Wi relTessaks

NSC92-2213-E-009-063-
92 08 01 93 07 31

93 11 3

(I I R

Wi reless Trunks

V1 m
922210 0-0 6-3
9 2 8 1
(

O

93

10

N

31

(Trunk)

(network
infrastructure)

The bandwidth of two connected hosts directly infects the performance. The bandwidth
limits the optimization of the connection. Even though the increased bandwidth can be gotten by
the new devel oped technol ogy, the developing speed cannot always follow the growing
bandwidth-requirement of applications. Now the wireless network is getting more and more
popular. The shortage of the bandwidth in the wireless work is also an obvious problem.

With currently available interface-cards, we can aggregate them to get the accumulated
bandwidth. In the applications' view, they don’t know about what we do. They only feel that they
have more bandwidth for use. This solves the problem of the bandwidth-shortage.

Besides, it a'so motivates technological improvement in commercially available service rate.
A set up in anew technology takes place when the bandwidth is not sufficient. But we need areal
application to proveit. It is often difficult to demonstrate that application can take advantage of a
new service rate before it is actually available. Use above method can break this cycle by
permitting the application to obtain the bandwidth.

Keywords: wireless area network, bandwidth, aggregate multiple interfaces

Chapter 1 Introduction

1.1 Striping over the network subsystem
1.1.1 Introduction of striping

Within the network subsystem, optimizing the single data path between two connected hosts
is the most straightforward way to obtain higher performance. This kind of optimization includes
minimizing copying and utilizing 1/0 resources. Sometimes further optimizations are impossible

because of the limitation of the available bandwidth between the two hosts.

Generdly striping within the network subsystem can solve the problem described above.
According to the definition defined in [1], striping is an operation that aggregates physical
resources to obtain higher performance. Striping was originally used within the disk subsystem
and now is also used in the network subsystem. Within the network subsystem, we split the traffic
over multiple network links to obtain a higher aggregated bandwidth. This operation is
transparent to high-level systems except that the increased bandwidth is realized. Figure 1.1
shows an abstract striping system. A striping point is the position where the traffic is split or
merged. It also performs the multiplexing and de-multiplexing operations. A stripe is an instance

of the physical resources which is connected to one of the outputs of a striping point.

We use TCP/IP protocol stack to explain the position of the striping point. Figure 1.2 is
shows that the striping can be installed in different network layers. As shown in the figure, if
striping is installed at the application layer, the data is transmitted over two TCP connections. If
striping is installed at the TCP layer, the TCP packets are split over two |P network paths and so
on. Striping at a lower layer can obtain higher striping point utilization. This is because the
striping algorithm can see more bandwidth. However, it also needs to do more jobs such as flow

control and reordering.

oeee

striping point striping point ".

NEEeE

@R

. st
Figne1.1 e
applicancn applicancn application appliaten
TP TP <P TP P
F F F F i) F
Mo striping Striping in Application Striping in TCP Etriping in IP
Figuee 1.2

1.1.2 Advantages of striping

Striping can be applied to a variety situation within the network subsystem. First, when the
maximum bandwidth supported by a network link doesn’'t satisfy the required bandwidth of the
applications, there exists a bandwidth mismatch. The supported maximum bandwidth is driven by
the new technique and the standard. But the development of the new technique cannot always
follow the need of the applications. Sometimes an application needs more bandwidth than what

the current technique can provide. When this mismatch occurs, striping can be applied to obtain

higher bandwidth before the new technique is developed. Second, striping can drive the setup of
new network technologies. A setup of the new network technologies takes place when the
technologies are mature and there exists a requirement. We need a running application to
demonstrate the need of the new technologies. So we can convince the service provider to adopt
the new technologies for higher service rate and that will generate income for the service provider.
But it is difficult to run an application which can take advantage of a new service rate before it is
actually available. Since the new network technologies have not been developed, there is nothing
to run the application on. Striping can break this cycle by running the application over the
aggregated existing network links. Then we can demonstrate the need of the higher service rate to

run the application.

Besides the advantages of obtaining higher bandwidth listed above, there are aso many
other advantages from striping. First, the cost is low. Striping provides the performance which is
comparable to high speed networks. But striping within the network subsystem only needs
several low bandwidth adaptors. These low bandwidth adaptors are usually popular and cheaper
than a single high speed adaptors. Second, striping provides the security when transmitting data.
Striping splits the traffic over multiple network links. Eavesdrop becomes difficult because datais
transmitting on multiple links. Even though someone can collect all data on the multiple links, he
also needs to understand the striping algorithm to get the original transmitting data. Third,
striping provides the redundancy within the network. Striping utilizes multiple network links at
the same time. If one of the links failed, the striping can be designed to detect the failure and
route al traffic to other remaining links. Fourth, striping is scalable. If more bandwidth is needed,
more network adaptors are simply installed. Thus striping provides the flexibility regarding the

addition of the bandwidth.

1.1.3 Problems of Striping

There are severa problems of using striping within the network subsystem. First, striping
3

must keep the packetsin the FIFO (first in, first out) order. The receiver collects packets from the
multiple network links. Because striping is transparent to the up level, striping must hand the
packets to the up level in their origina delivery order, in the FIFO order. The first packet sent by
the sender must be the first one handed to the up level by the receiver. Striping needs to know the

original order of the packets and delivery them in the FIFO order.

The second problem is to assemble the packets. To split the traffic over the multiple network
links, striping may need to split the large packets into small segments. Then these packets are
able to be transferred on the separate links. This causes the problem that the receiver has to
assemble these fragmented packets. The receiver has to wait for al segments of the packet and

assembles them correctly before handing them to the up level.

The final problem is skew. Skew happens when the network links have different delays.
Since the packets are transferred over multiple links. The receiver may get out-of-order packets
because of the different link speed. As shown in Figure 1.3. The packets arrive in a different order
which they are sent. One of the possible solutions is to keep the packets in the buffer for a while

in the receiver. After al packetsin the buffer are all in order, striping hands them to the up level.

et of crder packt

Eglhl_f:ﬂgm (E_\j' m %mliﬂﬂ@ @ @ @
t
o & |
o —— C——
ATy oy (70
el A e S
Sender Receiver

Figue 1.3

A striping agorithm is implemented in the striping point. One of its main jobs is to handle

these possible problems listed above, such as reordering packets, assembling packets. In the
sender side, the striping algorithm decides how to split the traffic and transfer the packets over
the multiple network links. In the receiver side, the striping agorithm is in charge of collecting

the packets from the separate links and handing them to the up level in the correct order.

1.2 IEEE802.11 Wireless Networ k
In the recent years, the market for IEEE 802.11 wireless network has grown tremendously.
Wireless technology reaches virtually every location in the world. Below we present a brief

description of the IEEE 802.11.

The IEEE 802.11 standard [2] specifies both the physical (PHY) and medium access control
(MAC) layers of the network. In IEEE 802.11, the PHY layer, which actualy handles the
transmission of data between nodes, uses the 2.4 GHz frequency band. The band is an unlicensed

band for industrial, scientific, and medical (1ISM) applications.

The MAC layer isaset of protocols which isresponsible for controlling the medium accesses.
The IEEE 802.11 standard specifies a carrier sense multiple access with collison avoidance
(CSMA/CA) protacal. In this protocol, when a node has a packet to be transmitted, it first listens
to ensure no other node is transmitting packets. If the medium is idle (not transmission), it can
transmit the packet. Otherwise, it waits for the end of the transmission. After the transmission is
done, it chooses a random "back-off time". After the time expired, the node is then allowed to
transmit the packet. Since two nodes may choose the same back-off time at the same time,
collisions may still happen. Besides, the packet may be corrupted on the transmission medium.
Thus an acknowledgement is required for each packet in the MAC layer to ensure that the packet

isreceived correctly.

