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 I

一、計畫中文摘要及關鍵詞 

 

兩台連結主機間的頻寬直接影響網路傳輸的效能．最佳化的工作也會因頻寬而存在一

個上限．即使頻寬會因新技術的發展而不斷增加．不過，新技術的發展郤總是跟不上使用

需求，新的網路應用程式是不斷在推出．在這兩者 (新技術開發與應用程式需求) 的競賽
中，技術的開發總是無法一直保持領先以提供足夠的頻寬．現在無線區域網路的應用蓬勃

發展，頻寬不足的限制在無線區域網路更是明顯．  

 
在現有技術未能支援足夠頻寬的限制下，把數個網路介面卡聚合在一起形成一個單一

對外的介面 (Trunk) ，由結合在一起的介面卡來提供累加的頻寬．這樣在上層的應用程式
看起來，就好像是頻寬增加了．這樣也就解決了頻寬不足的間題． 

 
 使用這種方法來增加頻寬除了增加效能外，還有一個促進網路基礎架構 (network 
infrastructure) 建置的功用．當現有網路架構提供之頻寬不足時，就會驅使廠商建置新的網
路架構．若沒有一個真實的應用程式可以展示來証明頻寬真的不足，並無法說服廠商投資

進行建置的工作．而既然頻寬不足，也就無法真正跑這樣一個應用程式出來作展示．使用

了上述的方法取得較多頻寬，郤可以打破這種關係． 

 
關鍵字：無線區域網路，頻寬，聚合多張網路介面卡 
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二、計畫英文摘要及關鍵詞 

 
The bandwidth of two connected hosts directly infects the performance. The bandwidth 

limits the optimization of the connection. Even though the increased bandwidth can be gotten by 
the new developed technology, the developing speed cannot always follow the growing 
bandwidth-requirement of applications. Now the wireless network is getting more and more 
popular. The shortage of the bandwidth in the wireless work is also an obvious problem. 
 
 With currently available interface-cards, we can aggregate them to get the accumulated 
bandwidth. In the applications’ view, they don’t know about what we do. They only feel that they 
have more bandwidth for use. This solves the problem of the bandwidth-shortage. 
 
 Besides, it also motivates technological improvement in commercially available service rate. 
A set up in a new technology takes place when the bandwidth is not sufficient. But we need a real 
application to prove it. It is often difficult to demonstrate that application can take advantage of a 
new service rate before it is actually available. Use above method can break this cycle by 
permitting the application to obtain the bandwidth. 
 
Keywords: wireless area network, bandwidth, aggregate multiple interfaces 
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三、計畫成果自評 

 
本研究內容與原計畫相符、且達成預期目標、研究成果具有學術及應用價值、且適合在學

術期刊發表或申請專利。 
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Chapter 1 Introduction 

 

1.1  Striping over the network subsystem 

1.1.1 Introduction of striping 

Within the network subsystem, optimizing the single data path between two connected hosts 

is the most straightforward way to obtain higher performance. This kind of optimization includes 

minimizing copying and utilizing I/O resources. Sometimes further optimizations are impossible 

because of the limitation of the available bandwidth between the two hosts. 

 

Generally striping within the network subsystem can solve the problem described above. 

According to the definition defined in [1], striping is an operation that aggregates physical 

resources to obtain higher performance. Striping was originally used within the disk subsystem 

and now is also used in the network subsystem. Within the network subsystem, we split the traffic 

over multiple network links to obtain a higher aggregated bandwidth. This operation is 

transparent to high-level systems except that the increased bandwidth is realized. Figure 1.1 

shows an abstract striping system. A striping point is the position where the traffic is split or 

merged. It also performs the multiplexing and de-multiplexing operations. A stripe is an instance 

of the physical resources which is connected to one of the outputs of a striping point. 

 

We use TCP/IP protocol stack to explain the position of the striping point.  Figure 1.2 is 

shows that the striping can be installed in different network layers. As shown in the figure, if 

striping is installed at the application layer, the data is transmitted over two TCP connections. If 

striping is installed at the TCP layer, the TCP packets are split over two IP network paths and so 

on. Striping at a lower layer can obtain higher striping point utilization. This is because the 

striping algorithm can see more bandwidth. However, it also needs to do more jobs such as flow 

control and reordering. 
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1.1.2 Advantages of striping 

Striping can be applied to a variety situation within the network subsystem. First, when the 

maximum bandwidth supported by a network link doesn’t satisfy the required bandwidth of the 

applications, there exists a bandwidth mismatch. The supported maximum bandwidth is driven by 

the new technique and the standard. But the development of the new technique cannot always 

follow the need of the applications. Sometimes an application needs more bandwidth than what 

the current technique can provide. When this mismatch occurs, striping can be applied to obtain 
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higher bandwidth before the new technique is developed. Second, striping can drive the setup of 

new network technologies. A setup of the new network technologies takes place when the 

technologies are mature and there exists a requirement. We need a running application to 

demonstrate the need of the new technologies. So we can convince the service provider to adopt 

the new technologies for higher service rate and that will generate income for the service provider. 

But it is difficult to run an application which can take advantage of a new service rate before it is 

actually available. Since the new network technologies have not been developed, there is nothing 

to run the application on. Striping can break this cycle by running the application over the 

aggregated existing network links. Then we can demonstrate the need of the higher service rate to 

run the application. 

 

 Besides the advantages of obtaining higher bandwidth listed above, there are also many 

other advantages from striping. First, the cost is low. Striping provides the performance which is 

comparable to high speed networks. But striping within the network subsystem only needs 

several low bandwidth adaptors. These low bandwidth adaptors are usually popular and cheaper 

than a single high speed adaptors. Second, striping provides the security when transmitting data. 

Striping splits the traffic over multiple network links. Eavesdrop becomes difficult because data is 

transmitting on multiple links. Even though someone can collect all data on the multiple links, he 

also needs to understand the striping algorithm to get the original transmitting data. Third, 

striping provides the redundancy within the network. Striping utilizes multiple network links at 

the same time. If one of the links failed, the striping can be designed to detect the failure and 

route all traffic to other remaining links. Fourth, striping is scalable. If more bandwidth is needed, 

more network adaptors are simply installed. Thus striping provides the flexibility regarding the 

addition of the bandwidth. 

