
行政院國家科學委員會專題研究計畫 成果報告

近端自轉互斥演算法中不可分割指令之階層架構

計畫類別：個別型計畫

計畫編號：NSC92-2213-E-009-064-

執行期間：92年08月01日至93年07月31日

執行單位：國立交通大學資訊工程學系

計畫主持人：黃廷祿

計畫參與人員：陳勝雄

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 93年10月29日

 1

行政院國家科學委員會專題研究計畫成果報告
近端自轉互斥演算法中不可分割指令之階層架構

Hierarchical Structure of Atomic Instructions Used in Local-spin
Mutual Exclusion Algorithms
計畫編號：NSC 92-2213-E-009-064

執行期限：92年8月1日至93年7月31日

主持人：黃廷祿 國立交通大學資訊工程學系

E-mail: tlhuang@csie.nctu.edu.tw

 計畫參與人員：陳勝雄 國立交通大學資訊工程學系

E-mail: chenss@csie.nctu.edu.tw

一、中文摘要

 針對像嵌入式即時系統這樣具有時間

及資源限制的應用，所設計的互斥問題必

須公平且降低所需的記憶體空間。因此，

我們提出一個公平(bounded-bypass)且僅
使用二個變數的互斥演算法。一個變數為

read-write register，另一個為 fetch&store
register。若以達到相同公平性而言，我們
也證明了使用 historyless 物件來設計互
斥演算法則至少需要二個物件，亦即本計

畫所提出的演算法用了最少的記憶體。所

謂 historyless 物件（包含 read-write register
及 fetch&store register）即其值決定在最後
一個寫入的指令，與原本的值無關。此外，

即使所用的物件可包含無限多的數值，這

個至少需要二個物件的下限依然成立。

關鍵詞：互斥問題、不可分割指令、分享

記憶體系統、公平性、空間複雜

杜、下限

Abstract

 For a shared memory system with
time and resource constraints such as an
embedded real-time system, a mutual
exclusion should be fair and space-efficient.
We present a bounded-bypass algorithm
using only constant two shared variables:
one read-write register and one fetch&store
register. To achieve the same level of
fairness, we show that, using historyless
objects, two shared object instances are
necessary, and therefore our algorithm is
space optimal. An object is described as

historyless if and only if its value depends
only on the last nontrivial operation applied
to it. This lower bound holds even if the
objects have infinite size.

Keywords: mutual exclusion, atomic

instructions, shared-memory
systems, fairness, space
complexity, lower bound

二、緣由與目的

The mutual exclusion problem [4] is

fundamental in asynchronous shared
memory systems for managing accesses to a
single indivisible resource. In this problem,
a process accesses the resource within a
distinct part of code called its critical region.
Before and after executing the critical region,
a process executes trying and exit regions,
two other parts of code, respectively. The
problem is to design the trying and exit
regions guaranteeing the following
requirements.

z Mutual Exclusion: At most one
process at a time is permitted to
enter its critical region.

z Progress: If some process is in the
trying region and no one is in the
critical region, then at some later
point some process enters the
critical region. In addition, a
process in the exit region will
eventually enter the rest of code,
called the remainder region.

The burgeoning applications for

embedded real-time systems such as

 2

automotive control systems, cellular phones
and home electronics have created a demand
for algorithms in these systems [13]. An
algorithm suitable for these environments
must meet two constraints: time constraint
and resource constraint. Thus, a mutual
exclusion algorithm should be fair and
space-efficient.

A mutual exclusion algorithm may not
guarantee the critical region is granted
“fairly” to different processes; that is,
starvation may occur. A fair mutual
exclusion algorithm means that it has the
ability to control the order of granting
requests in a fair manner such that no
process will starve. In a system with time
constraint, a process has a deadline in
executing a particular job. The goal of a fair
mutual exclusion is to reduce the worst-case
time, preventing a process overshoots its
deadline.

On the other hand, the major goal of a
space-efficient mutual exclusion algorithm
is to reduce the memory consumption. It is
crucial for systems with resource constraint.
For instance, embedded systems often have
small memory (about 32--64 kBytes [14])
since making low production costs is one of
the primary concerns in their design. Thus,
an algorithm for such systems must be
space-efficient.

