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Abstract

In this two-year project, we intend to propose
methods for the following two significant
subjects in Ordinal Optimization Theory: (i)
Finding the better N samples and (ii)
Constrained Ordinal Optimization Problems.

In the first subject, we have proposed a
method combined neural network and genetic
algorithm to find the better N samples and then
to find a good enough solution, which will be
better than that can be found in the current
Ordinal Optimization method. This research
result had been presented in 2003 ASMC held
in Munich, Germany. In this year, we propose
a new method to solve constrained ordinal
optimization problem and apply it to the
optimal power flow problem with discrete
control variable.
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An Ordinal Optimization Theory-Based Algorithm
for Solving the Optimal Power Flow Problem
With Discrete Control Variables

Shin-Yew Lin, Yu-Cha Ho, and Ch'i-Hsin Lin

Abstpm =T e o ptimal pswer fow (OPF) problom with disoreie
comlrol varialdes s an SPhard problem im s exact fornmla-
liwm, Tie cope with tbe inmmewse compul alioel il of this
preblem. we propose an ording eplimizsiden (heorybased algo-
ritbmn G solve B apood cnongh soluion wilh high probakibin.
Adming for hard splimisstion profiems, the ordinal oplimioion
ey, im contrast (o bearieb metbods, puaramiee te provide s
liwp e T suibumion snwin oll with prolabiliny. mene Dhesn 0095, Th
approach of oar ordinal splimization theory-hased  algorithm
coielals ol three dinges. Firsl, sclicl houristically & large sa ol
comlidile sobulions. Thone use o simplificd nodhd §o seled g
stibssil ol maos) proamixing seutions. Fimally, cvabuate the candidaie
s sl loms of the rodeced subsel using e cvsct nesdel.
Wi have demssstnsed the computaonal eflicency of our alges
ribun andd the quality of the obisined sshution by comparing witk
il commpset o nueibels sl Uhe conyentlomsl approsch thirmipgh
=i il liom s

fter Fremts—INserete cinirsd varbables, nomlines program-
nbi iz eepeliial porser Wow, ordisal oplimizaslion,

NOMINCLATURE

L] w=dimenseonal vecior of discrete cons
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X n-dimensional vector of continuous
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iy Sample space of 1y,
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Ubjective function such as the 1oial
power generation eost or the 1ol
sysbam lnxses,

Mized  diserete-continuous  nonlinear
optimizaticn prablem such a= the op-
Nimial power Row (OPF) prl.i'lh:u!l with
discrete eontrol variables

mixed  discrebe-cominuoss  nonlinear
optimization problem (MDCE for a
EIVEN .

Representation of a lvpieal objective
fanction in ordinal opamizastion theory,
Continuous versien of 1.

Livaver amd upper limit of .

The jth component of 1ip and .
Contineous  nonlimear  optimization
Prablem formed by replocing iy in
BT witls wi

Liocal optimal solmeon of continuous
monlinear oplmization prsblen (CPL
Thee gtk componemt of ul,

M earest discrete value of gy I.-u--l.q,‘- o
the right-hand {lefi-hand b sicks nF:L‘J.
= g — Lacgl or ;=[]
Deviamon of optimal chpctive value
cansed] by .J.-'l.l;‘l!

Lagrange mulfipli-.*r assoiated  with
mr.aggl = 0 al the opiimal solubon
Lt Long f of CR

Pamial derivative af y{;'l_m_._:,u,,_.] w.I.L
iy evaluaned a0 (sl ] ol L

Pamial derivative of :,r[:'uh_._:. s ] WL
Wi evluated an (a2, uZ].
Dreviation of optimal objective value of
CP due 10 1be change of %, from ol 1o
gl 41

Representative set of L

Mumber of samples in M.

Belected subset or estimated good
envugh subsel which consisis of the
estimates] top % samples of M,
Number of samples in 85,

A pprosi med e s ution af
MIDCT 11},

M uinher of Lo :ll||'||:lln in 85 orderad
by the objective values of the quadrabe
approximate solutions of I ug)
thist are guaraniesd o consist of & good
envugh solution of MOCE