 

 

1.1.3 Problems of Striping 

 There are several problems of using striping within the network subsystem. First, striping 
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must keep the packets in the FIFO (first in, first out) order. The receiver collects packets from the 

multiple network links. Because striping is transparent to the up level, striping must hand the 

packets to the up level in their original delivery order, in the FIFO order. The first packet sent by 

the sender must be the first one handed to the up level by the receiver. Striping needs to know the 

original order of the packets and delivery them in the FIFO order. 

 

 The second problem is to assemble the packets. To split the traffic over the multiple network 

links, striping may need to split the large packets into small segments. Then these packets are 

able to be transferred on the separate links. This causes the problem that the receiver has to 

assemble these fragmented packets. The receiver has to wait for all segments of the packet and 

assembles them correctly before handing them to the up level. 

 

 The final problem is skew. Skew happens when the network links have different delays. 

Since the packets are transferred over multiple links. The receiver may get out-of-order packets 

because of the different link speed. As shown in Figure 1.3. The packets arrive in a different order 

which they are sent. One of the possible solutions is to keep the packets in the buffer for a while 

in the receiver. After all packets in the buffer are all in order, striping hands them to the up level. 

 

 

 

 A striping algorithm is implemented in the striping point. One of its main jobs is to handle 
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these possible problems listed above, such as reordering packets, assembling packets. In the 

sender side, the striping algorithm decides how to split the traffic and transfer the packets over 

the multiple network links. In the receiver side, the striping algorithm is in charge of collecting 

the packets from the separate links and handing them to the up level in the correct order. 

 

 

1.2  IEEE802.11 Wireless Network 

In the recent years, the market for IEEE 802.11 wireless network has grown tremendously. 

Wireless technology reaches virtually every location in the world. Below we present a brief 

description of the IEEE 802.11. 

 

The IEEE 802.11 standard [2] specifies both the physical (PHY) and medium access control 

(MAC) layers of the network. In IEEE 802.11, the PHY layer, which actually handles the 

transmission of data between nodes, uses the 2.4 GHz frequency band. The band is an unlicensed 

band for industrial, scientific, and medical (ISM) applications. 

 

The MAC layer is a set of protocols which is responsible for controlling the medium accesses. 

The IEEE 802.11 standard specifies a carrier sense multiple access with collision avoidance 

(CSMA/CA) protocol. In this protocol, when a node has a packet to be transmitted, it first listens 

to ensure no other node is transmitting packets. If the medium is idle (not transmission), it can 

transmit the packet. Otherwise, it waits for the end of the transmission. After the transmission is 

done, it chooses a random "back-off time". After the time expired, the node is then allowed to 

transmit the packet. Since two nodes may choose the same back-off time at the same time, 

collisions may still happen. Besides, the packet may be corrupted on the transmission medium. 

Thus an acknowledgement is required for each packet in the MAC layer to ensure that the packet 

is received correctly. 
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1.3 Motivation 

With the growth of the IEEE 802.11 wireless network, more communication bandwidth is 

needed to run network applications. Wireless mediums have lower performances than the wired 

mediums. The most popular product in the market now has only a bandwidth of 11Mbps (IEEE 

802.11b). This is a bit small compared to the wired LAN. Although new standards are being 

developed to obtain higher bandwidth, the shortage of bandwidth is still a problem before the new 

technology gets popular. 

 

We can use striping described in the last section to aggregate multiple IEEE 802.11 wireless 

adaptors to form a single trunk. The host uses this single trunk for communication. Because 

striping is transparent to the up level, the applications run on the host can obtain the aggregated 

bandwidth easily without any modification. 

 

 There are also other advantages for wireless communications. As we know, distance between 

two mobile stations affects communication bandwidth. The longer distance is, the less bandwidth 

we get. By striping, we can overcome this problem. Two hosts can communicate with each other 

in a long distance. At the same time, they still can obtain required high bandwidth via striping. 

We can archive both long distance transmissions and high-bandwidth requirement. Besides fault 

tolerance is also provided. A wireless adaptor may not work in a poor environment, such as 

quality of the using channel is bad or the station is moving rapidly. Because multiple adaptors are 

used for transmission, failures of partial adaptors only reduce the bandwidth. The communication 

can still work by using other adaptors. 

 

There are already some existing striping algorithms. These algorithms are originally 

developed either for general purposes or for other network environments.  They either have 

some problems or are not suitable for use in IEEE 802.11 wireless network. In this report, we will 

first discuss these striping algorithms. Then we will propose a new striping algorithm designed 

for IEEE 802.11 wireless network. 
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Chapter 2 Striping Algorithms 

 

2.1 Existing Striping Algorithms 

 There are many existing striping algorithms. Several striping algorithms, such as [3] and [4], 

have been proposed for striping traffic over different wireless mediums. Because our goal is to 

aggregate multiple IEEE 802.11 wireless adaptors, we are only interested in algorithms which are 

suitable for striping traffic over multiple links of the same media. 

 

In the following sections, we present two existing striping algorithms. Both the algorithms 

use a basic round-robin method to switch between the stripes for transmission. The sender 

transfers the data on the first stripe and switches to the next stripe for transmission. The operation 

is repeated and the switch rolls back to the first stripe after the transmission is done on the last 

stripe. After switching from the first stripe to the last stripe, the operation completes a round. 

 

These algorithms are not very suitable for use in IEEE 802.11 wireless network. But they are 

still worth of discussing. Thus, we will discuss the problems of these algorithms. Then we will 

propose our new algorithm and describe its design in detail. 

 

 

2.1.1 Surplus Round Robin 

 Hari Adiseshu [5] proposed a striping algorithm named Surplus Round Robin (SRR). The 

Surplus Round Robin is designed for general purpose. Most of the research papers refer to [5]. 

Three key ideas of the Surplus Round Robin algorithm are load sharing, logic reception, and 

marker packets. In the sender side, the SRR uses a load sharing method to stripe over multiple 

links. Logic reception contains two parts. The receiver buffers the packets and performs the 

inversed algorithm to predict which stripe to receive from. The Surplus Round Robin uses the 
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marker packets to perform synchronization recovery at the receiver. Below we describe the 

design of the Surplus Round Robin in detail. 