1.3 Motivation

With the growth of the IEEE 802.11 wireless network, more communication bandwidth is
needed to run network applications. Wireless mediums have lower performances than the wired
mediums. The most popular product in the market now has only a bandwidth of 11Mbps (IEEE
802.11b). This is a bit small compared to the wired LAN. Although new standards are being
developed to obtain higher bandwidth, the shortage of bandwidth is still a problem before the new

technology gets popular.

We can use striping described in the last section to aggregate multiple IEEE 802.11 wireless
adaptors to form a single trunk. The host uses this single trunk for communication. Because
striping is transparent to the up level, the applications run on the host can obtain the aggregated

bandwidth easily without any modification.

There are also other advantages for wireless communications. As we know, distance between
two mobile stations affects communication bandwidth. The longer distance is, the less bandwidth
we get. By striping, we can overcome this problem. Two hosts can communicate with each other
in along distance. At the same time, they still can obtain required high bandwidth via striping.
We can archive both long distance transmissions and high-bandwidth requirement. Besides fault
tolerance is also provided. A wireless adaptor may not work in a poor environment, such as
quality of the using channel is bad or the station is moving rapidly. Because multiple adaptors are
used for transmission, failures of partial adaptors only reduce the bandwidth. The communication

can still work by using other adaptors.

There are aready some existing striping algorithms. These algorithms are originaly
developed either for general purposes or for other network environments. They either have
some problems or are not suitable for use in IEEE 802.11 wireless network. In this report, we will
first discuss these striping agorithms. Then we will propose a new striping algorithm designed

for IEEE 802.11 wireless network.

Chapter 2 Striping Algorithms

2.1 Existing Striping Algorithms

There are many existing striping algorithms. Several striping algorithms, such as[3] and [4],
have been proposed for striping traffic over different wireless mediums. Because our goal is to
aggregate multiple |IEEE 802.11 wireless adaptors, we are only interested in algorithms which are

suitable for striping traffic over multiple links of the same media.

In the following sections, we present two existing striping algorithms. Both the algorithms
use a basic round-robin method to switch between the stripes for transmission. The sender
transfers the data on the first stripe and switches to the next stripe for transmission. The operation
is repeated and the switch rolls back to the first stripe after the transmission is done on the last

stripe. After switching from the first stripe to the last stripe, the operation completes a round.

These algorithms are not very suitable for use in |EEE 802.11 wireless network. But they are
still worth of discussing. Thus, we will discuss the problems of these algorithms. Then we will

propose our new algorithm and describe its design in detail.

2.1.1 Surplus Round Robin

Hari Adiseshu [5] proposed a striping algorithm named Surplus Round Robin (SRR). The
Surplus Round Robin is designed for general purpose. Most of the research papers refer to [5].
Three key ideas of the Surplus Round Robin algorithm are load sharing, logic reception, and
marker packets. In the sender side, the SRR uses a load sharing method to stripe over multiple
links. Logic reception contains two parts. The receiver buffers the packets and performs the

inversed algorithm to predict which stripe to receive from. The Surplus Round Robin uses the

marker packets to perform synchronization recovery at the receiver. Below we describe the

design of the Surplus Round Robin in detail.

The load sharing means that each stripe shares the traffic load equally. The Surplus Round
Robin keeps a counter for each stripe. The counter presents how many bytes can be sent on the
stripe. Whenever a packet is sent from a stripe, the size of the packets is subtracted from the
stripe’s counter. When this counter becomes negative, the transmission switches to the next stripe.
When the stripe again receives its turn to send the packets, a fresh quantum value is added to the

counter and the transmission continues on the stripe. Figure 2.1 illustrates the operation.

Round 2 Eound 1

Start | End Start
Conmter = 500 |Connter =0 Connter =[500

D A
500 b:ms\ Seing || g 1 p U c
- Point W

: e B
0 bytes 300 bytes B L &

Comnter =500 Counter =0 Comnter = 500

Figue 2.1

The receiver buffers the packets for each stripe and simulates the striping algorithm in the
sender. The receiver performs the reverse of the striping algorithm performed in the sender to
predict which stripe to receive from. It keeps a counter for each stripe. Whenever a packet is
received from the stripe, the size of the packet is subtracted from the counter. When the counter
becomes negative, the reception switches to the next stripe. By inversing the striping algorithm in
the sender, the receiver can get the packets in their original order. Figure 2.2 illustrates the

operation.

Bound 2 Round 1

Start | End Start
Counter = 500 (Counter =0 Counter = {500

E —D_r:W
g\
Lg_ﬁ_ Striging 500 bytes

Peint

C r— B

A0 byes 300 bates
Connter =500 Counter =0 Conmter = 500

Figue 2.2

If the normal data packets are lost on the stripes, the reception of the packets will become
out-of-order. This is one of the problems needed to be solved when using striping. The order of
the packets must be in a FIFO (first in, first out) order. Marker packets are used to solve this
problem. In the Surplus Round Robin, the sender will periodically sends a special packet named
marker packet on each stripe. This marker packet is different from the normal data packets. The
marker packet contains the information of the round number. When the receiver receives this
packet, the receiver can synchronize its current round number with the sender side. With these
marker packets, the receiver can recover this out-of-order problem. Figure 2.3 shows this scenario.
In Figure 2.3 (@), the packet labeled ‘A’ are lost. Then we can see in Figure 2.3 (b) that the
reception in the receiver is out of order. If the marker packet is sent, as shown in Figure 2.3 (),

the lost of packet can be detected viathe round number in the marker packet.

ﬁgjum

L FIL EJLDJ[CI[B[Al suping -

Pont [~ [F||[D]|| B

() In sender side
e | LFJ [D] [E] [B][c]
LF| [o] |] E|> Point
Chat-of-Oeder! |
(b} In recetver side

marker packet with round number, cansing the
| | | | | merEiver o skip this stripe in the round
E C Mlr=1

— [(& (8] [e] (3
EI >P0mt

(€} In recativer side wih marker packets

The Surplus Round Robin can only guarantee FIFO when no packet is lost. As we
mentioned above, striping should be transparent to the up level. The guarantee of FIFO is avery
important issue. Even though the Surplus Round Robin can perform the recovery via the marker
packets, the synchronization is re-established after the marker packets are received. Before the
marker packets are recelved, some out-of-order data packets are already handed to the up level.

The reestablishment of synchronization istoo late for these out-of-order packets.

If we hope that the synchronization can be re-established as soon as possible, the marker
packets must be sent frequently. These frequently sent marker packets are thus an overhead. The

normal data packets have to share the bandwidth with these marker packets.

The Surplus Round Robin relies on the marker packets to re-establish synchronization when
the data packets are lost. But what if the marker packet itself islost? The marker packets have the
same opportunity as the normal data packets to be lost in the transmission. Once a marker packet

islost, the out of order cannot be detected until the next marker packet is received.

10

The Surplus Round Robin also has another problem. The receiver simulates the sending
algorithm used in the sender side. The receiver will expect to get the packets from the current
receiving stripe. The receiver will not switch to the next stripe until the counter of the stripe is
negative. If the link of that stripe is broken, the receiving operation will block forever. There will
be no packet arrival on the stripe sine the link of the stripe is broken. Thus the receiver cannot

switch to other stripes to get packets anymore.