[ INTRODOCTION

HE OPF problem has o long history in power-system

research. Mumerous numwernical wechnigues  had  been
developed for this problem such as the successive linear
programiming method [21]-[23], successive quadratic program-
ming (5P method [4], [6]. [26]. Lagrange Newton mesthod
[19], [24]. [25]. the imterice point method [28]-{30], and the re-
cent dual-tvpe method [11] [12]. 1141 Howeser, these methods
are destgned for puncly continuous-varable OPE. In neality. the
power systems consist of several discrete control vanables such
as the swiching shunt copacitor banks. which are switched
aon and ofl in order by comred the volinge profile and neduce
pctive poser transmission losses and ransformer taps. which
are aljusiad ssep by siep (o ensure that a voltage-conne led
s meaxintains s voltage within acceptable linits, In most of
the existing OPF algorithms including the above-nsentioned
anes, discrele controls ane treated as continuoas vanables aniil
they are approximately optimized. Then they are rounded off
o their nearest diserete values, Simply romnding off descrete
oonirols can cause o comsiderable increase of the objective
volue andior viedations of ineguality construints. This defi-
ciemcy had becn reeognized by Tinmey o al in [27]. A linear
programming-based method wos developed in [2] v deal with
this vype of mined disensic-continuous nonlimear programming
problems: howeyver, iL s oo 11 consumiing.

Ta cope with the computational intraciability and the disacd-
vamtages induced by arbitrarily rounding of T technigue, a pe-
alimed discretizaton algerithm is propossd by Lin e ol in
[15]. They employed a complicated 15 mles g minsduce the
quadratic limil penalty of a discrole control dunng the salulion
process of a Newton OPE They finally fix the penalised contin-
uous discrebe-contral al its discrete value based on o local con-
vergence criteria. In other words, they proposed a rounding off
technique based on o penalized discretization, Thus, this method
canned completely resolve the problem of infeasibility cased
by not treating the diserete control variahles in their exact foem,
Tar solve the QPF with dascrete contred vanables in o more exact
manmer, Bakirteis o al proposed an enhanced genetic algo.
rithn (GAY i [1). which needs only the power flow solutions
for fitness evaluabon, hewever, sacrificing the hard resincion
an branch flow limits. Thas, violabons of mequality constrainis
vy e ur in this method. Recent methods than trean the discrere
control variahles in their exact form and 1ake the feasibility of
CHP'F i account ane the mean feld thoory-based anmealing al-
gorithim [3], the evolutionsy algosithin [ 17]. amd ihe 1abu seanch
miethod [9]. However, these methods use glohal searching tech-
nuque, whach is very computationally time-consumimg proveded
that the size of the search space 15 hoge.

Ter votain tlwe mwerits of the sbove thnee nacthods i handling
the discrete control varsbles and the Teasibility of OPF while
avedding their immense compulational-conmplexity, we intend w
s the crchmal optimization (00 technigque, which is recently
developed by Ho and his colleagues | 7). [E]. This optimization
techivique can effectively reduce the namber of search samples
of the huge sample space formexd by all discrete contred variables
and seek o pood enough solution with high prebahility insiead
of searchang the best for swre. Thus, the pusgrose of this paper

TIEE TRANSACTEONS ON POWER SYSTIAES

is e projpose an OO theory-kased algonthm o salve For a goosd
cnough salution ol the OPF sith discrete comiral vanables ¢-
clemtly. The approsch of cur algonthm consmsts of three stages.
First. select hearsiscally o lange set of candsdase selutions. Then,
sz @ simplified model o select a subset of most promising =o-
laiiens, Finally, evalasie the candidate promising-soluiions of
thie reduced subset using the exact model,

Simee OO0 iz o rather new optimization echmigee, we will in-
clude some rebevant materials im the appendices for casier nef-
crence. Thus, our paper 15 organized 0 the following manner.
In Section 11, o mathematical formulation of the OPF problem
with discrebe control varsshles will be presented. In Section 1L
we will present owr approach based on the (i theary tosolve for
o good enomgh solation of the OPF problem with diserete con-
triol wariahles, In order ot io affect the Muency of presentation, a
detailed review of the OO tbeory [T]. [8]. the applications of the
alignment prebabilicy [10] v our problem aod & comment for
addressing the guesiion negarding infeasible solutions nre given
in Appendsces A&, B, and O, respectively. In addition, an efficien
dualtype method for solving @ =et of quadratic programming
problems, which are induced from our appronch os siated m Sec-
on 1L, 15 presemted in Appendix [, 'We concluded Section 11
by presenting an online algonthm for shuaining a gosd cmigh
solution of the OFF problem with discreie conrol variables, The
test resulis and the comparizons of our online algorthm with the
cofveilional approseh and the competing methods on the IEEE
| 1B:bus sy=tem and the [EEE 244-bus sysiem are presented in
Section Y. Finally, we make o conclusson in Sechion W,

Il MaTHEMATIC AL FoRMULATHN OF THE OFF ProgLEs
WirrH Descreme: Coxmeol VARIABLES

The OPFF problem with discrete control vanables is a type of
MECP which can be formulased o=

(MDCT) gu&j (]
=u|2|jl..1‘| b gIE:J: 1'“'4'] =i
Arl<o
g e g (13

This optimization problem is o find the contineas and dis-
crele conlml n.'llirl,g: s as b mdidimiee the d:ljtrﬁ'w lunclion
while sati=lying the reguined constraints.