 

 The load sharing means that each stripe shares the traffic load equally. The Surplus Round 

Robin keeps a counter for each stripe. The counter presents how many bytes can be sent on the 

stripe. Whenever a packet is sent from a stripe, the size of the packets is subtracted from the 

stripe’s counter. When this counter becomes negative, the transmission switches to the next stripe. 

When the stripe again receives its turn to send the packets, a fresh quantum value is added to the 

counter and the transmission continues on the stripe. Figure 2.1 illustrates the operation. 

 

 

 

 The receiver buffers the packets for each stripe and simulates the striping algorithm in the 

sender. The receiver performs the reverse of the striping algorithm performed in the sender to 

predict which stripe to receive from. It keeps a counter for each stripe. Whenever a packet is 

received from the stripe, the size of the packet is subtracted from the counter. When the counter 

becomes negative, the reception switches to the next stripe. By inversing the striping algorithm in 

the sender, the receiver can get the packets in their original order. Figure 2.2 illustrates the 

operation. 
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If the normal data packets are lost on the stripes, the reception of the packets will become 

out-of-order. This is one of the problems needed to be solved when using striping. The order of 

the packets must be in a FIFO (first in, first out) order. Marker packets are used to solve this 

problem. In the Surplus Round Robin, the sender will periodically sends a special packet named 

marker packet on each stripe. This marker packet is different from the normal data packets. The 

marker packet contains the information of the round number. When the receiver receives this 

packet, the receiver can synchronize its current round number with the sender side. With these 

marker packets, the receiver can recover this out-of-order problem. Figure 2.3 shows this scenario. 

In Figure 2.3 (a), the packet labeled ‘A’ are lost. Then we can see in Figure 2.3 (b) that the 

reception in the receiver is out of order. If the marker packet is sent, as shown in Figure 2.3 (c), 

the lost of packet can be detected via the round number in the marker packet. 
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 The Surplus Round Robin can only guarantee FIFO when no packet is lost. As we 

mentioned above, striping should be transparent to the up level. The guarantee of FIFO is a very 

important issue. Even though the Surplus Round Robin can perform the recovery via the marker 

packets, the synchronization is re-established after the marker packets are received. Before the 

marker packets are received, some out-of-order data packets are already handed to the up level. 

The reestablishment of synchronization is too late for these out-of-order packets.  

 

If we hope that the synchronization can be re-established as soon as possible, the marker 

packets must be sent frequently. These frequently sent marker packets are thus an overhead. The 

normal data packets have to share the bandwidth with these marker packets. 

 

The Surplus Round Robin relies on the marker packets to re-establish synchronization when 

the data packets are lost. But what if the marker packet itself is lost? The marker packets have the 

same opportunity as the normal data packets to be lost in the transmission. Once a marker packet 

is lost, the out of order cannot be detected until the next marker packet is received. 
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 The Surplus Round Robin also has another problem. The receiver simulates the sending 

algorithm used in the sender side. The receiver will expect to get the packets from the current 

receiving stripe. The receiver will not switch to the next stripe until the counter of the stripe is 

negative. If the link of that stripe is broken, the receiving operation will block forever. There will 

be no packet arrival on the stripe sine the link of the stripe is broken. Thus the receiver cannot 

switch to other stripes to get packets anymore. 

 

 Now we conclude the discussion of this striping algorithm. The Surplus Round Robin only 

provides a small degree of FIFO guarantee. It will encounter problems when transferring TCP 

traffic. We will explain the detail in section 2.2. It does not provide fault tolerance of the link 

failure either. Thus we know that the Surplus Round Robin is not suitable for our goal. In the next 

section, we will present another algorithm which enhances the Surplus Round Robin. 

 

 

2.1.2 Trigger Round Robin 

 Jacob [6] proposed a new striping algorithm named Trigger Round Robin in 1998. He 

studied some existing striping algorithms, including the Surplus Round Robin, and found the 

common problem of them- no FIFO guarantee. He proposed a new striping algorithm and 

declared that the Trigger Round Robin can guarantee FIFO delivery of packets. Two key ideas of 

the Trigger Round Robin are to use the control packet carrying the striping information and to 

drop the out-of-order packets to guarantee FIFO. Below we describe it in detail. 

 

 Beside the normal data, the Trigger Round Robin sends the extra trigger cells. The trigger 

cell indicates the switch of the transmission on the stripe. In the sender side, when the 

transmission switches to the next stripe, a trigger cell is sent following the normal data packets. In 

the receiver side, all data packets are buffered in the per-stripe’s queue first. When a trigger cell is 

received on one stripe, the receiver hands the data in this stripe’s buffer to the up level. The 

switching operation is similar to the one in the Surplus Round Robin. The difference is that in the 
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Trigger Round Robin the switching operation of transmission is dynamically controlled by the 

sender via the trigger cells, not statically controlled by the per-stripe’s counter. Figure 2.4 shows 

the operation of the Trigger Round Robin. 

 

 The trigger cell contains a round number that is managed by the sender. Just like the purpose 

of the round number embedded in the marker packet in the Surplus Round Robin, the receiver 

can get the current round of the sender when receiving the trigger cell. With the round number, 

the receiver can easily order the receiving data. 

 

 
 

If the normal data is lost on the transmission, the algorithm can also work well. For example, 

in Figure 2.4 if the normal data labeled ‘B’ is lost, the receiver will collect the other data in the 

order- ‘A’, ‘C’, ‘D’, ‘E’. The receiver even won’t notice the lost. All data is still kept in FIFO. 

Here we can see that the Trigger Round Robin provides a higher degree of FIFO than the Surplus 

Round Robin. 

 

 We ever mentioned the problem of marker packet lost in the section discussing the Surplus 

Round Robin. The trigger cell itself may also be lost on the transmission. In the Surplus Round 

Robin, the lost of the marker packet causes the delay of the synchronization reestablishment. 