Recent work on the mutual exclusion
problem has focused on designing local-spin
algorithms which minimize the required
number of remote memory references [11, 3,
7, 9, 8]. It is because remote memory
references cause processor-to-memory
traffic which may result in memory
bottleneck in general distributed shared
memory systems. Since each process must
have at least one shared variable that is
locally-accessible, at least n shared variables
are needed, where n is the number of
processes. However, the number n may be
very large and therefore these algorithms are
not suitable for space-limited systems,
although some of these algorithms are fair.

The primary contribution of this project

is a fair and space-efficient mutual exclusion
algorithm. Our algorithm has the following
advantages.

z Fair: The algorithm is
2-bounded-bypass.

z Space-efficient: Only constant
two shared variables are needed.

We say that a mutual exclusion

algorithm satisfies b-bounded bypass if a
requesting process cannot be bypassed by
any certain process in accessing the resource
for more than b times. An algorithm is
bounded-bypass if it is b-bounded bypass for
some b. 2-bounded bypass is very close to
the first-in-first-out (FIFO) order, the most
stringent fairness requirement, which is a
kind of 1-bounded bypass. (More precisely,
a FIFO algorithm is also 1-bounded bypass,
but the reverse is not true.) For most
applications, we believe that our
2-bounded-bypass algorithm is good
enough.

To implement our algorithm, we use
primitive fetch&store in addition to read and
write primitives. Burn and Lynch [1] has
shown n shared variables are necessary to
solve the n-process mutual exclusion
problem if only read and write primitives
are available. Thus, we need certain more
powerful primitive to reduce the space
complexity. Fortunately, modern
microprocessors often provide some
read-modify-write (RMW) primitives such
as test&set, fetch&store, compare&swap, etc.
In one instantaneous step, a RMW primitive
can read a shared variable and write back a
new value according to the current value and
the submitted function. We use fetch&store
to implement our algorithm since it is the
most commonly supported instruction in
modern microprocessors such as a series of
processors of Intel and AMD, Motorola
88000, and SPARC [12], making the
algorithm more portable.

Notice that, in the literature, there are
several algorithms using only one shared
variable and guaranteeing certain level of
fairness. For instance, Fischer et al. [6]
devised a FIFO algorithm. Burns et al. [2]

 3

devised a bounded-bypass algorithm and a
starvation-free algorithm1. Unfortunately, all
of these algorithms used hypothetical RMW
primitives which have never been
implemented in any system shipping today.
In contrast, our algorithm uses no
hypothetical RMW primitive and requires
only one more shared variable than these
algorithms.

Our algorithm is inspired by the
circular list-based mutual exclusion
algorithm proposed by Fu and Tzeng [7, 9].
Similar to their method, our algorithm also
let waiting processes form a list. But the
way to convey permission in a list and
between two lists is very different from
theirs. In fact, the problem they tackle is to
reduce the number of remote shared memory
accesses, but we desire to reduce the space
complexity and meanwhile, guarantee
certain level of fairness.

In addition, it is impossible to obtain
bounded-bypass algorithm with less than
two shared variables, using fetch&store as
well as read and write; that is, our algorithm
is space optimal. We prove it by showing a
more general result: using only historyless
objects, two shared object instances are
required to implement a bounded-bypass
algorithm. The definition of a historyless
object is given by Fich et al [5]. Informally,
an object is historyless if and only if its
value depends only on the last nontrivial
operation applied to it. A nontrivial
operation is one that will write a value into
the object. For example, read-write registers,
fetch&store registers and test&set registers
are historyless. This lower bound holds even
if the objects have infinite size.

Our lower bound proof technique is
related to the method introduced by Burn
and Lynch to prove the lower bound of n on
the number of read-write registers required
to solve the n-process mutual exclusion
problem [1]. The difference is that our lower
bound applies to all historyless objects

1 Indeed, their work aimed at theoretical
discussion between data requirements and different
fairness conditions.

rather than only read-write registers.
Moreover, our lower bound is for
bounded-bypass mutual exclusion
algorithms, whereas Burn and Lynch
consider the general mutual exclusion
problem.

三、結果與討論

The Algorithm

Figure 1. The algorithm.