Now we conclude the discussion of this striping algorithm. The Surplus Round Robin only
provides a small degree of FIFO guarantee. It will encounter problems when transferring TCP
traffic. We will explain the detail in section 2.2. It does not provide fault tolerance of the link
failure either. Thus we know that the Surplus Round Robin is not suitable for our goal. In the next

section, we will present another algorithm which enhances the Surplus Round Robin.

2.1.2 Trigger Round Robin

Jacob [6] proposed a new striping algorithm named Trigger Round Robin in 1998. He
studied some existing striping algorithms, including the Surplus Round Robin, and found the
common problem of them- no FIFO guarantee. He proposed a new striping algorithm and
declared that the Trigger Round Robin can guarantee FIFO delivery of packets. Two key ideas of
the Trigger Round Robin are to use the control packet carrying the striping information and to

drop the out-of-order packets to guarantee FIFO. Below we describeit in detail.

Beside the normal data, the Trigger Round Robin sends the extra trigger cells. The trigger
cell indicates the switch of the transmission on the stripe. In the sender side, when the
transmission switches to the next stripe, atrigger cell is sent following the normal data packets. In
the receiver side, all data packets are buffered in the per-stripe’s queue first. When atrigger cell is
received on one stripe, the receiver hands the data in this stripe’s buffer to the up level. The

switching operation is similar to the one in the Surplus Round Robin. The difference isthat in the
11

Trigger Round Robin the switching operation of transmission is dynamically controlled by the
sender via the trigger cells, not statically controlled by the per-stripe’s counter. Figure 2.4 shows

the operation of the Trigger Round Robin.

The trigger cell contains around number that is managed by the sender. Just like the purpose
of the round number embedded in the marker packet in the Surplus Round Robin, the receiver
can get the current round of the sender when receiving the trigger cell. With the round number,

the receiver can easily order the receiving data.

Trigger Cell
Reund 2 Reound 1

OEJO FI[] S EEEE
OE| OrF

Eeceiver

Figue 2.4

If the normal dataislost on the transmission, the algorithm can also work well. For example,
in Figure 2.4 if the normal data labeled ‘B’ is lost, the receiver will collect the other data in the
order- ‘A’, ‘C’, ‘'D’, ‘E’. The receiver even won't notice the lost. All data is still kept in FIFO.
Here we can see that the Trigger Round Robin provides a higher degree of FIFO than the Surplus

Round Robin.

We ever mentioned the problem of marker packet lost in the section discussing the Surplus
Round Robin. The trigger cell itself may also be lost on the transmission. In the Surplus Round
Robin, the lost of the marker packet causes the delay of the synchronization reestablishment.

What happened in the Trigger Round Robin? We use Figure 2.5 to describe it. Because a trigger

12

cell is lost, the receiver will collect the data labeled ‘C’ and ‘E’ in the same round. After the
trigger cell containing the round number ‘2’ is received, the receiver switches to the first stripe
and update its current round number to three. Now the receiver sees the data labeled ‘D’ and the
trigger cell containing the round number ‘2. Because the receiver has upgraded its round number
to two, it is supposed to receive the data of round *3’. The trigger cell containing round number
‘2" implies that the data labeled ‘D’ is out-of-date and cannot be handed to the up level.
Otherwise the FIFO delivery cannot be guaranteed. The receiver has to drop the data labeled ‘D’

to keep FIFO.

With the trigger cell and drop of the out-of-order packets, the Trigger Round Robin provides
the FIFO guarantee and fault tolerance. But the authors found that the TCP performance is poor
in the experimental results. We know that the out-of-order packets will activate the retransmission
of TCP packets and lower down TCP's transfer throughput. That is why the FIFO guarantee is
important when designing a striping algorithm. In order to provide the FIFO guarantee, the
Trigger Round Robin drops out-of-order packets. But the drops can aso activate the
retransmission of TCP packets. That is why the performance of TCP is poor in the Trigger Round
Robin. In the next section, we will describe the TCP fast retransmit and fast recovery algorithms

briefly and explain the poor performance of the Trigger Round Robin.

Eound 2 Eound 1

2 LIO] HIEELEN
OE| We|

lost

Figue 2.5

13

2.2 TCP Fast Retransmit and Fast Recovery Algorithms
In order to explain the poor performance of TCP caused by out-of-order packets, we
describe the TCP fast retransmit and fast recovery algorithms briefly in this section. Reading [7]

can help understanding the detail of the TCP protocol.

TCP is required to generate an immediate acknowledgment (a duplicate ACK) when an
out-of-order segment is received. The purpose of this duplicate ACK isto let the other end know

that a segment was received out of order, and to tell it what sequence number is expected.

On the other end, if three or more duplicate ACKs are received, it is a strong indication that
a segment is lost. TCP then performs a retransmission of the lost segment without waiting for a

retransmission timer to expire. Thisisthe fast retransmit algorithm.

Next the congestion avoidance algorithm is performed. Congestion avoidance dictates that
the TCP's congestion window is incremented by (1 / congestion window) each time an ACK is
received. Compared to slow start’s exponential increase, this is an additive increase. Performing

congestion avoidance, not slow start, is called fast recovery algorithm.

Because of TCP fast retransmit and fast recovery algorithms, the striping algorithm has to
guarantee the FIFO delivery to get a good performance of TCP. The Surplus Round Robin cannot
provide atrue FIFO delivery. Thisisthe major problem of the algorithm. Even though the Trigger
Round Robin can provide a true FIFO delivery, dropping packets to keep FIFO causes TCP to
generate duplicate ACKs. When the packets are dropped by the Trigger Round Robin, TCP in the
up level will get the following packets whose sequence numbers are not consecutive. As
mentioned above, TCP will generate an immediate acknowledgement when receiving an

out-of-order packet, and it will perform retransmission and congestion avoidance.

14

Trigger the retransmission will cut the bandwidth of normal data into a half. Performing
congestion avoidance will also slow down the transmission. This explains why the TCP

performance is poor in the experimental result of the Trigger Round Robin.

2.3 The Proposed New Striping Algorithm
This section describes our new striping algorithm. This striping algorithm provides the true

FIFO delivery and doesn’t have the poor performance of TCP.

2.3.1 The System Architecture

We implement the striping algorithm at the device driver level on the host. That is, the
striping point is at the device driver level. Figure 2.6 shows the architecture diagram. Figure 2.7
shows the protocol stacks used inside a striping node. One of the advantages is to obtain greater
striping point utilization. Another advantage is that the striping algorithm can support lots of
network protocols. For example, both TCP and UDP can work together with our striping

algorithm.

To avoid interference, we configure the striping wireless adaptors so that they use different
frequency channels. Every |EEE 802.11 wireless adaptor can be configured to use one specific
channel for transmission. Using different channel let each adaptor work separately and there

won’t be any interference among them.

15

TCP

[F

Device Driver

Striping Algorithm

Sequence Numbers

TCP

[P

Device Driver

Striping Algorithm

Sequence Numbers

Eeordering | Load Eeordering | Load
Timer Ealancing Timer Ealancing
Stripes
a
[]
Figure 2.6
|
GO E0D GoD
1 1 |
ARP ARFP ARFP
1) 1 1 |
FIFQO FIFO FIFO
¥ | |
MHode HHode MHode
1 1 |
MACE0211 MACE0211 MACE0211
¥ 1 |
YT G FDUME T ED UMD WTCFOUNE
| | 1
Wphy wphy Wphy
| T r
Figure 2.7 ‘\‘k ‘\‘k ‘\“P“

The Surplus Round Robin and the Trigger Round Robin both use an extra type of packet,

which are named “marker packet” and “trigger cell”, respectively. One of the problems is that

16

these extra packets may be lost just like the normal data packets. Once these extra packets are
introduced in a striping algorithm, this striping algorithm may need to handle the lost of the extra
packets and make some sacrifices. For example, the Trigger Round Robin will drop some packets

once atrigger cell islost. The extra packets are also overhead.