‘W can rewrite the MOCP shown in (1) a=

s {mdn flr, g | lrwgd = OM1 0] @)
where we denoie the optimization problem inside the brackes
fivr o given s € L as MDCP gl that is

MDD Tyl = {ng.n Sl | gt g =0 Jx) < 0, (%)

In comvention and proctical applications of power syslems,
6 locnl solution of the OFF b= wsunlly sought. However, in the
MIECP showm in (21, we can tell that even if we require o local
solution onlly, we still need oo solve the MICFT g ) for al sam-
ples s = &5, Thus, sapprse each discrete control variable has
p possible diserete values, then there will be p™2 samples in the
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sample space £y, To give a flavor of the numerical value of
the size of Ly msuming ng = S0, and = 4. there will be
Az 0™ gamiples in D Therefore, it will be compuiniion-
ally introctahle o sodve for & local optimal solution of MIDCP
shosen i (20 wsang a global seanching vechnigue,

HL O THECOHY - BASED AMHoscH

Drenoting the aptinal objective value of the optimization
problem MDCT (1] for a given 1ig as & function of s, say
Syl then (20 becomes ming, ap, Mine) which hos exactly
the same Form as the optimdeation problem wrewied m O
theory [T [8]. Before stating our approach for the MDCP in
(2}, we wall briefly state the klea of OO theory mthe following
while the detanls are given i Appendix A

A Bevew of T Thear

The (10 theory is o new methodology designed o cope with
hard probéems such s the lock of structare problems, proh-
lems with uncerainties, or problenrs with hoge sample spoce
that grows exponentially with respect 1o the problem size, The
problem considered im this paper is of the latder kind, There
ang twio basic lenets of the OO theory. The fimst is tbal of order
versus value i decisson making. s obvious that determming
whether Mlugy < Mlugg) is much casper than delermmiiing
_.|"'l'1:.,u] - fl:u] =T comsicer the imlaitive r:umqﬂ.r al deter-
mining which of ihe two boxes in two hands is heavier versus
icdentifying how much heavier one is than the caher, The second
ferect is the gl sofiening, lrsiend of asking the best for sure in
optimization, it settles for the gead comigh with high probas
billity. A conclusion drwen from the U0 theory s the following.

Supposs we simullansously evaluate a lange set of albematives
very approsimalely and order them acconding 1o the approxi-
mube evaluniien. Then thene is high probabalivy that we can find
the actual good altematives il we limit ourselves wo the op 5%
of the okeerved gord chaices,

Thus, first. we nee only a very rough medel oo arder the goosd-
ness of o selution relying on the robustiness of ORIER agains
noise and mode] ermor o separaie the good from the bad. Second,
we soften the goal of the problem and beok for o good onough
salubion, which is among the wop 5% of the search space £,
with high probability. These two steps greatly reduce the com-
putaticnal burden and search difficultees of the problem as wall
bhe detmiled in Appendix A A sammary of these search proce-
dures for obiaining a gosd coongl solution of ming, e 1 ug)
with high probability can be deseribed in the following: i)
Using either a uniform selection or a heunstic meloed o se-
lect a pepresentative sot N with size N.say 1000 for tls scarch
space L0g 0} Using an easily compuied crude model so ronghly
evaluate and order the pedormance of each somple i N ond
ollect the b s samples b form o sebscied suhse (55), which
is the ecstinuted gond emongh subset. The (0 theory guar-
antzes that 55 consists of actaal good enogh solutions with
high prolsability. The value of & in owr approach determined
based on ihe alignment probabilicy [10] s 50 as will be do-
seribed in Appendix AL i) Evaluating ihe objectve value of
the MDRCT 1y} for cach sample tig in 55 w obtain the goad
emmigh soluticn,

. Theee-Sfage Approsaci

Based om the above search procedures, our three-stage ap-
proach lor obtaining a good cosigh solution of e MDCP
showin i (21 15 presemied i the Tollowing.

it Using a heuristic method to determine the set 4,

First, we defime tlse MDCP shown in (20 a2 a conlin-
s mom limcar optimizaton probem OO il we e place
the dmscrete 1y as continuouws 1. Thas, the resulting CF
1% showmn m (4}