We begin by presenting the main idea

of the algorithm in an informal pseudocode
style as shown in Figure 1. Exactly two
shared variables are used in the algorithm:
variable L is used to arrange processes'
requests to critical regions; while variable P
to indicate which process has permission to
enter its critical region. Initially, variables L
and P are set to nil, respectively.

Through variable L and fetch&store

Shared variables:
L ∈ {nil,1,…,n}, initially nil

 P ∈ {nil,1,…,n}, initially nil

Process i : (1 ≤ i ≤ n)

Private variables:
next ∈ {nil,1,…,n}
tail ∈ {nil,1,…,n}

while true do
R: Remainder region
T1: next := fetch&store(L, i);
T2: if next = nil then
T3: await P = nil;
T4: P := i;
T5: else
T6: await P = i;
T7: fi
C: Critical region
E1: if next = nil then
E2: tail := fetch&store(L, nil);
E3: if tail ≠ i then
E4: P := tail
E5: await P = i;
E6: fi
E7: P := nil;
E8: else
E9: P := next;
E10: fi

od

 4

primitive, the order to enter the critical
region is organized as a circular waiting list
in which the first element has the identity of
the last one, and each other element has the
identity of its predecessor. A circular list is
formed as follows. Each process i makes a
request by a fetch&store onto L (T1),
announcing its process identity and
obtaining the predecessor's identity if has
one. Any process which acquires a nil from
L (i.e., next = nil) becomes the header;
otherwise, it becomes a list member. (A
header is also dubbed a controller and has
extra duty at its exit region.) A waiting list is
closed after the controller leaves its critical
region and resets L as nil (E2). The
controller stores the identity of the last
element in the list into its private variable
tail. This closed waiting list contains all
processes making a request between the
controller obtaining nil from the L (T1) and
resetting L as nil (E2). Note that, only after
the current controller closes its waiting list
such that L will become nil again, a new list
might start to form.

The value of shared variable P
indicates which process has permission to
enter its critical region now. After making a
request, a controller repeatedly tests the
value of P until P is equal to nil (T3), a
specific permission for a controller. The
controller takes the permission by assigning
P as its identity (T4). (This action prevents
another new controller to enter its critical
region.) In contrast, a list member i---that is,
if nexti ≠ nil---checks the value of P until P
= i (T6) indicating i gains the permission to
enter its critical region. Since P is nil
initially, the first controller at all will gain
the permission to enter its critical region.

After a process leaves its critical region,
it should convey the permission to certain
waiting process if has one. As a list member,
the process simply transfers the permission
to its predecessor by setting P as next (E9)
and then enters its remainder region. As a
controller, after closing the waiting list, if
the list contains any process other than the
controller, it passes the permission to the last
element in the list by setting P as tail (E4).

The permission will be passed from the last
element back to the controller, i.e., in the
reverse order of processes making a request.
The controller is blocked until the
permission passes back to itself (E5).

Although resetting L as nil might
introduce a new controller, this new
controller and subsequent requesting
processes will not obtain the permission and
this new waiting list will not be closed
unless all processes in the previous circular
waiting list have finished their critical
regions. (Hence, there are at most 2 waiting
lists simultaneously, and at most one of
these two lists contains the permission.) This
contributes to the bounded bypass property
of our algorithm. The new controller will get
the permission after the permission passes
back to the previous controller causing the
previous controller to reset P as nil (E7).

An execution of the algorithm.

An example is given in Figure 2,
showing that how to arrange the order to
enter the critical region for requesting
processes. Initially, both of shared variables
L and P are equal to nil (see Figure 2(a)).
Process 1 first makes a request by executing
T1. Since next1 = nil and P = nil, process 1
enters its critical region after assigning P as
1 (see Figure 2(b)). As process 1 is in C,
processes 2 and 3 execute T1 in turn.
Because neither process 2 nor process 3 gets
nil from L, processes 2 and 3 are waiting at
T6. The waiting list is shown at Figure 2(c).
Then, process 1 leaves its critical region.
Since process 1 is a controller (next1 = nil),
process 1 closes the waiting list by
executing E2 which returns the tail of the list
and resets L as nil (see Figure 2(d)). Process
1 passes the permission to the tail of the list
(see Figure 2(e)). The permission will be
passed one after one in the waiting list.
Process 1 is blocked until the permission
backs to itself. During the period after
process 1 closes the waiting list, subsequent
requesting processes will be blocked. For
example, after process 4 gets nil from L by
executing T2, it is waiting at T3. Figure 2(f)
shows that the permission backs to process 1,

 5

that is, all requesting processes in the
circular waiting list have finished their
critical regions. Process 1 resets P as nil to
let process 4 enter C (see Figure 2(g)). After
observing P is equal to nil, process 4 will
enter its critical region.