Thus we decide not to introduce any extra packet in our striping algorithm. In stead, we
embedded a sequence number in each outgoing packet. Below we describe the three major

mechanisms used in our striping algorithm.

2.3.2 Sequence Numbers

Because data packets are multiplexed over multiple network links, the striping algorithm
must have some ways to know the original order. The sender embeds a sequence number in each
outgoing packet. These sequence numbers indicate packets delivery sequences. Later when the
receiver collects packets from the multiple links , it can easily reorder the packets back to their

original sequence.

The sequence number is embedded in each packet's TOS (type of service) field in the IP

header. The TOS field has eight bits, but only four bits are used now. The other four bits are either

reserved or obsolete. Thus we can use these four bits to store the sequence number.

17

T[|:P Sender

[P

packet 1
Device Driver =

/__,,,_.-—T-—-._H,\ : .
CO=enG- D ik i

sendo /
{

N use a round robin scheme to choose a stripe
tystripe = (tzstripe + 1) % stripescnt:

i embed the sequence number in the packet
packet-sheader = sn;

i transfer the packet via the choosed stripe
do_send(tzstripe);

}
Figure 2.8
Receiver T[|:P
packet] - IP
@et 2 ; Devwice Driver
stripes ' Stripi ng S
— o Algorithm et et
intr() = r{ecv(pkt)
{

/f device interrupt handler / extract the sequence number

- . sn = get_pkt_sn(pkt);
?jévmgﬁg?pktﬂ, if (sn ==last sn + 1) {

) / the packet iz in order
M hand it to the up level
do_recv(pkt):

1else {

quete _pkt and schedule timerd):

last sn =s=n:

Figure 2.9)

Our striping algorithm is thus quite simple compared to other round-robin based algorithms.
The sender uses a round robin scheme to stripe over links and embeds a sequence number in each
outgoing packet. Figure 2.8 shows the diagram and pseudo code in the sender side. The receiver

extracts the sequence number of each packet and handsit to the up level in the FIFO order. Figure

18

2.9 shows the diagram and pseudo code in the receiver side.

2.3.3Reordering Timers

When getting a packet from a network link, the receiver will extract the sequence number,
which may not be successive. Thisis because its preceding packet may be still on transmission on
another link. If the receiver gets a non-successive packet, it cannot just hand it to the up level;
otherwise, the packet will be delivered out of order. Remember that one important issue of
striping algorithms is to guarantee the FIFO delivery. We thus have to buffer this packet

temporarily and wait for its preceding packet to come.

The receiver maintains a unique variable, which is the current sequence number. It indicates
the sequence number of the last packet handed to the up level. The receiver updates the current

sequence number each time when it hands a packet to the up level.

Once the receiver receives a packet from a link, it first checks the sequence number
embedded in this packet and compares it to the current sequence number. If the sequence number
IS successive, the receiver can simply hand this packet to the up level and then the receiver
updates the current sequence number. If the sequence number of the packet is not successive, the
receiver has to wait for the arrival of the preceding packets. In this case, the receiver will buffer

this packet in a per-stripe queue and schedules the reordering timer.

If all preceding packets have arrived before this reordering timer expires, this buffered
packet can be de-queued and handed to the up level safely. In this case, the striping algorithm still
guarantees the FIFO delivery. If the timer expires and the preceding packets have not arrived yet,
it is possible that the preceding packets are lost. Thus when the reordering timer expires, this

buffered packet is handed to the up level and the current sequence number is aso updated.

19

Because the MAC layer of IEEE 802.11 requires an acknowledgement for each packet, the
lost packet will be retransmitted. Consider the situation that a reordering timer is scheduled
because of receiving a non-successive packet. If the reordering timer lasts long enough, the lost
preceding packets may be retransmitted and arrived before the timer expires. But the longer the
timer expiration time is, the longer the latency of the transmission. Non-successive packets will

be queued for alonger time if the timer expiration timeis set too large.

The length of the reordering timer is a variable in our striping algorithm. If it istoo long, the
latency of the transmission will increase. If it is too short, the non-successive packet may be

handed to the up level too early.

The length of the reordering timer is important in our striping algorithm. It affects the
performance of the algorithm. Under different network environments, it also has to be set to
different values. If the network links are not busy, the reordering timer can be set to a smaller
value as the transmission or retransmission could be finished shortly. If the network links are
quite busy, the reordering timer has to be set to alarger value. Non-successive packet thus can be

delayed long enough to wait for the arrival of its preceding packets.

Because the value of the reordering timer depends on the network environments, it should be
adjusted dynamically. If the reordering timer expires and missing packets have not arrived yet, we
will have to hand buffered packets to the up level. If missing packets arrive later, we will still
hand them to the up level rather than dropping them. But these packets will become out-of-order
packets. At this moment, the value of the reordering timer is then increased by one millisecond.
Since missing packets have not arrived in the period of the timer, we can know that the network
links are busy now. We thus increase the reordering timer’s timeout value and wait for missing

packets for alonger time.

We need another policy to decrease the value of the reordering timer. Otherwise, the value of
20

the reordering timer will increase infinitely. If the receiver doesn’'t receive any out-of-order
packet for a period of time, we can decrease the value of the reordering timer. An adjusting timer
isthus set and its value is set to one second. When the adjusting timer expires, we halve the value

of the reordering timer.

We need to carefully consider when to set the adjusting timer. If it is set frequently, the value
of the reordering timer will also be decreased frequently. This will make the value of the
reordering timer change too frequently. Instead, the value of the reordering timer should be kept
at a high value if the adjusting timer can be set properly. Since the network environment may
have changed to a non-busy state quickly, we should not use a too high value for the reordering

timer. The adjusting timer thus should be set according to recent network environments.

If an out-of-order packet is received, we start up the adjusting timer. If another out-of-order
packet is received again before the adjusting timer expires, we reset the adjusting timer. Thus if
the receiver gets continuous out-of-order packets, the setup time of the adjusting timer will be
propagated to the reception of the last out-of-order packet. The value of the reordering timer will
not be decreased during the reception of out-of-order packets. When no out-of-order packet is
received again, the adjusting timer will not be interrupted and it will continue to run. Since there
won't be any out-of-order packets received, we can assume that the value of the reordering timer
is high enough for the current network environment. We can try to decrease the value of the

reordering timer via setting the adjusting timer.

Figure 2.10 shows the timing diagram. We can see from the figure that the value of the
reordering timer is halved when the adjusting timer expires. If lots of out-of-order packets are
received, the adjusting timer will be set up again. Figure 2.11 shows the pseudo code of these two

timers.

