素反射鏡，微光機電系統 
 

Abstract 
 

The goal of the present project is the 
realization of compact lasers (λ= 1.55μm) 
capable of generating coherent 

multiple-wavelength output.  Such laser 
sources are essential for DWDM optical 
communication systems.  The laser (with 
semiconductor or Er-doped fiber as the gain 
media, for example) is based on a proprietary 
external-cavity design with a 
liquid-crystal-based programmable mask at the 
imaging plane of a 4-f telescopic grating-lens 
system. Rapidly switchable, programmable 
generation of multiple wavelengths in 
semiconductor or fiber lasers is expected.  It is 
also possible to select the lasing wavelengths 
according to the DWDM ITU grid.  In the 
final stage of this project, the laser can be 
locked to absolute wavelength standards that 
can be chain-linked to the Cesium atomic clock.  
These designs can also potentially be 
miniaturized in the future with 
micro-fabrication technology. 

In another development, a planar nematic 
liquid crystal (NLC) cell is incorporated in the 
Littman-type external-cavity as the 
wavelength-tuning device for a semiconductor 
laser diode. In this laser cavity, the NLC cell 
acts as a variable phase plate. Varying the 
voltage driving the NLC cell, one can tune the 
laser wavelength by changing the effective 
optical path length, which in turn changes the 
resonance frequency of the external-cavity 
modes. We have also successfully applied this 
method to a folded telescopic-type ECDL for 
fine-tuning the wavelength. An intracavity 
52.3-µm-thick NLC cell is incorporated in the 
liquid-crystal-pixel-mirror based 
external-cavity. A 1.89 GHz range of tuning at 
λ=1556 nm is achieved by changing the 
voltages biasing the NLC cell. The laser system 
can be totally electronically controlled. It is 
expected to be much more convenient for 
selecting the central wavelength according to 
the ITU grid. Additional functionalities include 
adjusting the channel spacing and fine-tuning 
of the laser wavelength. 

 
Keywords:  DWDM, multiple wavelength, 
external-cavity semiconductor laser, nematic 
liquid crystal, liquid crystal phase plate, liquid 
crystal pixel mirror 
 



 3

I. Introduction 
    In this report, we summarize recent 
progress in our work on liquid-crystal-based 
tunable semiconductor lasers and related 
devices for 
dense-wavelength-division-multiplexing 
(DWDM) optical communication systems.  
Wavelength tuning of semiconductor lasers is 
usually achieved by changing the temperature 
or driving current of lasers. Different tuning 
mechanisms of external-cavity diode lasers 
(ECDL’s) have been reported. The output 
wavelength of ECDL can be tuned either 
mechanically3-6 or electronically.7-8 One such 
approach, utilizing the electro-optic properties 
of liquid crystals, enables low-voltage electrical 
tuning. Several types of liquid crystal elements 
have been successfully developed as intracavity 
tuning elements in ECDL systems. These 
elements can be categorized as birefringent 
filters,9-10 Fabry-Perot etalons11-12 or a spatial 
light modulator.13 In Sec. II, performance of a 
digitally tunable external cavity laser (ECL) 
with a liquid crystal pixel mirror (LCPM) is 
outlined. Other applications of the basic liquid 
crystal device include tunable optical 
demultiplexer and a tunable filter/demultiplexer.  
These are summarized in sec. III and IV.  
Finally, we also report a simple and novel 
configuration of a tunable laser diode, which is 
capable of continuous mode-hop-free tuning 
using a liquid crystal intra-cavity tuning 
element.  A planarly aligned nematic liquid 
crystal (NLC) cell was inserted in the cavity of 
an ECDL. Varying the voltage driving the NLC 
cell, one can tune the laser wavelength by 
changing the effective optical path length, 
which in turn changes the resonance frequency 
of the external-cavity modes. The idea was also 
applied to the folded telescopic 
grazing-incidence grating-loaded external 
cavity incorporating a liquid crystal pixel 
mirror (LCPM).14 

 
II. TUNABLE EXTERNAL CAVITY LASER DIODE 

WITH A LCPM 
 

   The basic laser configuration is shown in 
Fig. 1.  An AR-coated laser diode (LD) from 
OptoSpeed was used as the gain element.  

Light emitted from the AR-coated (R ≈ 0.1%, 
estimated) front facet of the LD is collimated 
and incident on a grating (1100 lines/mm and 
working in the 1st order) at an angle of 75°.  
Diffracted light from the grating collected by a 
lens and focused on the LCPM.  Spectrally 
selective optical feedback is provided by the 
retroreflected light from the LCPM. The 
primary laser output is the zeroth-order 
reflection of the grating (~ 60% of the incident 
light from the diode chip). 

