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一、中文摘要 

  

 針對像嵌入式即時系統這樣具有時間

及資源限制的應用，所設計的互斥問題必

須公平且降低所需的記憶體空間。因此，

我們提出一個公平(bounded-bypass)且僅
使用二個變數的互斥演算法。一個變數為 

read-write register，另一個為 fetch&store 
register。若以達到相同公平性而言，我們
也證明了使用 historyless 物件來設計互
斥演算法則至少需要二個物件，亦即本計

畫所提出的演算法用了最少的記憶體。所

謂 historyless 物件（包含 read-write register
及 fetch&store register）即其值決定在最後
一個寫入的指令，與原本的值無關。此外，

即使所用的物件可包含無限多的數值，這

個至少需要二個物件的下限依然成立。 

 

關鍵詞：互斥問題、不可分割指令、分享

記憶體系統、公平性、空間複雜

杜、下限 

 

Abstract 
 
  For a shared memory system with 
time and resource constraints such as an 
embedded real-time system, a mutual 
exclusion should be fair and space-efficient. 
We present a bounded-bypass algorithm 
using only constant two shared variables: 
one read-write register and one fetch&store 
register. To achieve the same level of 
fairness, we show that, using historyless 
objects, two shared object instances are 
necessary, and therefore our algorithm is 
space optimal. An object is described as 

historyless if and only if its value depends 
only on the last nontrivial operation applied 
to it. This lower bound holds even if the 
objects have infinite size. 

 
Keywords: mutual exclusion, atomic 

instructions, shared-memory 
systems, fairness, space 
complexity, lower bound 

 

二、緣由與目的 

 
The mutual exclusion problem [4] is 

fundamental in asynchronous shared 
memory systems for managing accesses to a 
single indivisible resource. In this problem, 
a process accesses the resource within a 
distinct part of code called its critical region. 
Before and after executing the critical region, 
a process executes trying and exit regions, 
two other parts of code, respectively. The 
problem is to design the trying and exit 
regions guaranteeing the following 
requirements. 

z Mutual Exclusion: At most one 
process at a time is permitted to 
enter its critical region. 

z Progress: If some process is in the 
trying region and no one is in the 
critical region, then at some later 
point some process enters the 
critical region. In addition, a 
process in the exit region will 
eventually enter the rest of code, 
called the remainder region. 

 
The burgeoning applications for 

embedded real-time systems such as 
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automotive control systems, cellular phones 
and home electronics have created a demand 
for algorithms in these systems [13]. An 
algorithm suitable for these environments 
must meet two constraints: time constraint 
and resource constraint. Thus, a mutual 
exclusion algorithm should be fair and 
space-efficient. 
 

A mutual exclusion algorithm may not 
guarantee the critical region is granted 
“fairly” to different processes; that is, 
starvation may occur. A fair mutual 
exclusion algorithm means that it has the 
ability to control the order of granting 
requests in a fair manner such that no 
process will starve. In a system with time 
constraint, a process has a deadline in 
executing a particular job. The goal of a fair 
mutual exclusion is to reduce the worst-case 
time, preventing a process overshoots its 
deadline. 
 

On the other hand, the major goal of a 
space-efficient mutual exclusion algorithm 
is to reduce the memory consumption. It is 
crucial for systems with resource constraint. 
For instance, embedded systems often have 
small memory (about 32--64 kBytes [14]) 
since making low production costs is one of 
the primary concerns in their design. Thus, 
an algorithm for such systems must be 
space-efficient. 
 

Recent work on the mutual exclusion 
problem has focused on designing local-spin 
algorithms which minimize the required 
number of remote memory references [11, 3, 
7, 9, 8]. It is because remote memory 
references cause processor-to-memory 
traffic which may result in memory 
bottleneck in general distributed shared 
memory systems. Since each process must 
have at least one shared variable that is 
locally-accessible, at least n shared variables 
are needed, where n is the number of 
processes. However, the number n may be 
very large and therefore these algorithms are 
not suitable for space-limited systems, 
although some of these algorithms are fair. 

 
The primary contribution of this project 

is a fair and space-efficient mutual exclusion 
algorithm. Our algorithm has the following 
advantages. 

z Fair: The algorithm is 
2-bounded-bypass. 

z Space-efficient: Only constant 
two shared variables are needed. 

 
We say that a mutual exclusion 

algorithm satisfies b-bounded bypass if a 
requesting process cannot be bypassed by 
any certain process in accessing the resource 
for more than b times. An algorithm is 
bounded-bypass if it is b-bounded bypass for 
some b. 2-bounded bypass is very close to 
the first-in-first-out (FIFO) order, the most 
stringent fairness requirement, which is a 
kind of 1-bounded bypass. (More precisely, 
a FIFO algorithm is also 1-bounded bypass, 
but the reverse is not true.) For most 
applications, we believe that our 
2-bounded-bypass algorithm is good 
enough. 
 