1 1 al Y — N
;u,,éulféﬂ_l“?nj“' we] |z ) = b bial 0L (4)
Ohwr sirategy o delermine tlbe st M s 1o solve the CP
to oblaan an opimal solution (01"} fist Then,
we can set each component of the discrebe iig. say
tigy. be either L'II:-IJ or rti:_;| An this siage, we have
reduced the search space from p™ 1o 2™, In fagt, this
is a similar inmition s the comventional approach for
solving the MIDXCP in (20, becanse wg belicve that good
solutions should be among the I™ samples. However,
arbitranily reanding off does not guarontee o good
emough solution with high probability. In general
ame e N we need o reduce the search samples further,
Tow o e, we will estimale the deviation of the optimal
objective valoe A (AW ! coused by Ay that is
..l'n._f[.lu:.‘:,] = fir"tulhuwd) — S (ull ull wher
= [y suses in which iy = 1. if ¥ # J, and
upy = |ahJor[ur]. Based on the sensitivity theoreimn
inqi 1], woe cam obiain

'.'I._.III:."H.L,'}-:I F:I.Jl.T"r_u__,ﬂ.r'l'H.']-.u,']'."m:Jr k]
Mow if |3 1A, )| < £ a predetenmined small posi-
tive real number. them we hix the discrete gy al Lﬁd f
A= =ut — [u.] or oA =0T —[ut . In
uleurﬂc:.iféuﬁ!xur::he][ﬂiﬁﬁr[ﬂi :lm!dﬁru-n-
timabed deviation of the objective value 15 small, then we
fix w2y ab [ul. | (o [u2]0 Suppose there are dig fived
by I:;E mlr'r‘rzﬂri.lllmm::';lllmm-i cnmmnmﬁwm
et fimed, Thus, we have further reduced the search sam-

ples from 2™ 10 2%, The valee £ is selecied so that
'j"-'" 22 & The above process conslinules our heurstic

mzthod For determinig the st M.
1w lﬁ:lcmmmg the selecied subset {55) based oo o crude

miclel.
Mow let ws denoie the N samples in M as
Uit = liwaeedV, To pick out the samples te form

&5, we will employ a crode model, which estimancs the
deviation of the oprimal objective value in (4. that is
A [T} = Sl bl h = S~ (gl ) g (711, due
tor the change of 1, from 5 to g (i), The formula for es-
timating & f4i4{ ] is an extension of the formula of (5)
by considening the vecior increment Ay = w® — wgli]
rather than the component increment -_'116:_'_ nrdl 15 sinbed
i e following:

O (i)} 82 ATV gl (ul Ml — walil)  (6)



We order the somples in M based on |8 [ )] ob-
tined From (6 as folbeas, The sample wgli) with lower
walue of | ({eg(113]. that is the sample being less sens-
tive o the optimal objective valee of (45 will be ranked
higher, In caher words, the samples, which are likely
to rebgin the optimal objective valee of (4) are rnked
higher, Consequently, the top ranked sugdi] form 55,
where & denctes the sie of 55 determined hased on
thie alignment probability [ 1] as will be detaibed in Ap-
poilin L The 55 this formed s i osthinated goad
wrpoan gl sabae, Mow according w the OO theory [T, [E]
S8 comsasts of acinal good ciisngh samples with high
prohabiling,

i} Fimding the Good Enmegh Solubion.

Let us demote the samples m 55 by uglfh; =
lyaeagm Suppose we solve the BDCP{ug) cxmaly
for cach sample in 55, the sample thal bas the beast
objective value will be the geod enough solution that
we are booking for as hove been concleded by the (X0
theary [ 7], [5). However, solving s (= 507 MOy,
which are nonlinear constramed optimization problems,
15 Lo L comsuming (o meet e reguireneent of onling
power system operation. Thus, to resolve this compuin-
semal difficuliy. we employ a two-phase sirategy based,
again, on the U0 theory | 7). [B]. Hefore presenting this
Iwosphase sirategy, o tough question that may be ransed
in what il all s samples in 55 e infeasible? We have
mildnzssed this quesion in Appendix O,