21

adprsting tirer ad josting tirer
X pire Expie
e vl of
tirnies start up the start up the start up the
adjusting adpsting adfusting
tirner timer tiragr
v Y \%
tiroe
Figure 2.10
eyl
if (pkt in crder) §

do recvl); st hand the packet o the up level
Vele ! Jpltout of order

Increase_recndering timer();

start_up_admsting timer():
} schedule_reordering();

!
a{tddusﬁnz_ﬁmer_miﬂ-'t}
} decrease_reorderdng tmer);
:Eam-dermg_ﬁnﬂ_ﬂ{pjxﬁﬂ
okt = deque_pkt_from_buffer();

do_reev(); 4 hand the packet 1o the up level
}

Figure 2.11

2.3.4. Load Balancing

In our striping agorithm, we use the round robin scheme for striping. Every stripe thus will
share the same load. Consider a situation in which one of the stripes is busy because there are
other transmissions simultaneously occurring on this stripe. We should route some packets to
other stripes to balance the load. Otherwise, there will be lots of packets queued in the buffer of
the busy stripe. For the same reason, in the receiver side, there will be lots of out-of-order packets

because some packets are still queued in the sender. To balance the load of the stripes, we thus
22

should adjust the striping dynamically based on the busy state of stripes.

The MAC layer of IEEE 802.11 performs carrier sense when transmitting a packet. If there
is another host transmitting its packets in the same frequency channel, the transmission of the
packet will be delayed. When there is no transmission on the medium, a back-off timer is
scheduled. When the timer is expired, the MAC layer will try to transmit again. The operation is
repeated until the packet is sent. If several retries all failed, the packet will be dropped. Thus if
there are many hosts transmitting packets simultaneously (the medium is busy), lots of packets

may not be able to be transferred and thus will be queued in the buffer of adaptors.

For this reason, we detect the packet queue length in each wireless link to check whether the
wireless link is busy or not. If the wireless link is busy, a number of packets will be queued in the

packet queue.

We use the round robin scheme to choose a link for transmission. If the queue length of a
wireless link exceeds one-fourth of the maximum queue length, we can assume that the wireless
link is busy now. We should try to find another wireless link whose queue length doesn’t exceed
one-fourth of the maximum queue length. If all wireless links are busy, then we still choose the
original link for transmission. This can dynamically balance the load and route more packets to

theidle wireless link to eliminate out-of-order packets.

The one-fourth of the maximum queue length is a threshold used to adjust the link’'s
busy/idle status. Setting the value of the threshold is an interesting issue. If the link isreally very
busy (the service rate on the link is quite low), the value of the threshold should be set to a
smaller value to get better performance. This is because if the link is quite busy, packets queued
in its buffer may be queued for along time. We thus should set the threshold to a smaller value to
enforce the load balancing operation to happen earlier. With a smaller threshold, we can detect

the busy status of alink earlier and select another non-busy link for transmission. Doing so will
23

result in fewer packets queued in the buffer of the busy link. In contrast, if the link is not very
busy (the service rate on the stripe is till high), the value of the threshold could be set to alarger

value for a higher utilization of the link.

24

Chapter 3 Performance Evaluations

3.1 Simulation Environment

We develop our striping algorithm and evaluate the algorithm’s performance on a network
simulation program, the NCTUns 1.0 network simulator [8], [9], [10]. The NCTUns 1.0 is
developed in the Network and System Lab of Computer Science and Information Engineering
Department of National Chiao Tong University in Taiwan. The NCTUns 1.0 uses the network
subsystem of the kernel of FreeBSD. Thus the simulation of the NCTUns 1.0 can get the
real-world behaviors of network protocols such as TCP and UDP, and simulation results are more
accurate than other network simulation programs. The NCTUns 1.0 provides an open architecture
and allows us to add our developed protocol modules into it. We developed a device-driver level

module and implement our striping algorithm in the module.

3.2 Simulation Results
We used some metrics to evaluate the performance of our striping algorithm. These metrics

are throughput, latency, and PER (Packet Error Rate).

Figure 3.1 shows the basic ssimulation scenario. Each node has three wireless adaptors and
performs striping over these three adaptors. Node 2 will transmit data to Node 1. Node 2, the

sender, transmits greedy data to nodel. Node 1, the receiver, receives data from node 2.

At first, we assume that the packet transmission is error-free (Bit Error Rate = 0) and there
are no other nodes around (no congestion). In this clean environment, we evaluate the
performance of our striping algorithm to show the algorithm’s basic correctness. Then we add the
factors of packet-error and congestion in the simulation environment to show the flexibility of the

algorithm.

25

Mede 1 Mode 2

Flgue 3.1

3.2.1 Throughput

In order to evaluate the performance of our striping algorithm, we first run a smulation of
non-striping case for comparison. In this non-striping case, a node has only one wireless adaptor
for transmission. We assume that there is no packet-error and no congestion. To establish TCP
connections and send packets we used the stcp/rtcp program, which was available on the Internet.
One node runs the stcp program to transmit a greedy TCP data to another node. The other node
runs the rtcp program to receive the data. Figure 3.2 shows throughput reported by the rtcp

program on the receiving node. As we can see, the average throughput is about 5 Mbps.

Next we use the scenario described in the Figure 3.1 to evaluate our striping algorithm.
Again, we assume that there are no packet-error and no congestion. The stcp/rtcp program
generates the TCP traffic. Figure 3.3 shows the result of throughput. As we can see in the figure,

throughput is about 15 Mbps. The speed-up of striping is three times compared to non-striping.

We aso implemented the Surplus Round Robin and used the same scenario to see its
performance. Figure 3.4 shows the result. The result shows that the Surplus Round Robin is not
as good as our striping algorithm. Maximum throughput is only 11 Mbps. We can also observe
that sometimes throughput is quite low (even ailmost 0 Mbps). As we explained in the above, the

Surplus Round Robin doesn’t provide real FIFO. Thus TCP will dow down the transmission
26

Because of out-of-order packets.

Mo Striping (BER=0, no congestion)

T
Greedy TGP Throughput ---#---

Throughput {Mbps)

|:| | | | |
_ i] 50 100 150 200 250 300
Figmme 3.2 Tirme (sec)

In addition to the performance of TCP traffic, we also did another simulation to evaluate the
performance of UDP traffic. The scenario is the same as that for TCP except that we use the ttcp

program to generate UDP traffic. Figure 3.5 shows the result. The speed-up is aso almost three

times.

27

Striping (BER=0. no congastion)

20 T T T T
Gready TOP Throughput H
W
&
=S
ERLRS _
£
(=3}
g
=
'_
5 _
D 1 1 1 1
u] 100 180 200 280 300
Flgnme 3.3 Tima (sec)
SRR (BER=0, no congestion)
20 . .
Greedy TCF throughput ---3
15 | _
@ .
r=]
N
3 10 o 4
= V
=3 !
=)
o !
E |
= :
5 & i
i
a 200 250
_ Time (sec)
Figure 3.4

28

Striping (BER=0. no congestion)
20 T T ; T T
Greedy UDP Throughput ---#--

-
B
s |
Z 10k -
Y = 1
g :
e |
|E =

sL .

0 : . . :

0 50 100 150 200 250 300

Figure 3.5 Time (sec)

3.2.1.1 Congestion

Now we add the factor of congestion in the simulation environment. Starting with a ssmple
case, figure 3.6 shows the scenario. In Figure 3.6, Node 3 is in the transmission range of Node 1
and Node 2. So is Node 4. Notice that the wireless adaptors of Node 3 and Node 4 are configured
to use channel 1. One of the striping adaptors of Node 1 and Node 2 are also configured to use
channel 1. These four wireless adaptors share the same medium. If the transmissions of two pair
of nodes, (Nodel, Node2) and (Node3, Noded), run simultaneously, throughput will be only one

half of the original throughput.