To implement our algorithm, we use 
primitive fetch&store in addition to read and 
write primitives. Burn and Lynch [1] has 
shown n shared variables are necessary to 
solve the n-process mutual exclusion 
problem if only read and write primitives 
are available. Thus, we need certain more 
powerful primitive to reduce the space 
complexity. Fortunately, modern 
microprocessors often provide some 
read-modify-write (RMW) primitives such 
as test&set, fetch&store, compare&swap, etc. 
In one instantaneous step, a RMW primitive 
can read a shared variable and write back a 
new value according to the current value and 
the submitted function. We use fetch&store 
to implement our algorithm since it is the 
most commonly supported instruction in 
modern microprocessors such as a series of 
processors of Intel and AMD, Motorola 
88000, and SPARC [12], making the 
algorithm more portable. 
 

Notice that, in the literature, there are 
several algorithms using only one shared 
variable and guaranteeing certain level of 
fairness. For instance, Fischer et al. [6] 
devised a FIFO algorithm. Burns et al. [2] 
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devised a bounded-bypass algorithm and a 
starvation-free algorithm1. Unfortunately, all 
of these algorithms used hypothetical RMW 
primitives which have never been 
implemented in any system shipping today. 
In contrast, our algorithm uses no 
hypothetical RMW primitive and requires 
only one more shared variable than these 
algorithms. 
 

Our algorithm is inspired by the 
circular list-based mutual exclusion 
algorithm proposed by Fu and Tzeng [7, 9]. 
Similar to their method, our algorithm also 
let waiting processes form a list. But the 
way to convey permission in a list and 
between two lists is very different from 
theirs. In fact, the problem they tackle is to 
reduce the number of remote shared memory 
accesses, but we desire to reduce the space 
complexity and meanwhile, guarantee 
certain level of fairness. 
 

In addition, it is impossible to obtain 
bounded-bypass algorithm with less than 
two shared variables, using fetch&store as 
well as read and write; that is, our algorithm 
is space optimal. We prove it by showing a 
more general result: using only historyless 
objects, two shared object instances are 
required to implement a bounded-bypass 
algorithm. The definition of a historyless 
object is given by Fich et al [5]. Informally, 
an object is historyless if and only if its 
value depends only on the last nontrivial 
operation applied to it. A nontrivial 
operation is one that will write a value into 
the object. For example, read-write registers, 
fetch&store registers and test&set registers 
are historyless. This lower bound holds even 
if the objects have infinite size. 
 

Our lower bound proof technique is 
related to the method introduced by Burn 
and Lynch to prove the lower bound of n on 
the number of read-write registers required 
to solve the n-process mutual exclusion 
problem [1]. The difference is that our lower 
bound applies to all historyless objects 
                                                 

1  Indeed, their work aimed at theoretical 
discussion between data requirements and different 
fairness conditions. 

rather than only read-write registers. 
Moreover, our lower bound is for 
bounded-bypass mutual exclusion 
algorithms, whereas Burn and Lynch 
consider the general mutual exclusion 
problem. 
   

 
三、結果與討論 

 

The Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1. The algorithm. 

 
We begin by presenting the main idea 

of the algorithm in an informal pseudocode 
style as shown in Figure 1. Exactly two 
shared variables are used in the algorithm: 
variable L is used to arrange processes' 
requests to critical regions; while variable P 
to indicate which process has permission to 
enter its critical region. Initially, variables L 
and P are set to nil, respectively. 
 

Through variable L and fetch&store 

Shared variables: 
L ∈  {nil,1,…,n}, initially nil 

  P ∈  {nil,1,…,n}, initially nil  
 
Process i : (1 ≤ i ≤ n) 
 
Private variables: 
next ∈  {nil,1,…,n} 
tail ∈  {nil,1,…,n} 
 

while true do 
R:    Remainder region 
T1:   next := fetch&store(L, i); 
T2:   if next = nil then 
T3:     await P = nil; 
T4:     P := i; 
T5:   else 
T6:     await P = i; 
T7:   fi 
C:    Critical region 
E1:   if next = nil then 
E2:     tail := fetch&store(L, nil); 
E3:     if tail ≠ i then 
E4:       P := tail 
E5:       await P = i; 
E6:     fi 
E7:     P := nil; 
E8:   else 
E9:     P := next; 
E10:  fi  