 
A schematic of the LCPM is shown in Fig. 2. It is 
constructed as a reflection-type, normally black 
twisted nematic liquid crystal cell (TNLC) as 
described in our previous work.2 The contrast 
ratio and on state reflectivity of the homemade 
LCPM were about 7:1 and 67% respectively. 
The threshold switching voltage of the LCPM 
was less than 5 V Vpp (peak – to – peak) at 1 
kHz.  Complete switching from off- to 
on-state is achieved at about 10Vpp. 

 

Laser
DiodeGrating

Lens

Objective
Lens

λ1

λ2

LCPM

 
Fig. 1  A schematic of the electronically tunable laser 
with a folded telescopic grating-loaded external cavity 
and Liquid Crystal Pixel Mirror (LCPM). 
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Fig. 2(a) 

 
Fig. 2(b) 

 
Fig. 2 (a) Construction of the LCPM: ITO: Indium Tin 
Oxide electrode; NLC: nematic liquid crystal; SA: 
surface alignment layer. (b) Mask for making the ITO 
pattern. For the mask on the left, the center-to-center 
spacing of the pixels is 125µm, while the width of each 
pixel is 100µm. The corresponding magnitudes on the 
right are 83.3µm and 79.3µm respectively. Flexible flab 
cables were use for ease of making the contacts.  
 

The laser was electronically tuned by 
switching on the individual pixels. For pixels 
with center-to-center separation of ∆x, the 
wavelength separation, ∆λ, is determined by 

 
∆λ=Λcosθr∆x/f,                 (1) 
 

where Λ is the grating period; θr is the 
first-order diffraction angle; f is the focal length 
of the lens.  The laser generates output with 
multiple wavelengths when more than two of 
the pixels are switched on.  

The output spectrum of the laser biased at 

I = 45 mA (Ith = 39 mA) at λ=1552 nm is 
shown in Fig. 3.  

The SMSR at this wavelength is better 
than 35 dB. At the same current, the single 
wavelength tunable range of the laser was from 
1526.2 nm to 1575.6 nm. The laser wavelength 
was tuned discretely by biasing different pixels 
of LCPM.  

In Fig. 4(a), we plot the lasing wavelength 
against the relative position of the pixel. It is in 
good agreement with the theoretical prediction 
according to equation (1). Figure 4(b) 
demonstrates the SMSR corresponding to each 
wavelength. The result shows that the SMSR of 
the laser was better than 30 dB throughout this 
range. Generation of laser output in accordance 
to the ITU grid (100 GHz or 0.8 nm/channel) is 
shown in Fig. 4(c).  
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Fig. 4(a)  Lasing wavelength vs. relative pixel position. 
The solid curve is the theoretical prediction according to 
Eq. (1). 
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Fig. 4(b)  Side mode suppression ratio of the laser 
output corresponding to each wavelength. The black 
squares are experimental points. 
 

 
Fig. 3   Single-wavelength operation of the 1550 nm 
laser 
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Fig. 4(c) Generation of tunable laser output in 
accordance to the ITU grid (100 GHz or ~ 0.8 nm) 
 
Multi-wavelength operation of the laser is also 
possible, as illustrated in Fig. 5. 

 
Fig. 5 Tunable triple-wavelength operation with 
wavelength separations of  3.22 nm to1.28 nm. 
 

II. LIQUID-CRYSTAL-BASED 
TUNABLE 

OPTICALDEMULTIPLEXERS FOR 
WDM (λ = 1550 nm) 

The experimental setup is illustrated in Fig 
6. In this device, multi-wavelengths signal are 
amplified by an erbium-doped fiber amplifier 
(EDFA). The single mode fiber output from the 
EDFA is collimated by a lens, then incident on 
the grating after passing through a half-wave 
plate. The first-order light diffracted by the 
grating is directed to an AR-coated imaging 
lens and focused on to the liquid crystal spatial 
light modulator (LC_SLM) and a fiber array. 
The relation between the wavelength and the 
focal plane of imaging lens is expressed as  
 

f
a

dx
dD rx

1cos •== θλ  

 
where a is the groove spacing of the grating , θr 
is the diffracted angle of the first order 
diffracted light, f is the focal length of the 
imaging lens. The LC_SLM, which operates in 
the normally-black mode, consists of a twisted 
nematic (TN)-LC cell and a polarizer. The 
polarizer is attached behind the TN-LC cell. 
The pixel pitch and width of the LC-SLM are 
83.3 µm and 79.3 µm, respectively. The core 
pitch of the fiber array is 250 µm with 62.5 µm 
core diameter of each fiber. Each pixel of the 
LC_SLM and each fiber element of the fiber 
array have one by one correspondence. 
Selecting the appropriate LC_SLM pixels 
allows light of the desired wavelength to 
transmit into the fiber array. The channels are 
designed according to ITU grid with channel 
spacing of 100 GHz. 