Meow as shown in Fig. |, the hasie idea of our
tae-phase sirategy is to evalunte the s somples in 58
wory approximately firs and onder tbem according o
this approsimate evaluation. Them, e sctwal hast
altermative will be contained in the top Few observed
gl chwbees, Thus, in phose 1, we can efficiently solve
for the approximate solutions of the s MO )
and wrder them hased on their corresponding objective
walues, which mepresent e estimated perfommans: of
the 5 ug. Then, in plass 2, we oaly solve for the casa
solutions of the MOCT (i) for the fow wop ranked sam-
ples obtnined in phase 1. and the one with least objective
wulue = the zesd rlulp:i salabion that we look for In
the Followang, wie will describe thes wo-phase approach
i cletail. In the first phasse, we waill solve the MO Cig)
approximately for a given sl by solving its quacratic
approximabe preblem as shown in the following:

s 2 T TV (" () 0) + 002+ [V (e (T2
b eSO () uf e — ug(fY]T A
sulject to
[P L BT B i o F ol (M RE SV |
+ Vad (P (S )Ar =0

el 1)+ Veh T ("0l Ar <0 (7}

whene 1 is an ientity matrix, and § = 0 s a small pos-
trve scalar but encugh to make the Hessann of (7) posive
definile,
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Solve for the approximeie solutions
0 o Moo U fora v )e 57

el | PP T P W—

bt i g (Tl g (T e (0 Mo (050,
then <k

— .
Salve for the exact salution = b, LCR
of MDCP LT fic the 1op &
| %L} ardered in l"hm i

el I [T YO P p—

| sodution whre

u.r{.f,:lnlm{ i oy U o G210 jl

L%

g 1. Teo-ploe srsbeay ke Oinling e goosd daomiph solelion.

Wi et D™ U 10 denote the optimal soluton of (Th then
Mg {1 = 25l ) 4 Ar®(ugdj 1} is the approximate salution
of the optimizabon problem mside the bracket of {2} for 1y =
il 1 We have developed an efficient dual-type method called
CPPOM in [ 1L [12]. 104, which is especially sused forsolving
(i forall samples gl § = loac.s & However, inonder not 1o
affect the Muency of presentation, we will presemt this method
in Apperdix 13, Fusthermore, this dual-type method can also re-
solve the compuiational ditficulty caused by the infensihalsty
of (T) for & gnen IL.,U']. Since the procticnl obgectve func-
tsoms of the OFF soch os the #otal genermbon cost and the okl
system bosses are mositly convex, the quadratic-approximated
MDA ) shoown im (Th should be 3 good approxinate mode |
of the actual MIM Pluy], thus the order of ud {2} i=1,....5
orckered based on the ohjective value S8l 5]ty wal 3} should
b closely nelased w the order of w77 i = lao.. 4 ordered
beawsed on the objective valee Ji=*(ug(7 ) w7 10

Thercfore, we can estimate the pamber of op ranked sam-
ples in Al F'ijgm 1,000, that will consist of the actaal wop
sample ngl ¥} based on the alignment probghility [10], That is,
o estirmte s 2 ach Malm e -[1;.-!'_?;’].1: = l.““.l‘-'"'].
O B2 15 estimiated, we moed oily b salve the exact salution of
Mg} Torargl i b = 1o van & D cuir prodblem. 27 =3
and the desailod proee dures for obtaining &7 basad on the align-
ment probabality | 10] ane described in Appendin B,

i Theorv-Beesed Algoratan for Sehaug the MICP

Mow, we are ready w0 st our algorithm for solving the
NPT shoswem in (2 b obiain & Eoosd cmongh solution,
Step 1) Solve the CF in (4} wsing the methad proposed in
(11 [02] for cbreaine (™01 Ja 1 ).
Step 2 Compate .l_f’_"n{'] by (51 for each j &€
Pt ..l‘n.1.||..__:r = gy - |s anl
Aw?y = wl — [uly] Pick the ! least-value
IJ.Jf_'tt, i, such that 2'1-‘ gz N, then set

Ian I:\: L“ia.l if ‘luﬁ. L%_I rhqll if
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Steps | angd 2 is bow we pick the N samples needed
for ordinal oplimization.
Compate  Afiudd]] by i6)
& gt 3] forall i = 1,....0\,
Bank all M samples based on thewr values of
& g el }] vbtained i Step 3. such that ihe sam-
ples with smaller | fTud#311] will be ranked higher.
Then pick cut the top & samples to form 55,

Steps 3 and 4 use 3 very cnade nisdel o form the
sclected subset (555 required by O theory.

Solve (Th for all swugli) m 55 using the dual pro-
jected  psewdo Quasi-Mewton (IPFPQM) method
desenibed in Appendix [ o ohtain the approx-
imate solusons Hugl ik = lossssa Onder
the s wg(j! bassd on therr approximaie objec-

and colculaie

Step 3)

Sbep 41

Step 5)

ove values JlF(wgidlwdfllg = L., s
w be uglifhd =  l....® ssch that of
.Ir{j"[.':d"_ll':} TN I | PSP 5 PR | N
them & <X

Find the exact solutions of the .\mﬂl‘l’w} in (3] for
N =1,... H_ obtned m Step 3. The one
harving the least ohjective value 1s the gosd cnsagh
solution.
Sbep 5 uses a slighaly more scearate bt sull apgrox-
imate masdel o evaluate the few op-ranked sanr
ples obtamed in Step 4. () theory then guaraniees
that the best ranked sample in Step 6 B ideed good

ciough witl high probabalicy.