od 
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primitive, the order to enter the critical 
region is organized as a circular waiting list 
in which the first element has the identity of 
the last one, and each other element has the 
identity of its predecessor. A circular list is 
formed as follows. Each process i makes a 
request by a fetch&store onto L (T1), 
announcing its process identity and 
obtaining the predecessor's identity if has 
one. Any process which acquires a nil from 
L (i.e., next = nil) becomes the header; 
otherwise, it becomes a list member. (A 
header is also dubbed a controller and has 
extra duty at its exit region.) A waiting list is 
closed after the controller leaves its critical 
region and resets L as nil (E2). The 
controller stores the identity of the last 
element in the list into its private variable 
tail. This closed waiting list contains all 
processes making a request between the 
controller obtaining nil from the L (T1) and 
resetting L as nil (E2). Note that, only after 
the current controller closes its waiting list 
such that L will become nil again, a new list 
might start to form. 
 

The value of shared variable P 
indicates which process has permission to 
enter its critical region now. After making a 
request, a controller repeatedly tests the 
value of P until P is equal to nil (T3), a 
specific permission for a controller. The 
controller takes the permission by assigning 
P as its identity (T4). (This action prevents 
another new controller to enter its critical 
region.) In contrast, a list member i---that is, 
if nexti ≠ nil---checks the value of P until P 
= i (T6) indicating i gains the permission to 
enter its critical region. Since P is nil 
initially, the first controller at all will gain 
the permission to enter its critical region. 
 

After a process leaves its critical region, 
it should convey the permission to certain 
waiting process if has one. As a list member, 
the process simply transfers the permission 
to its predecessor by setting P as next (E9) 
and then enters its remainder region. As a 
controller, after closing the waiting list, if 
the list contains any process other than the 
controller, it passes the permission to the last 
element in the list by setting P as tail (E4). 

The permission will be passed from the last 
element back to the controller, i.e., in the 
reverse order of processes making a request. 
The controller is blocked until the 
permission passes back to itself (E5). 
 

Although resetting L as nil might 
introduce a new controller, this new 
controller and subsequent requesting 
processes will not obtain the permission and 
this new waiting list will not be closed 
unless all processes in the previous circular 
waiting list have finished their critical 
regions. (Hence, there are at most 2 waiting 
lists simultaneously, and at most one of 
these two lists contains the permission.) This 
contributes to the bounded bypass property 
of our algorithm. The new controller will get 
the permission after the permission passes 
back to the previous controller causing the 
previous controller to reset P as nil (E7). 
 
An execution of the algorithm. 
 

An example is given in Figure 2, 
showing that how to arrange the order to 
enter the critical region for requesting 
processes. Initially, both of shared variables 
L and P are equal to nil (see Figure 2(a)). 
Process 1 first makes a request by executing 
T1. Since next1 = nil and P = nil, process 1 
enters its critical region after assigning P as 
1 (see Figure 2(b)). As process 1 is in C, 
processes 2 and 3 execute T1 in turn. 
Because neither process 2 nor process 3 gets 
nil from L, processes 2 and 3 are waiting at 
T6. The waiting list is shown at Figure 2(c). 
Then, process 1 leaves its critical region. 
Since process 1 is a controller (next1 = nil), 
process 1 closes the waiting list by 
executing E2 which returns the tail of the list 
and resets L as nil (see Figure 2(d)). Process 
1 passes the permission to the tail of the list 
(see Figure 2(e)). The permission will be 
passed one after one in the waiting list. 
Process 1 is blocked until the permission 
backs to itself. During the period after 
process 1 closes the waiting list, subsequent 
requesting processes will be blocked. For 
example, after process 4 gets nil from L by 
executing T2, it is waiting at T3. Figure 2(f) 
shows that the permission backs to process 1, 
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that is, all requesting processes in the 
circular waiting list have finished their 
critical regions. Process 1 resets P as nil to 
let process 4 enter C (see Figure 2(g)). After 
observing P is equal to nil, process 4 will 
enter its critical region. 
 
 

 
 

Figure 2. An execution of the algorithm. 
 
 
Impossibility Result 
  

In this section, we show that there is no 
mutual exclusion algorithm guaranteeing 
bounded bypass with fewer than 2 
historyless object instances. We follow the 
proving strategies proposed by Burns and 
Lynch [1]. Their model contains only 
read-write register. We extend the model to 
include historyless objects and prove our 
result. The following definitions will be used 
in the proof. The first two are directly 

borrowed from [10]. 
 
Definition 1. System states s and s' are 
indistinguishable to process i, written as 
s[i]s’, if the state of process i and the values 
of all object instances are the same in s and 
s'. 
     