What happened in the Trigger Round Robin? We use Figure 2.5 to describe it. Because a trigger 



 13

cell is lost, the receiver will collect the data labeled ‘C’ and ‘E’ in the same round. After the 

trigger cell containing the round number ‘2’ is received, the receiver switches to the first stripe 

and update its current round number to three. Now the receiver sees the data labeled ‘D’ and the 

trigger cell containing the round number ‘2’. Because the receiver has upgraded its round number 

to two, it is supposed to receive the data of round ‘3’. The trigger cell containing round number 

‘2’ implies that the data labeled ‘D’ is out-of-date and cannot be handed to the up level. 

Otherwise the FIFO delivery cannot be guaranteed. The receiver has to drop the data labeled ‘D’ 

to keep FIFO. 

 

 With the trigger cell and drop of the out-of-order packets, the Trigger Round Robin provides 

the FIFO guarantee and fault tolerance. But the authors found that the TCP performance is poor 

in the experimental results. We know that the out-of-order packets will activate the retransmission 

of TCP packets and lower down TCP’s transfer throughput. That is why the FIFO guarantee is 

important when designing a striping algorithm. In order to provide the FIFO guarantee, the 

Trigger Round Robin drops out-of-order packets. But the drops can also activate the 

retransmission of TCP packets. That is why the performance of TCP is poor in the Trigger Round 

Robin. In the next section, we will describe the TCP fast retransmit and fast recovery algorithms 

briefly and explain the poor performance of the Trigger Round Robin. 
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2.2 TCP Fast Retransmit and Fast Recovery Algorithms 

 In order to explain the poor performance of TCP caused by out-of-order packets, we 

describe the TCP fast retransmit and fast recovery algorithms briefly in this section. Reading [7] 

can help understanding the detail of the TCP protocol. 

 

TCP is required to generate an immediate acknowledgment (a duplicate ACK) when an 

out-of-order segment is received. The purpose of this duplicate ACK is to let the other end know 

that a segment was received out of order, and to tell it what sequence number is expected. 

 

 On the other end, if three or more duplicate ACKs are received, it is a strong indication that 

a segment is lost. TCP then performs a retransmission of the lost segment without waiting for a 

retransmission timer to expire. This is the fast retransmit algorithm. 

 

 Next the congestion avoidance algorithm is performed. Congestion avoidance dictates that 

the TCP’s congestion window is incremented by (1 / congestion window) each time an ACK is 

received. Compared to slow start’s exponential increase, this is an additive increase. Performing 

congestion avoidance, not slow start, is called fast recovery algorithm. 

 

 Because of TCP fast retransmit and fast recovery algorithms, the striping algorithm has to 

guarantee the FIFO delivery to get a good performance of TCP. The Surplus Round Robin cannot 

provide a true FIFO delivery. This is the major problem of the algorithm. Even though the Trigger 

Round Robin can provide a true FIFO delivery, dropping packets to keep FIFO causes TCP to 

generate duplicate ACKs. When the packets are dropped by the Trigger Round Robin, TCP in the 

up level will get the following packets whose sequence numbers are not consecutive. As 

mentioned above, TCP will generate an immediate acknowledgement when receiving an 

out-of-order packet, and it will perform retransmission and congestion avoidance. 
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Trigger the retransmission will cut the bandwidth of normal data into a half. Performing 

congestion avoidance will also slow down the transmission. This explains why the TCP 

performance is poor in the experimental result of the Trigger Round Robin. 

 

 

2.3 The Proposed New Striping Algorithm 

 This section describes our new striping algorithm. This striping algorithm provides the true 

FIFO delivery and doesn’t have the poor performance of TCP. 

 

 

2.3.1 The System Architecture 

 We implement the striping algorithm at the device driver level on the host. That is, the 

striping point is at the device driver level. Figure 2.6 shows the architecture diagram. Figure 2.7 

shows the protocol stacks used inside a striping node. One of the advantages is to obtain greater 

striping point utilization. Another advantage is that the striping algorithm can support lots of 

network protocols. For example, both TCP and UDP can work together with our striping 

algorithm. 

 

 To avoid interference, we configure the striping wireless adaptors so that they use different 

frequency channels. Every IEEE 802.11 wireless adaptor can be configured to use one specific 

channel for transmission. Using different channel let each adaptor work separately and there 

won’t be any interference among them. 
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 The Surplus Round Robin and the Trigger Round Robin both use an extra type of packet, 

which are named “marker packet” and “trigger cell”, respectively. One of the problems is that 
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these extra packets may be lost just like the normal data packets. Once these extra packets are 

introduced in a striping algorithm, this striping algorithm may need to handle the lost of the extra 

packets and make some sacrifices. For example, the Trigger Round Robin will drop some packets 

once a trigger cell is lost. The extra packets are also overhead. 

 

Thus we decide not to introduce any extra packet in our striping algorithm. In stead, we 

embedded a sequence number in each outgoing packet. Below we describe the three major 

mechanisms used in our striping algorithm. 

 

 

2.3.2 Sequence Numbers 

Because data packets are multiplexed over multiple network links, the striping algorithm 

must have some ways to know the original order. The sender embeds a sequence number in each 

outgoing packet. These sequence numbers indicate packets’ delivery sequences. Later when the 

receiver collects packets from the multiple links , it can easily reorder the packets back to their 

original sequence. 

 

 The sequence number is embedded in each packet’s TOS (type of service) field in the IP 

header. The TOS field has eight bits, but only four bits are used now. The other four bits are either 

reserved or obsolete. Thus we can use these four bits to store the sequence number. 
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 Our striping algorithm is thus quite simple compared to other round-robin based algorithms. 

The sender uses a round robin scheme to stripe over links and embeds a sequence number in each 

outgoing packet. Figure 2.8 shows the diagram and pseudo code in the sender side. The receiver 

extracts the sequence number of each packet and hands it to the up level in the FIFO order. Figure 
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2.9 shows the diagram and pseudo code in the receiver side.  

 

 

2.3.3 Reordering Timers 

 When getting a packet from a network link, the receiver will extract the sequence number, 

which may not be successive. This is because its preceding packet may be still on transmission on 

another link. If the receiver gets a non-successive packet, it cannot just hand it to the up level; 

otherwise, the packet will be delivered out of order. Remember that one important issue of 

striping algorithms is to guarantee the FIFO delivery. We thus have to buffer this packet 

temporarily and wait for its preceding packet to come. 