Figure 3.7 shows the result of throughput. As we can see, throughput of non-striping
between node 3 and node 4 is 2.5 Mbps, half of the original throughput, because of medium
sharing. Throughput of striping between node 1 and node 2 is about 12.5 Mbps. The wireless
adaptors configured to use channel 1 can only get a throughput of 2.5 Mbps. The others adaptors
can get full throughput of 5 Mbps since they don’'t use channel 1. Thus the accumulated

throughput is 12.5Mbps (2.5 + 5 + 5). This is the maximal aggregated throughput that can be

29

possibly archived. Here we can see that our striping algorithm can get good performance even
under the situation of congestion. We use the same scenario for ssmulation but use the Surplus

Round Robin. Figure 3.8 shows the result.

We add more nodes to test our striping algorithm. Figure 3.8 shows the scenario which
contains 6 nodes. Node 5 and Node 6 are added and their wireless adaptors are configured to use
channel 5. Figure 3.9 shows results of throughput. In this scenario, two striping adaptors in both
Node 1 and Node 2 share the medium with others. Thus accumulated throughput is about 10Mbps

(25+25+5).

Figure 3.10 shows another scenario which contains 8 nodes. Node 7 and Node 8 are added
and their wireless adaptors are configured to use channel 9. Figure 3.11 shows result of
throughput. All striping adaptors in both Node 1 and Node 2 share the medium with others. Thus

accumulated throughput is about 7.5Mbps (2.5 + 2.5 + 2.5).
To see the performance of the Surplus Round Robin, we used the scenario in Figure 3.6 to
run the simulation. Figure 3.12 shows the result. We can observe that performance is worse

because congestion will cause more out-of-order packets.

These results show that our string algorithm can get a maximum aggregated throughput even

under the situation of congestion.

30

Node 1

&

Node 3
=

chanmﬂl

é d.m:ls\

chanmnel 1

N |

chanmll Nede 2

channg] | Nade 4

Figure 3.6
Striping (4 nodes)
20 T 1 1 ¥
Greedy TCP Throughpul betweend node 12 - #---
Greedgy TCP Throughput between node 34 ~—g—
15 ~

Throughput {Mbps)
o

0
Figure 3.7

180 200 250
Time {5ec)

300

31

Node 5 charmel 5 channe] 5 Node 6

V- EEENNY- |

Nede 1] 11 dnm:ll Mede 2
C .:flmds\
Node 3 chanmel 1 chanmel 1 Node 4

V- RN |

Figure 3.2
Stapmg (b nodes)
20
' ' Greedy TGP Throughput betweend node 1 e
f_ueecw TE_.F' Tor Dl|_|h|.|u| DRMEEN Ny _1.___. 3 e—
yreedy TCP Throw ghput Datwe e & 2 -
15 -
§
=
-4 -
-
=
e
=
5 -
U 1L L L L
0 50 100 150 200 300
Figure 3.9 Time (5e6)

32

Nede 5

Nede 1 channe] 1 MNode 2

Figure 3.10
Striging (6 nodes)

20 T T

Greed'_.r TCP Throughput betweend node 1 2 -

Grcen. TCP Thraughput betwaean n“de 1-4 +|-—
CP Throughout betwesnd n X

G eed}' TCP’ Throughp ut betweend n"-’l= T 5 —

16 N

Throughput {Mbps)
o
1

0 | 1 1 | 1
a 50 100 150 200 250 300

Figure 3.11 Time (sec)

33

SRR (4 nodes)

20
1 [Greedy TGIE' throughput betweeh node 12 ---#---

15 -

Throughput (Mbps)
=)
T
1

D 1 L |
0 50 100 150 200 250

Time (sec)
Figure 3.12

3.2.1.2 Packet Error

In the above scenario, we assume that there is no packet error. The packet transmission is
thus error-free. In the real world, this is impractical. Currently most of IEEE 802.11 wireless
network products declare that there is a non-zero BER (bit error rate) which is less that 0.00001.

Next we use avariety of BER values to run the simulations.

Again, in order to evaluate our striping algorithm, we run some simulations of non-striping
in which BER is not zero. Figure 3.13 shows the results. We can see from figure 3.13 that
throughput is a little lower when BER is not zero. Throughput is 4.1Mpbs, 4.5Mpbs, and

4.9Mbps when BER is 0.00001, 0.000005, and 0.000001 respectively.

non-striping

Greeay TCP Throughput (BER = o'mmn SPRFPI
Grer::!, TCP Th rcuthL. {BER =0 uJ 005} -~ e
Greedy TCP Throvghput (BER = 0. -

Throughput (Mbps)
[4Y]
T

2 -
1 i -
0 1 1 | . .
0 50 100 150 200 250 300
Figure 3.13 Time (sec)
Striping
20 : , . . |
Graedy TCP Throughput (BER = 0.00001) - #---
Greedy TUR Thrul.lgh'ju' |EER =0 .,"Il"ﬂ(],; O
Gready TGP Throughput (BER = 0.000001) =—o¢
g
%’ =
3
o
=
2
=
5 3 -
0 - 1 i I ,
0 50 100 150 200 280 200
Figure 3.14 Time (se¢)

35

SRR (4 nodes)
20 T T
Greedy TCP throughpul(BER 0.00001) -
(:rm, Iy IL.|~ th|outhut BER = 3 UUJDUJ e
hroughput{BER = 0.000(-
15 | =

W
o
0 > -
2 :u-‘,pg:":;; ﬂfw* 'M‘ i :""‘!_i"ﬁ- -~ f"’rﬁﬂ"“ ?-ﬁ
- i i HE. 1 [
S 5 AR
= Ll :
=} i # :
8 + S
£] i ‘r

T3

$ iyt 4
5 i : i -
T
0 L S :
0 50 100 150 200 250

Figure 3.15 Time (sec)

Again we use the scenario in Figure 3.1 to run the striping simulations. But thistime BER is
set to a non-zero value. Figure 3.14 shows the results. Throughput is 12Mbps, 13.5Mbps, and
14.7Mpbs when BER is 0.00001, 0.000005, and 0.000001 respectively. They are the maximum
aggregated throughput that can be achieved. The speed-up is also about three times. Figure 3.15
shows the results of the Surplus Round Robin. Again, we can observe that performance is worse

because of packet errors.

Nodel gER=000001 BER = OOO:QI Nede 2

Y 000
H BER =0,000005 i HER =000 \H
/LER 000001 EEE. = D[ID:I]I

Figure 3.16

36

Striping
20 T T T T T
Greedy TCP Throughgut ---#---
* il
G r
$5 W :
-] g H
E. -
a1} |
—
[)]
a
=
.—
5 | - -
l:l 1 L 1 i L
0 50 100 150 200 250 30
Figure 3.17 Time (sec)

In the each of above simulation cases, BER of all striping wireless adaptors of Node 1 and
Node 2 is set to the same value. For example, we set BER of all adaptors to 0.00001 and get
throughput of 12Mpbs. Figure 3.16 shows another scenario in which BER of each adaptor is
different. Figure 3.17 shows the result. Throughput is about 13.4Mpbs. It is the accumulated

result of three adaptors (4 + 4.5 + 4.9).

From these simulations, we can see that our striping algorithm can work well even under the

situation of packet-error.

3.2.1.4 Other Issues

Mobility and the hidden terminal problem are common issues discussed in wireless network.

We did two simulations about these to see the performance of our striping algorithm.