Definition 2. A system state s is idle if all 
processes are in their remainder regions in 
s. 
Following from the progress condition, a 
process starting from an idle state and 
involving its steps only will reach the 
critical region. Furthermore, a process 
starting from a system state that is 
indistinguishable to an idle state for this 
process and involving its steps only will also 
reach its critical region, since the state of 
this process and the values of all object  
instances are the same in these two system 
states. 
 

The last definition generalized the one 
defined by Burns and Lynch [1]. According 
to their original definition, a process covers 
read-write register x if a write operation of 
the process is enabled to write x. An enabled 
write will overwrite the variable it involves. 
Inspecting a historyless object instance x, 
once a non-trivial operation is enabled, it 
will write a value into the variable and 
overwrite other processes might have 
written to x. Thus, we generalize the concept 
of “covering” to all historyless objects. 
     
Definition 3. Process i covers a historyless 
object instance x in system state s provided 
that in state s, a non-trivial operation of x is 
enabled by process i.  
Once process i covers x, i will write a value 
into x in its next step. 
 

The main idea of the lower bound is 
that when a process covers a historyless 
object instance x, it will overwrite other 
processes might have wrote to x. If a request 
of some process is overwritten, we may let 
another process enter its critical region so 
many times that violate the bounded bypass 
condition. 
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Before proving the lower bound, a 
basic lemma is needed, showing that a 
process in its exit region must write 
something into an object instance. 
 
Lemma 1. Suppose that A is a mutual 
exclusion algorithm for n ≥ 2 processes. 
Suppose that s is a reachable system state in 
which process i is in the critical region. If 
process i reaches R in an execution fragment 
starting from s that involves steps of i only, 
then it must write some object instance 
along the way. 
 
Proof. Let α1 be any finite execution 
fragment that starts from s (i in C), involves 
steps of i only, and ends with process i in R. 
By way of contradiction, suppose that α1 
does not include any write to an object 
instance. Let s' be the state at the end of α1 . 
s [ j ] s', for all j ≠ i, since the values of all 
object instances remain unchanged. 
 

According to the progress condition, 
there is an execution fragment starting from 
s' and not including any steps of process i, in 
which some other process reaches C. 
Because s [ j ] s', for all j ≠ i, there is also an 
such execution fragment starting from s. 
 

An execution α violating the mutual 
exclusion is easily constructed as follows. 
Execution α begins with a finite execution 
fragment leading to reachable state s, then 
let another process go to C without any steps 
of i. Since there are two processes in C at 
the end of α, this violates the mutual 
exclusion condition. □   
 
Theorem 1. If algorithm A solves the mutual 
exclusion problem for n > 2 processes and 
guarantees bounded bypass, using only 
historyless objects, then A must use at least 
2 object instances. 
 
Proof. Suppose for the sake of contradiction 
that there is such an algorithm, A, using only 
one historyless object instance, say x, and 
guaranteeing b-bounded bypass. We 
construct an execution of A that violates 
bounded bypass. 
 

There is an execution involving process 
1 only, starting from an initial state s which 
is idle, that causes process 1 to enter C once 
and back to an idle state s'. Lemma 1 implies 
that when process 1 is in the exit region, it 
must write x.  
 
First, we construct α1 by running process 1 
alone from s until it last covers x. Then we 
extend α1 to α2 by causing process 2 to 
perform a locally controlled step in the try 
region and continuing to run process 1 one 
step, which writes a value into x. Let the 
final states of α1 and α2 be s1 and s2, 
respectively. In states s' and s2, x has the 
same value and therefore s' [ i ] s2, for all i ≠ 
1 and 2. Only process 1 might know that 
process 2 has preformed a locally controlled 
step by the return value when process 1 
overwrote x. 
 

Since s' [ i ] s2, for all i ≠ 1 and 2, and s' 
is an idle state, we run process 3 alone, 
starting from s2, and let process 3 to enter 
the critical region b+1 times, which causes 
process 3 to bypass process 2 more than b 
times. This is the needed contradiction. □ 
 

四、計畫成果自評 
  
 執行計畫過程中，我們針對計畫的目

標稍做修改，改以空間複雜度來作為研究

不同 atomic 指令用來設計互斥問題的極
限。也就是說，研究運用不同指令設計互

斥問題所需的記憶體空間。我們希望可以

設計出既公平又節省記憶體空間的演算

法。此類演算法非常適合那些需要即時又

本身記憶體空間不多的系統，嵌入式即時

系統即是一例。 
 
 針 對 這 樣 的 需 求 ， 我 們 利 用

fetch&store 設 計 出 既 公 平

（bounded-bypass） 又只需二個變數的演
算法。並且證明用相同的指令已經達到空

間複雜度的下限，亦即不可能有更好的演

算法。 
 
 相關的成果已經先以會議論文發表，

詳見參考文獻[15]。目前正準備投稿至期
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刊。 
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