 

The receiver maintains a unique variable, which is the current sequence number. It indicates 

the sequence number of the last packet handed to the up level. The receiver updates the current 

sequence number each time when it hands a packet to the up level. 

 

Once the receiver receives a packet from a link, it first checks the sequence number 

embedded in this packet and compares it to the current sequence number. If the sequence number 

is successive, the receiver can simply hand this packet to the up level and then the receiver 

updates the current sequence number. If the sequence number of the packet is not successive, the 

receiver has to wait for the arrival of the preceding packets. In this case, the receiver will buffer 

this packet in a per-stripe queue and schedules the reordering timer. 

 

 If all preceding packets have arrived before this reordering timer expires, this buffered 

packet can be de-queued and handed to the up level safely. In this case, the striping algorithm still 

guarantees the FIFO delivery. If the timer expires and the preceding packets have not arrived yet, 

it is possible that the preceding packets are lost. Thus when the reordering timer expires, this 

buffered packet is handed to the up level and the current sequence number is also updated. 
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 Because the MAC layer of IEEE 802.11 requires an acknowledgement for each packet, the 

lost packet will be retransmitted. Consider the situation that a reordering timer is scheduled 

because of receiving a non-successive packet. If the reordering timer lasts long enough, the lost 

preceding packets may be retransmitted and arrived before the timer expires. But the longer the 

timer expiration time is, the longer the latency of the transmission. Non-successive packets will 

be queued for a longer time if the timer expiration time is set too large. 

 

 The length of the reordering timer is a variable in our striping algorithm. If it is too long, the 

latency of the transmission will increase. If it is too short, the non-successive packet may be 

handed to the up level too early. 

 

 The length of the reordering timer is important in our striping algorithm. It affects the 

performance of the algorithm. Under different network environments, it also has to be set to 

different values. If the network links are not busy, the reordering timer can be set to a smaller 

value as the transmission or retransmission could be finished shortly. If the network links are 

quite busy, the reordering timer has to be set to a larger value. Non-successive packet thus can be 

delayed long enough to wait for the arrival of its preceding packets. 

 

 Because the value of the reordering timer depends on the network environments, it should be 

adjusted dynamically. If the reordering timer expires and missing packets have not arrived yet, we 

will have to hand buffered packets to the up level. If missing packets arrive later, we will still 

hand them to the up level rather than dropping them. But these packets will become out-of-order 

packets. At this moment, the value of the reordering timer is then increased by one millisecond. 

Since missing packets have not arrived in the period of the timer, we can know that the network 

links are busy now. We thus increase the reordering timer’s timeout value and wait for missing 

packets for a longer time. 

 

We need another policy to decrease the value of the reordering timer. Otherwise, the value of 
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the reordering timer will increase infinitely. If the receiver doesn’t receive any out-of-order 

packet for a period of time, we can decrease the value of the reordering timer. An adjusting timer 

is thus set and its value is set to one second. When the adjusting timer expires, we halve the value 

of the reordering timer. 

 

 We need to carefully consider when to set the adjusting timer. If it is set frequently, the value 

of the reordering timer will also be decreased frequently. This will make the value of the 

reordering timer change too frequently. Instead, the value of the reordering timer should be kept 

at a high value if the adjusting timer can be set properly. Since the network environment may 

have changed to a non-busy state quickly, we should not use a too high value for the reordering 

timer. The adjusting timer thus should be set according to recent network environments.  

 

If an out-of-order packet is received, we start up the adjusting timer. If another out-of-order 

packet is received again before the adjusting timer expires, we reset the adjusting timer. Thus if 

the receiver gets continuous out-of-order packets, the setup time of the adjusting timer will be 

propagated to the reception of the last out-of-order packet. The value of the reordering timer will 

not be decreased during the reception of out-of-order packets. When no out-of-order packet is 

received again, the adjusting timer will not be interrupted and it will continue to run. Since there 

won’t be any out-of-order packets received, we can assume that the value of the reordering timer 

is high enough for the current network environment. We can try to decrease the value of the 

reordering timer via setting the adjusting timer.  

 

Figure 2.10 shows the timing diagram. We can see from the figure that the value of the 

reordering timer is halved when the adjusting timer expires. If lots of out-of-order packets are 

received, the adjusting timer will be set up again. Figure 2.11 shows the pseudo code of these two 

timers. 
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2.3.4. Load Balancing 

 In our striping algorithm, we use the round robin scheme for striping. Every stripe thus will 

share the same load. Consider a situation in which one of the stripes is busy because there are 

other transmissions simultaneously occurring on this stripe. We should route some packets to 

other stripes to balance the load. Otherwise, there will be lots of packets queued in the buffer of 

the busy stripe. For the same reason, in the receiver side, there will be lots of out-of-order packets 

because some packets are still queued in the sender. To balance the load of the stripes, we thus 
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should adjust the striping dynamically based on the busy state of stripes. 

 

The MAC layer of IEEE 802.11 performs carrier sense when transmitting a packet. If there 

is another host transmitting its packets in the same frequency channel, the transmission of the 

packet will be delayed. When there is no transmission on the medium, a back-off timer is 

scheduled. When the timer is expired, the MAC layer will try to transmit again. The operation is 

repeated until the packet is sent. If several retries all failed, the packet will be dropped. Thus if 

there are many hosts transmitting packets simultaneously (the medium is busy), lots of packets 

may not be able to be transferred and thus will be queued in the buffer of adaptors. 

 

 For this reason, we detect the packet queue length in each wireless link to check whether the 

wireless link is busy or not. If the wireless link is busy, a number of packets will be queued in the 

packet queue. 

 

 We use the round robin scheme to choose a link for transmission. If the queue length of a 

wireless link exceeds one-fourth of the maximum queue length, we can assume that the wireless 

link is busy now. We should try to find another wireless link whose queue length doesn’t exceed 

one-fourth of the maximum queue length. If all wireless links are busy, then we still choose the 

original link for transmission. This can dynamically balance the load and route more packets to 

the idle wireless link to eliminate out-of-order packets. 