 

 
Fig. 6  Experimental setup of a liquid-crystal-based 
tunable optical demultiplexer: EDFA: Erbium-doped 
fiber amplifer, SMF: single mode fiber, TLS: tunable 
laser system, LC-SLM: liquid crystal spatial light 
modulator, OSA: Optical Spectrum Analyzer. 
 
The output spectra for demultiplexing 
16-channel 100-GHz-spaced signals into a 
62.5-µm multimode-fiber array for both s and p 
polarizations are shown in Fig. 3. Adjacent 
channel crosstalk is less than –30 dB.  The 
average 1 dB and 3 dB passbands of the 
DEMUX are 12.5 GHz and 22.5 GHz, 
respectively.  A maximum extinction ratio of 
16.2 dB is achieved.  Different channels can 
be switched with rise and fall times of ~10 ms 
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and ~70 ms, respectively. The outputs of the 
channels are equalized to –65 dBm. The 
variation between different channels reduced 
from ~ 10 dB to less than 0.5 dB.  
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Fig. 7.  (a) Power-equalized output of the 16 channels of the 
LC-DEMUX, (b) Extinction ratios of the individual channels versus 
wavelengths (p-polarized). 
 

 
 

III. LIQUID-CRYSTAL-BASED TUNABLE 
FILTER/EQUALIZER FOR WDM (λ = 

1550 NM) 
The structure of this device is shown in Fig. 8. 

 
Fig. 8 Experimental setup of a liquid-crystal-based 
tunable optical filter/equalizer: EDFA: Erbium-doped 
fiber amplifer, SMF: single mode fiber, DFB: Distributed 
Feedback Lasers,, LC-SLM: liquid crystal spatial light 
modulator, L1 and L2: lenses, MMF: multi-mode fiber, 
OSA: Optical Spectrum Analyzer. 

 
In this experiment, the wavelengths, 1542.5 nm 
and 1545.38 nm, of the two DFB lasers are 
adjusted to the ITU grids, and selected by the 
device by biasing desired pixels. The LC-based 
filter also function as an electrically controlled 
optical attenuator: The transmitted power of 
each wavelength will change as the voltage 
applied to each corresponding pixel will change. 
The power equalization function is illustrated 
in Fig. 9. We were able to reduce the power 
difference before (dotted line) and after (solid 
line) voltage adjustment from 17.9 dB to 0.3 
dB. 
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Fig. 9  Power equalization of two wavelengths by the LC-based filter. 
Dotted line: before equalization, Solid lime: after equalization 
 
 

IV. A NOVEL TUNABLE DIODE LASER 
WITH LIQUID CRYSTAL 

INTRACAVITY TUNING ELEMENT 
 
A novel and simple approach for tuning of the 
laser wavelength is proposed and demonstrated.  
The schematic of the laser configuration is 
shown in Fig. 10.  
 
 
 
 
 
 
 
 
 
 
Fig. 10  A schematic of the laser configuration.  LD: 
Laser Diode; HR: High Reflector; AR: Anti-reflection 
Coating; NLC: Nematic Liquid Crystal 

Output

HR AR 

LD

Grating 

Lens 

Mirror 
NLC cell 
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The output from the anti-reflection (AR) 
coated front facet of a commercial laser diode 
is collimated with an objective lens and 
directed onto a diffraction grating with 1200 
lines/mm. The first-order reflection from the 
grating was retroreflected back into the diode 
by a mirror completing the external cavity. The 
zeroth-order reflected beam from the grating 
was the useful output. The laser wavelength is 
775 nm. An NLC cell was inserted between the 
grating and the end mirror of the cavity. 
 