Shep &)

1Y Ehplige Meulificarions

It is quite possible than before completing the solution
process of solving the guadratic programming problems shown
an (T For all samaples wglf] in 85, we may already obtain an
approximale selution (80 w3 whose ohjective value
JUE i 1l 718 15 close o fle®(ul].ul ) Corsidering the
limited computation badget for enline optimal poser ow ap-
plication, we should solve for the exact solution of M wy)
For (ks samphe ugl ] immediately imbead of solving inafter all
s quadmbic approximate soluticns are oblains]. Consequently,
if the objective value of the resulting solution of this sample
is close o fLa*(uS ), u®), we have obained & good cnsugh
solution. Ciberwize, we will gooon for the next samphe, Such a
miedification definsely soves compatationnl ime, Thus, we can
milify sbeps 5 and 6 of our algorithm presented in previows
subsection for online applications os folboas,

Step SM: 5ot j = Gand st ) = j+ 1; set the values of
S = ] and g ) sl thee Bos-negative
inleger m = ik

Sobve (T) for i), IF (LRG3 a3 =
[ Fa (' B0 ) [ ECEPP i R 5 |
solve the MIMCTug] for this gl ) o obiain
¥ agl 1) and go o Swep TM: stherwise, set j =
j + 1. |:I'j i 8. repent this step; otherwise, go b
Step HM.

Step TM:  IF (™l T el )

Sl b A" () Wl < e
whenz ¢y 1= a small positive real number, then

Step 6M:

B =0, me0seathe
waluesof # wmd &,

| Sabe CPin (4)

Compate. 4708 in (5)
forall jad, .a] and pick
the 1 leastvane jilaa )|
akhoe I 'e ¥

- .'_

B T
Eﬂ'rr-l'-‘ |lﬂ'-['ﬂ'| ic
[, forall #= LN
mid order them

.
Fick the top 5 sarsples in
from 55 sech it
B, lih =l s}

E{-.m-,[f_&fﬁ-‘[-:l-.'
Ll 0

| Ha Sop and ctpurt the
I___._;r',:;mlmp_ﬂ

\‘““-E“"'ﬂ’
. L Flowchat of proposed online algon thm,

(gt 1 g7 s the good enough soluticn
and stop: otherwise, set (=gl ug ]} as
the temporury geod ensugh solution and check
wheiher there are emough compuiation budge
el o meod, shop anel cutpul the emporary good
encagh solution; otherwise. go e Swep 8M.

) = g stop and output the emporary good
enough salution; otherwse, ==t j = j+ lsin=
m =+ 1 and metwrn o Siep Ghd,

Winh the abaove mosdifications, we show the Mowehart of sur C:0
theory-based online algonthmin Fig. 2, In sdditson, a brnef ills-
tration aboust the parameters ':'i' and & = given in the following
remirk.

Remurek 1) The positive real mumber Py in Step 68 is
wsed to measwre e closencss between Ol 1)Ll 71
and fir*iull,ul). Thus, in Step SM. we can st & b be
a et boo small value, say (K03, so0 as 1o obinin o lemporary
good enough solution (2*CuadJ 0 ugj 1] in Step 6M fisa,
Subsequently in Step TM, i S(rug i1l a 1 is close
enough to Jir*(all el then (r*(ug(i) w1 15 the good

Step BM:



enough salution that we are leoking for: olheraise, we will
increase m by | in Siep EM and redarn i Step 6M, When m
increases, (™8 will decrease, because (1< 1] hehaves like a

reduction factor. Thus, we can proceed Further 1o obibain a betier
temporary good enough selutton or the good enough salution

‘We pypecally set Id = .2 in Siep SM.