 

 The one-fourth of the maximum queue length is a threshold used to adjust the link’s 

busy/idle status. Setting the value of the threshold is an interesting issue. If the link is really very 

busy (the service rate on the link is quite low), the value of the threshold should be set to a 

smaller value to get better performance. This is because if the link is quite busy, packets queued 

in its buffer may be queued for a long time. We thus should set the threshold to a smaller value to 

enforce the load balancing operation to happen earlier. With a smaller threshold, we can detect 

the busy status of a link earlier and select another non-busy link for transmission. Doing so will 
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result in fewer packets queued in the buffer of the busy link. In contrast, if the link is not very 

busy (the service rate on the stripe is still high), the value of the threshold could be set to a larger 

value for a higher utilization of the link. 
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Chapter 3 Performance Evaluations 

 

3.1 Simulation Environment 

 We develop our striping algorithm and evaluate the algorithm’s performance on a network 

simulation program, the NCTUns 1.0 network simulator [8], [9], [10]. The NCTUns 1.0 is 

developed in the Network and System Lab of Computer Science and Information Engineering 

Department of National Chiao Tong University in Taiwan. The NCTUns 1.0 uses the network 

subsystem of the kernel of FreeBSD. Thus the simulation of the NCTUns 1.0 can get the 

real-world behaviors of network protocols such as TCP and UDP, and simulation results are more 

accurate than other network simulation programs. The NCTUns 1.0 provides an open architecture 

and allows us to add our developed protocol modules into it. We developed a device-driver level 

module and implement our striping algorithm in the module. 

 

 

3.2 Simulation Results 

 We used some metrics to evaluate the performance of our striping algorithm. These metrics 

are throughput, latency, and PER (Packet Error Rate). 

 

 Figure 3.1 shows the basic simulation scenario. Each node has three wireless adaptors and 

performs striping over these three adaptors. Node 2 will transmit data to Node 1. Node 2, the 

sender, transmits greedy data to node1. Node 1, the receiver, receives data from node 2. 

 

 At first, we assume that the packet transmission is error-free (Bit Error Rate = 0) and there 

are no other nodes around (no congestion). In this clean environment, we evaluate the 

performance of our striping algorithm to show the algorithm’s basic correctness. Then we add the 

factors of packet-error and congestion in the simulation environment to show the flexibility of the 

algorithm. 
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3.2.1 Throughput 

 In order to evaluate the performance of our striping algorithm, we first run a simulation of 

non-striping case for comparison. In this non-striping case, a node has only one wireless adaptor 

for transmission. We assume that there is no packet-error and no congestion. To establish TCP 

connections and send packets we used the stcp/rtcp program, which was available on the Internet. 

One node runs the stcp program to transmit a greedy TCP data to another node. The other node 

runs the rtcp program to receive the data. Figure 3.2 shows throughput reported by the rtcp 

program on the receiving node. As we can see, the average throughput is about 5 Mbps. 

 

 Next we use the scenario described in the Figure 3.1 to evaluate our striping algorithm. 

Again, we assume that there are no packet-error and no congestion. The stcp/rtcp program 

generates the TCP traffic. Figure 3.3 shows the result of throughput. As we can see in the figure, 

throughput is about 15 Mbps. The speed-up of striping is three times compared to non-striping. 

 

 We also implemented the Surplus Round Robin and used the same scenario to see its 

performance. Figure 3.4 shows the result. The result shows that the Surplus Round Robin is not 

as good as our striping algorithm. Maximum throughput is only 11 Mbps. We can also observe 

that sometimes throughput is quite low (even almost 0 Mbps). As we explained in the above, the 

Surplus Round Robin doesn’t provide real FIFO. Thus TCP will slow down the transmission 
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Because of out-of-order packets. 

 

 
 

In addition to the performance of TCP traffic, we also did another simulation to evaluate the 

performance of UDP traffic. The scenario is the same as that for TCP except that we use the ttcp 

program to generate UDP traffic. Figure 3.5 shows the result. The speed-up is also almost three 

times. 
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3.2.1.1 Congestion 

 Now we add the factor of congestion in the simulation environment. Starting with a simple 

case, figure 3.6 shows the scenario. In Figure 3.6, Node 3 is in the transmission range of Node 1 

and Node 2. So is Node 4. Notice that the wireless adaptors of Node 3 and Node 4 are configured 

to use channel 1. One of the striping adaptors of Node 1 and Node 2 are also configured to use 

channel 1. These four wireless adaptors share the same medium. If the transmissions of two pair 

of nodes, (Node1, Node2) and (Node3, Node4), run simultaneously, throughput will be only one 

half of the original throughput. 

 

 Figure 3.7 shows the result of throughput. As we can see, throughput of non-striping 

between node 3 and node 4 is 2.5 Mbps, half of the original throughput, because of medium 

sharing. Throughput of striping between node 1 and node 2 is about 12.5 Mbps. The wireless 

adaptors configured to use channel 1 can only get a throughput of 2.5 Mbps. The others adaptors 

can get full throughput of 5 Mbps since they don’t use channel 1. Thus the accumulated 

throughput is 12.5Mbps (2.5 + 5 + 5). This is the maximal aggregated throughput that can be 
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possibly archived. Here we can see that our striping algorithm can get good performance even 

under the situation of congestion. We use the same scenario for simulation but use the Surplus 

Round Robin. Figure 3.8 shows the result. 

 

 We add more nodes to test our striping algorithm. Figure 3.8 shows the scenario which 

contains 6 nodes. Node 5 and Node 6 are added and their wireless adaptors are configured to use 

channel 5. Figure 3.9 shows results of throughput. In this scenario, two striping adaptors in both 

Node 1 and Node 2 share the medium with others. Thus accumulated throughput is about 10Mbps 

(2.5 + 2.5 + 5).  

 

 Figure 3.10 shows another scenario which contains 8 nodes. Node 7 and Node 8 are added 

and their wireless adaptors are configured to use channel 9. Figure 3.11 shows result of 

throughput. All striping adaptors in both Node 1 and Node 2 share the medium with others. Thus 

accumulated throughput is about 7.5Mbps (2.5 + 2.5 + 2.5). 

 

 To see the performance of the Surplus Round Robin, we used the scenario in Figure 3.6 to 

run the simulation. Figure 3.12 shows the result. We can observe that performance is worse 

because congestion will cause more out-of-order packets. 