37

Figure 3.18

naon-striping (Hidden Terminal)

éreedy UD'F' throughlput betweel,n Madei elmd chezl e
14 + -

10 | -

Throughput (Mbps}

g N e P B N e e Mg, T s B e e B g B e e e e e
0 5 10 15 20 25 30 35 40 45 50
Figure 3.19 Time (sec)

]

Figure 3.18 shows a scenario which has the hidden terminal problem. Node 1 is in the
transmission ranges of both Node 2 and Node 3. But Node 2 is not in the transmission range of

Node 3. Neither isNode3. Thusthereis ahidden terminal problem here.

At first we didn’t use striping. Each of four nodes has only one wireless interfaces. Figure

3.19 shows the result. As we can see from the figure, transmission between Node 1 and Node 2

only gets throughput of 0.3 Mbps.

38

Then we apply striping on both Node 1 and Node 2. Figure 3.20 shows the result of using
the Surplus Round Robin. Figure 3.21 shows the result of using our striping agorithm. We can
see that we can get a maximum aggregated throughput (0.3 Mbps + 5 Mbps + 5 Mbps = 10.3

Mbps) by using our striping algorithm.

SRR {Hidden Terminal)
I I I (Ifurceclg.- ;IDEP th':uuc_;'-ﬂjut |.‘-L‘l'wtzl_'lzl‘| Mode1 and \'L"lﬂE‘EI - e
14 F i
12 - -
ol ¥ £ or b
= i ¥ £ x . o -
2 : ¥ Lo ® AR i
= R £ x5 ; & ! :
= gl # * P bk ;’rE'- v F : [S
5 A £ T R R A V. I SR ;
5 AN ¥ ¥ ® % E R R
o I ¥ L ¥ E W o
z K & i o b
= & i T
: " %
ar -
2.4 i
i
0 I I I I I I I I |
o] 5 10 15 20 25 30 35 40 45 50
Figue 3,20 Tima (sec)

39

atriping (Hidden Terminal)
' I ' éreec’-,' uoeP 1hrm.g'1i:lul between Mode and Node2 -
14 | .
12 b . . %) 4
.{'r-'-:t-l.\' L e e e .I\.'":F_“'H*.:x.l w "'-+3't-'1'_ g S k< 4",..1'.'
PRV 3 = -
% W W
1o f R <
a L
o :
= !
€ 4 #
s T 1
2
= i
g -
E 6 :: N
= 1
*
4 |- ; .
2 b "
L
#
D 1 1 1 1] 1 1 1 1
0 5 10 15 20 25 30 as 40 45 50

Fi 191 Time (sec)

Figure 3.22 shows the next simulation scenario. Both Node 1 and Node 2 move with a speed

of 0.7 m/s. Node 2 will transmit datato Node 1.

Again, we didn’'t use striping at first. Figure 3.23 shows the result. Throughput is getting
down as the distance between two nodes increases. When the distance exceeds the transmission

range, the throughput becomes 0 Mbps.

Flgue 322

40

nan-striping (maobility)

T T T T
Greedy LUDP fhroughput =4

14 | -

sy

=
I

1

o
I
L

Throughput (Mbps)

0 = 1CII:.Ii' o s 50
Fiene 173 Time (sec)

SRR (mokility

T
Gready TCP throughput ---3---

12 | 1

-
=
T

1

=]
T
1

Throughput (Mops)
i3
-
*

(=r]
T
|

Figme 3,24 Tirne (zec)

Figure 3.24 shows the result of using the Surplus Round Robin. Figure 3.25 shows the result
of using our striping algorithm. Throughput is also getting down as the distance increases. But

our striping algorithm performs better than the Surplus Round Robin. A maximum aggregated

41

throughput, about 3 times of original throughput, still can be achieved.

striping (mobility)
' ' Greedy TCP 'ft1rDL|ghnu1 -
14 s
12 F T
105 T
E H T
[oo
£ o
=] &
wal b
2 ki
= [i tfvi; —
= e
4 - =
2 - —
0 100 150 200 250
Figme 3,25 Time (sec)

3.2.1.3 Discussions

We can see that our striping algorithm can get the maximum aggregated throughput that can
be achieved. The agorithm can also work well under the situation of congestion, packet-error,
and mobility. Under these situations, skew must happen more frequently. Thus the reordering
timer’s value must be set to a larger value to solve the problem of skew. Because the reordering
timer is adjusted dynamically, the algorithm can get good performance results under situations of

any degree of congestion or packet-error.

We can aso see that the Surplus Round Robin doesn’'t perform well. It cannot get the

maximum aggregated throughput. Besides, because it doesn’'t provide rea FIFO, its TCP

performance is bad and unstable.

42

Striping (Gready TGP Tnroughpul)
T T T T
3 slripes -
4 sfripay —b—
50 f I‘I'I!': I: A =]
@ stripes -~ %~
8 sinpes -
&0 T T 10 stripas —®-
10 -
I:] 1 1 1 1 L
_ LL] S50 100 180 200 250 300
Flgure 3.26 Time isac)

3.2.2 Scalability I'ssue

The next ssimulation we did is to expand the number of striping wireless adaptors. In the
above simulations, we use only three wireless adaptors for striping. We still use the basic scenario
described in Figure 3.1 and use the stcp/rtcp program to generate traffic. We expand the adaptors
number from three to ten. On each host, all adaptors are configured to use different frequency
channels. For example, when we use ten wireless adaptors for striping, we configure them to use
frequency channel 1 to 10, respectively. In the real world, using successive frequency channels
may cause some interference. However in our simulation, we assume that there is no such
interference. Figure 3.26 shows the result. We can see that the maximum aggregated throughput
can be obtained while the number of striping adaptorsis increased. This shows the scalability of

our striping algorithm.

3.2.3 Latency

43

Latency is also an important metric to evaluate our striping algorithm. Since we set a
reordering timer to reorder out-of-order packets, latency of a transmission will thus increase. We
used the same simulation scenarios again to study latency issues. Here we didn’t use the stcp/rtcp
programs to generate traffics. Instead, we used the stg/rtg programs, which are contained in the
NCTUns 1.0 package, to generate UDP traffics. The rtg program will report latency of

transmissions.

Latency (sec)
Number of stripes
min max avg Stdev

3 stripes 0.001025 0.096252 0.083308 0.002576
4 stripes 0.001025 0.203725 0.088244 0.011838
5 stripes 0.001025 0.442918 0.144322 0.075733
6 stripes 0.001025 0.784718 0.244777 0.162877
7 stripes 0.001025 0.635399 0.234509 0.16618
8 stripes 0.001025 0.482005 0.214224 0.108651
9 stripes 0.001025 1.075736 0.322252 0.194462
10 stripes 0.001025 0.947715 0.347297 0.207922

Table3.1

Table 3.1 shows the results of simulation with different numbers of stripes. In the table, the
first column lists the number of used stripes. The other columns list the minimum latency, the
maximum latency, the average latency, and the standard deviation, respectively. As we can see,
latency increases as we expand the number of stripes. This is because the possibility of receiving
out-of-order packets increases while more stripes are used. When more stripes are used, packets
are multiplexed over more stripes. Packets are thus more likely to be received out of order. This

will cause the reordering timer to be increased. Thisin turn will cause latency to increase.