IV, TEST RESULTS
A Tewt Svwvemes and Test Coves

We have tesied our online algomthm on the COPFF problems
with diserete control variabbes of the IEEE 1 18-bas sy=ieim and
the [EEE 244-bus system [30]; the former consisis of 18 gen-
ml‘inn 1H.I.'IIEH ul'ld ]'T';'lm:mj:ui.l:rn I:II'H'I\. -I.Il.d tILf ]n.ll.ur nm:.iﬂu
of 47 generation buses and 445 tnnsmission lines. 18 should be
et thait the valees of conductance of the ransmission lines
in the [EEE 244-bus sy=tem ane msch higher tham thar of the
[EEE 1 18-bus svstem on the average. We consider two types
of ohpective funcison: the minimum kdal real poswer generation
cost g agF8 =+ &P, ¢ and the minimum system losses
Laed) where P denotes the real power generation of gen-
eration bus g, g, by, and o are geseration eosteoe ks, and
T (4] demotes the real power loss on transmission lime £ For
ench system and each chiective fandion, we have lested severnl
casgs amsoginted with vanious number of capaciters and various
b of irmsformeers, We assun cach capaciton is cguipped
with three capacivor banks, and the capacity of a bank ranges
from 14 w0 42 MVAR. We asume cach ransfomer tap has 32
dliscrete steps such that each siep is 58% of the nominal rans-
formeer tap ratio, A summaey of all the st cases is deseribed
below, Case LA 10 Case 44 in Tabkle 1 and Case 54 1o Coase 84
in Tabsle [ represem v we cases on the IEEE 1 18-bus sy stem.
Cnse 1A o Case 44 use the olal generation cost, while Cose
3A 0 Case BA use the total system lnsses as their objective
functions, The number of capacitons and the number of rans-
fornsers assumed in Case | A—8A are shown in the second and
third colunins of Tables 1 and 11, Cose 1B 1o Case 4B in Table 1T
and Case 5H io Cose BH in Tahle IV represent the tesl cases
on the IEEE 244-bus system, Case 1B to Caze 48 use the soial
generation cost, while Case 5B o Case 8B use the iolal system
losses s their ohpective functions, The corresponding numbser
of capacitors and transformers nssamed in these eight coses ane
also shevarn in the second and third columns of Takles [ and 1Y
It sheouald b nodedd that all the lesis we have made are carried cut
im & Pentium 1Y personal computer,

K. Comparssor Werh tive Comerlioral Appmanch

Chur bests for demonsirting the performance of cur onling al-
gorithm in companison with the conventional approach ane car-
riead ot im the following, W fives solve these 16 cascs using the
conentbonal appreach. which solves the CP in (40 for each
case forst tben rousd the obtancd optimal conamious values
of the discrewe control vanables, 2, off o ther nearest dis-
erete values, Afier ihe values of the discrese control vanahles
are fined &l the nearest g, we then solve the MDCP ey, and
the nesulting chjective valucs and the consumed CPL timses anc
shown in be Tounth aml the seventh colunn. espeetively, of
ench tahle. We apply our enline algorithm presenied in Sec-

RV TRARSACTRONS O POWITE SYSTEMS

TARLE 1
Ui g s o (R Osise ALcomiest Winn Tie Cosvisimoess.
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TAHLE I¥

CamIpak a0 oF TR TR INE ALGORITHS WITH THE CIBvENTRNG]
AR o Casps STEI oF THE TEEE 24 Fs Sysem Lisiss THE
Tomal, Sy [issrs A5 THE {MBRCTIVE FUmcTing

CEEE att

ton -0 wath £y = Guld, 5 = bl sl (3 = 00 1o selve for
a good envargh solution for each case, and the resulting objec-
tive value and the consumesd CPU times are shown in the fifth
and the Eighth colamn, respectivel y, of cach able, The reduction
af the objective valus achieved by our oaline algonihin con-
parcd wiath the comventional approach 1= given in column & of
ench iable, We found that among all of the discrete conirol vari-
ables, the objective value (40 is bess sensitive o transformer tap
ratio chamges tha it is 1o the capsciter bank changes; benee, wie
sl the transformer lap rtios Axed in Seep 2 of our online alge-
it This resull is consistent with the observation in [ 15]. The
walues of the discrete conirnl varebles chigined by the conven-
tional approsch meay be infeasible s appeaned in Cases 44, 1B,
and 2B in which infinite objective valus are indicated: lwow-
ever, aur online algorithm obtains good cwaigh solaien in all
cases wie hove simulated. This demonstrabes the probabality of

10
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niod obtaining any feasible solution by oural gorithm is extremel y
lvae comparing with the conventional approach, Furthermore,
the CPL! times consumed by our online algerithm is slighily
larger than that consumed by the conventienal approach in meaost
of thie cases as can be observed from thee Bast bwas columns of all
tables. Thus, compared with the conventional approach, we ob-
served that: 1) our online abgorithm is also suwitable for neal-time
application; 1k the improvements on tbe chjectve values for gi-
ther the minimum ol generation cost or mandmum otal sysiem
bosses are 2R% on the average; and §ii) we com always obtain a
gosindl el solution in condrast o the possible failure of the
conventional approach,