 

These results show that our string algorithm can get a maximum aggregated throughput even 

under the situation of congestion. 
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3.2.1.2 Packet Error 

 In the above scenario, we assume that there is no packet error. The packet transmission is 

thus error-free. In the real world, this is impractical. Currently most of IEEE 802.11 wireless 

network products declare that there is a non-zero BER (bit error rate) which is less that 0.00001. 

Next we use a variety of BER values to run the simulations. 

 

 Again, in order to evaluate our striping algorithm, we run some simulations of non-striping 

in which BER is not zero. Figure 3.13 shows the results. We can see from figure 3.13 that 

throughput is a little lower when BER is not zero. Throughput is 4.1Mpbs, 4.5Mpbs, and 

4.9Mbps when BER is 0.00001, 0.000005, and 0.000001 respectively. 
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Again we use the scenario in Figure 3.1 to run the striping simulations. But this time BER is 

set to a non-zero value. Figure 3.14 shows the results. Throughput is 12Mbps, 13.5Mbps, and 

14.7Mpbs when BER is 0.00001, 0.000005, and 0.000001 respectively. They are the maximum 

aggregated throughput that can be achieved. The speed-up is also about three times. Figure 3.15 

shows the results of the Surplus Round Robin. Again, we can observe that performance is worse 

because of packet errors. 

 

 

 



 37

 

 

 In the each of above simulation cases, BER of all striping wireless adaptors of Node 1 and 

Node 2 is set to the same value. For example, we set BER of all adaptors to 0.00001 and get 

throughput of 12Mpbs. Figure 3.16 shows another scenario in which BER of each adaptor is 

different. Figure 3.17 shows the result. Throughput is about 13.4Mpbs. It is the accumulated 

result of three adaptors (4 + 4.5 + 4.9). 

 

 From these simulations, we can see that our striping algorithm can work well even under the 

situation of packet-error. 

 

 

3.2.1.4 Other Issues 

 Mobility and the hidden terminal problem are common issues discussed in wireless network. 

We did two simulations about these to see the performance of our striping algorithm. 
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 Figure 3.18 shows a scenario which has the hidden terminal problem. Node 1 is in the 

transmission ranges of both Node 2 and Node 3. But Node 2 is not in the transmission range of 

Node 3. Neither is Node3. Thus there is a hidden terminal problem here. 

 

 At first we didn’t use striping. Each of four nodes has only one wireless interfaces. Figure 

3.19 shows the result. As we can see from the figure, transmission between Node 1 and Node 2 

only gets throughput of 0.3 Mbps. 
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 Then we apply striping on both Node 1 and Node 2. Figure 3.20 shows the result of using 

the Surplus Round Robin. Figure 3.21 shows the result of using our striping algorithm. We can 

see that we can get a maximum aggregated throughput (0.3 Mbps + 5 Mbps + 5 Mbps = 10.3 

Mbps) by using our striping algorithm. 
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 Figure 3.22 shows the next simulation scenario. Both Node 1 and Node 2 move with a speed 

of 0.7 m/s. Node 2 will transmit data to Node 1. 

 

Again, we didn’t use striping at first. Figure 3.23 shows the result. Throughput is getting 

down as the distance between two nodes increases. When the distance exceeds the transmission 

range, the throughput becomes 0 Mbps. 

 

 

 



 41

 

 

 

 

 Figure 3.24 shows the result of using the Surplus Round Robin. Figure 3.25 shows the result 

of using our striping algorithm. Throughput is also getting down as the distance increases. But 

our striping algorithm performs better than the Surplus Round Robin. A maximum aggregated 
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throughput, about 3 times of original throughput, still can be achieved. 

 

 

 

 

3.2.1.3 Discussions 

 We can see that our striping algorithm can get the maximum aggregated throughput that can 

be achieved. The algorithm can also work well under the situation of congestion, packet-error, 

and mobility. Under these situations, skew must happen more frequently. Thus the reordering 

timer’s value must be set to a larger value to solve the problem of skew. Because the reordering 

timer is adjusted dynamically, the algorithm can get good performance results under situations of 

any degree of congestion or packet-error. 

 

 We can also see that the Surplus Round Robin doesn’t perform well. It cannot get the 

maximum aggregated throughput. Besides, because it doesn’t provide real FIFO, its TCP 

performance is bad and unstable. 
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3.2.2 Scalability Issue 

 The next simulation we did is to expand the number of striping wireless adaptors. In the 

above simulations, we use only three wireless adaptors for striping. We still use the basic scenario 

described in Figure 3.1 and use the stcp/rtcp program to generate traffic. We expand the adaptors’ 

number from three to ten. On each host, all adaptors are configured to use different frequency 

channels. For example, when we use ten wireless adaptors for striping, we configure them to use 

frequency channel 1 to 10, respectively. In the real world, using successive frequency channels 

may cause some interference. However in our simulation, we assume that there is no such 

interference. Figure 3.26 shows the result. We can see that the maximum aggregated throughput 

can be obtained while the number of striping adaptors is increased. This shows the scalability of 

our striping algorithm. 

 

 

3.2.3 Latency 
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 Latency is also an important metric to evaluate our striping algorithm. Since we set a 

reordering timer to reorder out-of-order packets, latency of a transmission will thus increase. We 

used the same simulation scenarios again to study latency issues. Here we didn’t use the stcp/rtcp 

programs to generate traffics. Instead, we used the stg/rtg programs, which are contained in the 

NCTUns 1.0 package, to generate UDP traffics. The rtg program will report latency of 

transmissions. 