Figure 2. An execution of the algorithm.

Impossibility Result

In this section, we show that there is no
mutual exclusion algorithm guaranteeing
bounded bypass with fewer than 2
historyless object instances. We follow the
proving strategies proposed by Burns and
Lynch [1]. Their model contains only
read-write register. We extend the model to
include historyless objects and prove our
result. The following definitions will be used
in the proof. The first two are directly

borrowed from [10].

Definition 1. System states s and s' are
indistinguishable to process i, written as
s[i]s’, if the state of process i and the values
of all object instances are the same in s and
s'.

Definition 2. A system state s is idle if all
processes are in their remainder regions in
s.
Following from the progress condition, a
process starting from an idle state and
involving its steps only will reach the
critical region. Furthermore, a process
starting from a system state that is
indistinguishable to an idle state for this
process and involving its steps only will also
reach its critical region, since the state of
this process and the values of all object
instances are the same in these two system
states.

The last definition generalized the one
defined by Burns and Lynch [1]. According
to their original definition, a process covers
read-write register x if a write operation of
the process is enabled to write x. An enabled
write will overwrite the variable it involves.
Inspecting a historyless object instance x,
once a non-trivial operation is enabled, it
will write a value into the variable and
overwrite other processes might have
written to x. Thus, we generalize the concept
of “covering” to all historyless objects.

Definition 3. Process i covers a historyless
object instance x in system state s provided
that in state s, a non-trivial operation of x is
enabled by process i.
Once process i covers x, i will write a value
into x in its next step.

The main idea of the lower bound is
that when a process covers a historyless
object instance x, it will overwrite other
processes might have wrote to x. If a request
of some process is overwritten, we may let
another process enter its critical region so
many times that violate the bounded bypass
condition.

 6

Before proving the lower bound, a
basic lemma is needed, showing that a
process in its exit region must write
something into an object instance.

Lemma 1. Suppose that A is a mutual
exclusion algorithm for n ≥ 2 processes.
Suppose that s is a reachable system state in
which process i is in the critical region. If
process i reaches R in an execution fragment
starting from s that involves steps of i only,
then it must write some object instance
along the way.

Proof. Let α1 be any finite execution
fragment that starts from s (i in C), involves
steps of i only, and ends with process i in R.
By way of contradiction, suppose that α1
does not include any write to an object
instance. Let s' be the state at the end of α1 .
s [j] s', for all j ≠ i, since the values of all
object instances remain unchanged.

According to the progress condition,
there is an execution fragment starting from
s' and not including any steps of process i, in
which some other process reaches C.
Because s [j] s', for all j ≠ i, there is also an
such execution fragment starting from s.

An execution α violating the mutual
exclusion is easily constructed as follows.
Execution α begins with a finite execution
fragment leading to reachable state s, then
let another process go to C without any steps
of i. Since there are two processes in C at
the end of α, this violates the mutual
exclusion condition. □

Theorem 1. If algorithm A solves the mutual
exclusion problem for n > 2 processes and
guarantees bounded bypass, using only
historyless objects, then A must use at least
2 object instances.

Proof. Suppose for the sake of contradiction
that there is such an algorithm, A, using only
one historyless object instance, say x, and
guaranteeing b-bounded bypass. We
construct an execution of A that violates
bounded bypass.

There is an execution involving process
1 only, starting from an initial state s which
is idle, that causes process 1 to enter C once
and back to an idle state s'. Lemma 1 implies
that when process 1 is in the exit region, it
must write x.

First, we construct α1 by running process 1
alone from s until it last covers x. Then we
extend α1 to α2 by causing process 2 to
perform a locally controlled step in the try
region and continuing to run process 1 one
step, which writes a value into x. Let the
final states of α1 and α2 be s1 and s2,
respectively. In states s' and s2, x has the
same value and therefore s' [i] s2, for all i ≠
1 and 2. Only process 1 might know that
process 2 has preformed a locally controlled
step by the return value when process 1
overwrote x.