The NLC cell is constructed by 
sandwitching the 4’-n- pentyl-4- cyanobiphenyl 
(5CB) LC between two glass plates coated with 
Indium-Tin-Oxide as electrodes. The thickness 
of the cell is controlled by Mylar spacers. In the 
experimental result described in this section, 
we use a 35.5-µm-thick NLC cell. Planar 
alignment of the nematic phase is achieved by 
rubbing polyimide films coated on the inner 
sides of substrates. The NLC cell is driven by a 
square wave at 1 kHz.  

In the laser cavity, the NLC cell is oriented 
so that the laser polarization direction is along 
its rubbing direction. Varying the voltage 
driving NLC cell, its extraordinary index of 
refraction would change due to field-induced 
reorientation of the LC director. This is 
equivalent to vary the laser cavity length. The 
relative frequency shift of the laser output is 
then given by 

f
f

l
l ∆−=∆ ,               (2)                              

where ndl ∆=∆  is the optical path change 
through the NLC cell, l  is the cavity length, 

f∆  is the induced relative frequency shift, f  
is the laser frequency. 
 

By using the wavelength meter, the laser 
frequency shift as the applied voltage on NLC 
cell in the range of 0.9 V to 1.3 V for 15-cm 
and 30-cm ECDL cavities are also determined 
quantitatively and shown in Fig. 11.  
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Fig.11: Laser frequency shift measured by a wavemeter. 
The theoretical curves are also shown. 
 

For the 15-cm-long ECDL cavity, the 
mode-hop-free tuning range of the laser is 4.42 
GHz (from 0.9 V to 1.23 V). The laser mode 
jumps one axial mode spacing (~ 1 GHz) at 
Vrms = 1.24 V. For the 30-cm-long cavity, the 
mode-hop-free tuning range is 2.77 GHz (0.9 V 
to 1.3 V). The tuning characteristics are in good 
agreement with the theoretical predictions of 
4.30 GHz and 2.46 GHz according to Eq. (1) 
for the two cavity lengths, respectively.                 
 

 We have also experimented with 
combining schemes in Sec. 2.2 with the 
intracavity liquid crystal phase plate. The 
output from the AR- coated front facet of a 
commercial laser diode is collimated with an 
objective lens and directed onto a diffraction 
grating (1100 lines/mm).  A schematic of the 
laser configuration is shown in Fig. 13.  

Fig.13: Schematic of the LCPM based ECDL with 
an intracavity nematic liquid crystal cell. 

 



 8

Briefly, spectrally selective optical 
feedback is provided by the retro-reflected 
first-order-diffracted light from the grating, 
which is collected by an imaging lens (f = 25.7 
cm) and focused on the LCPM. The laser is 
electronically tunable by biasing the individual 
pixels. The zeroth-order reflection beam from 
the grating is the useful output. The cavity 
length is 60 cm. An intracavity 52.3-µm-thick 
NLC cell is used for electronically fine tuning 
the cavity resonance frequency. The basic 
operational principle is as the same as in the 
Littman-type ECDL system that we have 
described previously.  

With the pixel mirrors, the laser wavelength 
can be tuned in step. We demonstrate different 
wavelength output by switching pixel of the 
LCPM on/off sequentially in figure 14. The 
channel spacing is 100 GHz. There are 
forty-four channels in this work. 

 
Fig. 14 Tuning the laser wavelength is steps of 100 

GHz 
 
The output wavelength can be continuously 

tuned by varying the applied voltages of the 
NLC cell. The frequency tuning range 
measured is 1.89 GHz as the driving voltage of 
the NLC cell is changed from 1 volt to 4.6 volts 
(Vrms). The result is in good agreement with 
the theoretical predications of 1.85 GHz. In 
figure 13, we demonstrate the tuning results. 
Frequency shift is observed by monitoring the 
output spectrum of a scanning FPI (FSR= 2 
GHz). 
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Fig. 14: Wavelength fine-tuning of the LCPM based 
ECDL system. ∆: Experimental results. : Theoretical 
predictions. 
 

V. CONCLUSIONS 
 

   In summary, we report several 
liquid-crystal-based tunable lasers and devices 
for DWDM optical communication systems. 
Single and multiple wavelength generation and 
tunable laser output in accordance to the ITU 
grid (100 GHz or 0.8 nm/channel) is 
demonstrated.  The key element is a liquid 
crystal spatial light modulator in the reflection 
or transmission mode. It can also be used for 
wavelength demultiplexing, filtering and power 
equalization.  A new laser configuration that 
allows mode-hop-free tuning of laser 
wavelength as opposed to digital tuning is also 
shown. 
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