 

Latency (sec) 
Number of stripes 

min max avg Stdev 

3 stripes 0.001025 0.096252 0.083308 0.002576 

4 stripes 0.001025 0.203725 0.088244 0.011838 

5 stripes 0.001025 0.442918 0.144322 0.075733 

6 stripes 0.001025 0.784718 0.244777 0.162877 

7 stripes 0.001025 0.635399 0.234509 0.16618 

8 stripes 0.001025 0.482005 0.214224 0.108651 

9 stripes 0.001025 1.075736 0.322252 0.194462 

10 stripes 0.001025 0.947715 0.347297 0.207922 

Table 3.1 

 

 Table 3.1 shows the results of simulation with different numbers of stripes. In the table, the 

first column lists the number of used stripes. The other columns list the minimum latency, the 

maximum latency, the average latency, and the standard deviation, respectively. As we can see, 

latency increases as we expand the number of stripes. This is because the possibility of receiving 

out-of-order packets increases while more stripes are used. When more stripes are used, packets 

are multiplexed over more stripes. Packets are thus more likely to be received out of order. This 

will cause the reordering timer to be increased. This in turn will cause latency to increase. 
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Latency (sec) 
Simulation Scenario 

min max Avg stdev 

Striping (no congestion, 
scenario in Figure 3.1) 

0.001025 0.096252 0.083308 0.002549 

Striping (4 nodes, 
scenario in Figure 3.5) 

0.001025 0.513956 0.249128 0.089886 

Striping (6 nodes, 
scenario in Figure 3.7) 

0.001025 1.063782 0.454364 0.207602 

Striping (8 nodes, 
scenario in Figure 3.9) 

0.001025 1.012174 0.358644 0.178845 

Table 3.2 

 

Table 3.2 shows the results of simulations with congestion. The first column lists simulation 

scenarios. The other columns list different kinds of latency. We can see that latency increases 

when the degree of congestion increases. The value of the reordering timer will certainly be 

increased because of congestion, which will in turn increase latency. Besides, when more 

adaptors are involved in congestion, it is more possible that packets are sent out of order because 

latency of each congestion stripe differs from each other. 

 

Latency (sec) 
BER 

min Max avg stdev 

0.0 0.001025 0.096252 0.083308 0.002549 

0.000001 0.001025 0.133014 0.086926 0.004745 

0.000005 0.001025 0.256145 0.110644 0.026783 

0.00001 0.001025 0.669147 0.177871 0.102995 

Table 3.3 

 

Table 3.3 shows the results of scenario with packet-error. We use three stripes and set the 

BER to different non-zero values. Latency increases when the value of BER increases. This is 

also because the value of the reordering timer increases. Higher value of BER causes more 

packets to be dropped. Thus the reordering timer is increased to wait for retransmission. 
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 From these results, we know that we make a little sacrifice in latency to obtain higher 

aggregated bandwidth. The reordering timer can help keeping the FIFO delivery. But it also 

brings us longer transmission delays. 

 

 

3.2.4 Reordering Timer Issue 

 The reordering timer plays a very important role in our striping algorithm. In order to 

observe its value, we did the following simulation. Figure 3.27 shows the scenario. During the 

first 50 seconds, there are three pairs of stcp/rtcp programs running simultaneously. During the 

second 50 seconds, there are only two pairs. Then there is only one pair running at last. The 

degree of congestion decreases as time proceeds. Figure 3.28 shows the value of the reordering 

timer obtained from Node 1. 

 

 

 

 We can observe that the value of the reordering timer increases quickly at beginning. Since 
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there are three pairs of stcp/rtcp programs running at beginning, Node 1 will receive out-of-order 

packets because of congestion and increase the value of the reordering timer. Later when the 

adjusting timer is expired, the value of the reordering timer is halved. If there is still congestion, 

out-of-order packets will be received and the reordering timer will be increased again. As time 

proceeds, the degree of congestion will decrease, and Node 1 will not receive too many 

out-of-order packets. Then the value of the reordering timer will hold a stable value.  

 

 The result shows that the reordering timer is adjusted dynamically. The striping algorithm 

adjusts it according to the current environment. If a network is busy, the value of the reordering 

timer will be set to a higher value. If a network is idle, it will be set to a lower value. If a network 

is stable, it will be set to a stable value. 

 

 

 

 

3.3 Result Discussions 
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 We did some simulations to evaluate performance of our striping algorithm. We can see that 

our striping algorithm can obtain the maximum aggregated throughput from simulation results. 

We also add the factors of packet-error and congestion in simulations. Simulation results show 

the flexibility of our striping algorithm. Even under the environment with lots of packet dropping 

(caused by congestion or packet-error), our striping algorithm can still obtain the maximum 

throughput. 

 

 To show the scalability of our striping algorithm, we expanded the number of striping 

wireless adaptors and did a series of simulations. The results show that our algorithm can still 

obtain the maximum aggregated throughput. Higher bandwidth can be obtained simply by 

expanding the number of striping wireless adaptors. However, latency will also increase when the 

number of adaptors increased. 

 

 We also did simulations to observe the latency. Since we use the reordering timer to delay 

the delivery of out-of-order packets, the latency will thus be a little longer. Besides, the bad 

network environment such as congestion or packet-error will cause latency to increase as well. 

 

 At last we did a simulation to observe the value of the reordering timer’s value. The value of 

the reordering timer changed dynamically. Based on the current network environment, it will be 

set to a proper value. In addition, if the current network environment is stable, it will be held in a 

stable state. 
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Chapter 4 Concluding Remarks 

 A striping algorithm based on the round robin scheme is proposed to aggregate multiple 

IEEE 802.11 wireless adaptors to gain higher bandwidth. This striping algorithm uses sequence 

numbers embedded in the packets to keep the FIFO delivery. A reordering-timer mechanism in 

the algorithm is used to queue out-of-order packets and reorder them. This can eliminate the 

triggering of TCP fast retransmit and thus avoid slowing down a TCP connection’s transfer 

progress. A mechanism of load balancing is used to route traffic to other stripes whose loads are 

lower. 

 

 We used the network simulation program, NCTUns 1.0, to evaluate the performance of our 

striping algorithm. NCTUns 1.0 uses the network subsystem of real-world FreeBSD and can thus 

generate more accurate simulation results. We conducted several experiments to evaluate the 

performance. As shown in the results, the aggregate throughput is the summation of throughput of 

individual adaptors. In addition, the striping algorithm can also perform well under the situation 

of packet-error and congestion. 

 

 By aggregating multiple wireless adaptors, users can obtain higher bandwidth to run 

network applications. Thus network applications that originally run on fixed networks and 

demand high bandwidth can also be run on mobile stations without the limitation of bandwidth. 

This is a low-cost and scalable way for achieving high wireless bandwidth. 
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研發成果推廣單位（如技術移轉中心）。 

※ 2.本項研發成果若尚未申請專利，請勿揭露可申請專利之主要內容。 

※ 3.本表若不敷使用，請自行影印使用。 

附件二 