. . . Latency (sec)
Simulation Scenario
min max Avg stdev

Striping (no congestion,

o 0.001025 0.096252 0.083308 0.002549
scenario in Figure 3.1)
Striping (4 nodes,

o 0.001025 0.513956 0.249128 0.089886
scenario in Figure 3.5)
Striping (6 nodes,

o 0.001025 1.063782 0.454364 0.207602
scenario in Figure 3.7)
Striping (8 nodes,

o 0.001025 1.012174 0.358644 0.178845
scenario in Figure 3.9)

Table3.2

Table 3.2 shows the results of simulations with congestion. The first column lists simulation
scenarios. The other columns list different kinds of latency. We can see that latency increases
when the degree of congestion increases. The value of the reordering timer will certainly be
increased because of congestion, which will in turn increase latency. Besides, when more
adaptors are involved in congestion, it is more possible that packets are sent out of order because

latency of each congestion stripe differs from each other.

Latency (sec)
BER
min Max avg stdev

0.0 0.001025 0.096252 0.083308 0.002549
0.000001 0.001025 0.133014 0.086926 0.004745
0.000005 0.001025 0.256145 0.110644 0.026783
0.00001 0.001025 0.669147 0.177871 0.102995
Table3.3

Table 3.3 shows the results of scenario with packet-error. We use three stripes and set the
BER to different non-zero values. Latency increases when the value of BER increases. This is
also because the value of the reordering timer increases. Higher value of BER causes more

packets to be dropped. Thus the reordering timer isincreased to wait for retransmission.
45

From these results, we know that we make a little sacrifice in latency to obtain higher
aggregated bandwidth. The reordering timer can help keeping the FIFO delivery. But it also

brings us longer transmission delays.

3.2.4 Reordering Timer Issue

The reordering timer plays a very important role in our striping algorithm. In order to
observe its value, we did the following simulation. Figure 3.27 shows the scenario. During the
first 50 seconds, there are three pairs of stcp/rtcp programs running simultaneously. During the
second 50 seconds, there are only two pairs. Then there is only one pair running at last. The
degree of congestion decreases as time proceeds. Figure 3.28 shows the value of the reordering

timer obtained from Node 1.

Node 1

/ dmneii mg\\
V- i

NodeS 4 el Channell Node 6
W N
Y- ZRERNy
dm..d dm:rﬂl

: Node2

Mode 3 channsl 1 dﬁmtil Nl:d.'d
&

Time (5e2) Nede Burming Program
0=~ 50 MNode 3 ricp
Q= 50 Moded sip
0~ 100 Modef rnep
0=~ 100 Medet step
O~ 250 Nedel riep
0~ 250 Node2 stp

Figue 3,27

We can observe that the value of the reordering timer increases quickly at beginning. Since

46

there are three pairs of stcp/rtcp programs running at beginning, Node 1 will receive out-of-order
packets because of congestion and increase the value of the reordering timer. Later when the
adjusting timer is expired, the value of the reordering timer is halved. If there is till congestion,
out-of-order packets will be received and the reordering timer will be increased again. As time
proceeds, the degree of congestion will decrease, and Node 1 will not receive too many

out-of-order packets. Then the value of the reordering timer will hold a stable value.

The result shows that the reordering timer is adjusted dynamically. The striping agorithm
adjusts it according to the current environment. If a network is busy, the value of the reordering
timer will be set to a higher value. If anetwork isidle, it will be set to alower value. If a network

isstable, it will be set to a stable value.

Reordering timer's tmeout value
20000
o
s {15000
B
%
£
S
E
=
£ 10000
£
=
=
=
®
£ 5000
o
U 1 i |
0 50000 100000 150000 200000 250000
Figume 3,28 Time (mill-second)

3.3 Reault Discussions

47

We did some simulations to evaluate performance of our striping algorithm. We can see that
our striping algorithm can obtain the maximum aggregated throughput from simulation results.
We also add the factors of packet-error and congestion in simulations. Simulation results show
the flexibility of our striping algorithm. Even under the environment with lots of packet dropping
(caused by congestion or packet-error), our striping algorithm can still obtain the maximum

throughput.

To show the scalability of our striping agorithm, we expanded the number of striping
wireless adaptors and did a series of simulations. The results show that our algorithm can still
obtain the maximum aggregated throughput. Higher bandwidth can be obtained smply by
expanding the number of striping wireless adaptors. However, latency will also increase when the

number of adaptors increased.

We dso did simulations to observe the latency. Since we use the reordering timer to delay
the delivery of out-of-order packets, the latency will thus be a little longer. Besides, the bad

network environment such as congestion or packet-error will cause latency to increase as well.

At last we did asimulation to observe the value of the reordering timer’s value. The value of
the reordering timer changed dynamically. Based on the current network environment, it will be
set to a proper value. In addition, if the current network environment is stable, it will be held in a

stable state.

48

Chapter 4 Concluding Remarks

A striping agorithm based on the round robin scheme is proposed to aggregate multiple
|IEEE 802.11 wireless adaptors to gain higher bandwidth. This striping algorithm uses sequence
numbers embedded in the packets to keep the FIFO delivery. A reordering-timer mechanism in
the algorithm is used to queue out-of-order packets and reorder them. This can eliminate the
triggering of TCP fast retransmit and thus avoid slowing down a TCP connection’s transfer
progress. A mechanism of load balancing is used to route traffic to other stripes whose loads are

lower.

We used the network simulation program, NCTUns 1.0, to evaluate the performance of our
striping algorithm. NCTUns 1.0 uses the network subsystem of real-world FreeBSD and can thus
generate more accurate simulation results. We conducted several experiments to evaluate the
performance. As shown in the results, the aggregate throughput is the summation of throughput of
individual adaptors. In addition, the striping algorithm can also perform well under the situation

of packet-error and congestion.

By aggregating multiple wireless adaptors, users can obtain higher bandwidth to run
network applications. Thus network applications that originally run on fixed networks and
demand high bandwidth can also be run on mobile stations without the limitation of bandwidth.

Thisisalow-cost and scalable way for achieving high wireless bandwidth.

References

[1] C. Brendan, S. Traw, and J. M. Smith. Striping within the network subsystem. IEEE Network,
pages 22-29, July/August 1995.

49

[2] IEEE Std 802.11 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, June 1997.

[3] F. JACQUET, Philippe KAUFFMANN, Michel MISSON, Striping schemes for wireless
communication system. The Fifth IEEE Symposium on Computer and Communications, Antibes,
France, 4-6 July 2000

[4] F. JACQUET, Michel Misson, Striping over Wireless Links: Effects on Transmission Delays.

[5] Hari Adiseshu, Guru Parulkar, and George Varghese, A reliable and scalable striping protocol.
SIG-COMM, (8): 131-141, 1996.

[6] Jacob Jul Schroder, Design and Performance of Striping over ATM. Master’s thesis. February
1998.

[7] W. Richard Stevens, TCP/IP Illustrated, Volumel. Addison Wedley.

[8] S. Y. Wang and H. T. Kung, A Simple Methodology for Constructing Extensible and
High-Fidelity TCP/IP Network Simulators. IEEE INFOCOM’99, March 21-25, 1999, New York,
USA.

[9] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, C.C. Lin, The
Design and Implementation of the NCTUns 1.0 Network Simulator. Computer Network Journals

(to appear).

[10] C. H. Huang, The Design and Implementation of the NCTUns 1.0 Network Simulation
Engine. Master’s thesis, National Chiao Tung University, Hsinchu, Taiwan, 2002.

50

O 93 10 31

Wi reless Trunks

922 2 1E0 0-0 6-3

Wi reless Trunks

(Trunk)

With currently available interface cards, we can aggregate them to get
the accumulated bandwidth. In the applications view, they don’t know
about what we do. They only feel that they have more bandwidth for
use. This solves the problem of the bandwidth-shortage.

51