Since s' [i] s2, for all i ≠ 1 and 2, and s'
is an idle state, we run process 3 alone,
starting from s2, and let process 3 to enter
the critical region b+1 times, which causes
process 3 to bypass process 2 more than b
times. This is the needed contradiction. □

四、計畫成果自評

 執行計畫過程中，我們針對計畫的目

標稍做修改，改以空間複雜度來作為研究

不同 atomic 指令用來設計互斥問題的極
限。也就是說，研究運用不同指令設計互

斥問題所需的記憶體空間。我們希望可以

設計出既公平又節省記憶體空間的演算

法。此類演算法非常適合那些需要即時又

本身記憶體空間不多的系統，嵌入式即時

系統即是一例。

 針 對 這 樣 的 需 求 ， 我 們 利 用

fetch&store 設 計 出 既 公 平

（bounded-bypass） 又只需二個變數的演
算法。並且證明用相同的指令已經達到空

間複雜度的下限，亦即不可能有更好的演

算法。

 相關的成果已經先以會議論文發表，

詳見參考文獻[15]。目前正準備投稿至期

 7

刊。

五、參考文獻

[1] J. A. Burns and N. A. Lynch. Bounds on shared

memory for mutual exclusion. Information and
Computation, 107(2):171--184, December 1993.

[2] J. E. Burns, P. Jackson, N. A. Lynch, M. J. Fischer,
and G. L. Peterson. Data requirements for
implementation of n-process mutual exclusion
using a single shared variable. Journal of the ACM,
29(1):183--205, January 1982.

[3] T. S. Craig. Queuing spin lock algorithms to
support timing predictability. In Proceedings of
the 14th IEEE Real-Time Systems Symposium,
pages 148--156, December 1993.

[4] E. Dijkstra. Solution of a problem in concurrent
programming control. Communications of the
ACM, 8(9):569, September 1965.

[5] F. Fich, M. Herlihy, and N. Shavit. On the space
complexity of randomized synchronization.
Journal of the ACM, 45(5):843--862, September
1998.

[6] M. J. Fischer, N. A. Lynch, J. E. Burns, and A.
Borodin. Distributed FIFO allocation of identical
resources using small shared space. ACM
Transactions on Programming Languages and
Systems, 11(1):90--114, January 1989.

[7] S. S. Fu and N.-F. Tzeng. A circular list-based
mutual exclusion scheme for large shared-memory
multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, 6(6):628--639, June
1997.

[8] T.-L. Huang. Fast and fair mutual exclusion for
shared memory systems. In Proceedings of the
19th IEEE International Conference on
Distributed Computing Systems, pages 224--231,
June 1999.

[9] T.-L. Huang and C.-H. Shann. A comment on A
circular list-based mutual exclusion scheme for
large shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems,
9(4):414--415, April 1998.

[10] N. A. Lynch. Distributed Algorithm. Morgan
Kaufmann, 1996.

[11] J. M. Mellor-Crummey and M. L. Scott.
Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM
Transactions on Computer Systems, 9(1):21--65,
February 1991.

[12] I. Rhee. Optimizing a FIFO, scalable spin lock
using consistent memory. In Proceedings of the
17th IEEE Real-Time Systems Symposium, pages
106--114, December 1996.

[13] K. Sakamura and N. Koshizuka. T-engine: the
open, real-time embedded-systems platform. IEEE
Micro, 22(6):48--57, 2002.

[14] K. M. Zuberi and K. G. Shin. An efficient
semaphore implementation scheme for
small-memory embedded systems. In Proceedings
of the Real-Time Technology and Applications
Symposium, pages 25--34. IEEE, June 1997.

執行本計畫之著作
[15] Sheng-Hsiung Chen, Ting-Lu Huang. A fair and

space-efficient mutual exclusion using read/write
and fetch&store primitives. In Proceedings of the
International Conference on Informatics,
Cybernetics, and Systems (ICICS'03), pp.
1059-1064, Kaohsiung, Taiwan, Dec. 2003.
Available at:
http://www.csie.nctu.edu.tw/~chenss/papers/ICIC
S2003.pdf