L Conpaerison Wil she Competing MWerinods

Owr method deals with the OFF problems sath discrete con-
el warabdes in thetr exact form and takes the feasibiling of CFF
pike accounl in contrast o the penaliosd discrelieatson alge-
rithm | 15] and the enbamced genetic algonthn | 1]. Thus, wecan
avoid any possible ambiguity on the feasibility of our solation,
The recent meihods thai ireat the discrete controdl variables and
ihe feasihility of OPF like our algonithm are mean-field theory
hased annealing algerithm [5], the evolutionary algenitbm [17],
ami the tabu search method [9). Howeser, these methods ane
socking the global optimal solusen of the CFF (2) within the
huge sample space Ly, which should be very compuationally
time comsuming. For exampes, the nwean field theory-based an-
nealing algorithm wok 10 min © solve the OPF of o 270-bus
systeny os repored in [5], and the 1abu search method and eve-
lmionary algoritha seok & and 27 min, respectively, s sodve the
OPF of 4 24-hus system as deseribed in [9). In Baci. the com-
putational complexity coused by global searching wechnigue is
what our OO theory -based online algerithm miend o resolve by
secking a govd encugh solution with high probability instead.

To demeonsirate the menis of our online algorithm, we should
compare with the above mentioned methods by simulations. In
[5], thee mecan feld theory-hased sanealing algonithm compared
only with the SOQP method for o four-bus and 30-buos sysiems,
Huswever, the vaba senrch metlod in [%) had conpared with and
beaten the evaluionary algorithm amd the SOP melod. Thus, i
wouild be typical w eompare owr enline algerthm with ihe @b
seanch method.

The tobun seanch 15 on iterstive algonthm: it stars from o
rardlomly gererated feasible solution and moves to g beter so-
lution in the medomly selected neighborhood by the folleaing
procedunes, Starting  from the Best solwion in the selecied
neighbarhood, il it does pet Bbeloig w e Tabe List (TLL or
i case of being in te TL bl passes the aspiration kevel CAL)
gt will b added w e TL and & move b this soluon sill
he comied out; otherwise, repent these procedures for the next
best solution, [uring the search process, the best soluion is
always updated and stored sside until the stepping eriterion is
satisfied, [Derails of this method can be found in [9] and | 15],
We apply the tabu search methed o all of the cases showmn in
Tahles | o IV, Dhse 1o the page limitation, we canisol Pl all
of the comparison resulls. However, we wall show some typscal
cases 1o demonsirake e eflctency of our onhiee algonthm,
Figs. 3-8 desembe the simulation nesalts of applying our online
algorithm ard the tabu search method e Cases 54, TA, 5H,
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Fig. & Compari=n of o online alpeithm and the ab sarch method o
Ciee TH.

arkl TH, The ohjective functions of these four cases are the
rinimunm system losses. [noeach of the four figures, the poin
marked by “x” denobes the pair of the ohjeciive valoe of the
best solution o far and the comeponding consuned CPL
times during the ssarch proscess of the labu scarch mithod
applying ke the comesponeding case. However, the point marked
by "o in exch fgure demies the pair of the obpeciive value of
the final soluiien and the comesponding CPL times chiained



by owr online :lgnrilhm We ket [|"'"""' _i'"“"'] denste the coor:
diwte of point "o, whene (-] n.pn.-.ulus e correspmmling
case. From column 8 and column 5 of Tables 11 amd 1%, we
see that (%, B30 = (1201 <500 MW)L, (&5, 531 =
i 5u0TE a.mfl MW, (5, 5 = (582 303 MWL and
(&, 557 = (114835, 372 MW). “‘uk:[.,,.ﬂ‘ldu.m..
the :unnlmlle of the specific pomt “x". such tha E 7 Jmm
in the cormesponding :.m: [ =] Wenlso mu.rkl_ _|"'E'] in :m:l1
figure, that isl{ = {]i'i}s TS J'lﬂ‘u] l’ TR =
IIJIIJ £ 08 H Tal = (5% 5 3LE | "1, and
it—u _.TT""" = LN 5. Lu }r['ﬁ"r- From Figs. A-6, we see
that the improvement of the sodution during the search process
of the tabu search method is very sluggish, Even when taba
seanch meethod consumes £ (= J0062) CPU times, (75 is
sill av least 18% more than F‘""’ in cach case. These resulls
demaonstrate the efficiency of our onling algorithm in getting o
gorsd enoisgh solation,

W ComMCLUDING REMARKS

The OFF problem with disceete comrol varables is an NP
hard problem and has o long history in power system reseorch.
I this paper. we hove developed an CEF theory hosed online al-
gorithm o desl with it We treal the discreie control vaniahles
im their exaet form and take the feasibility of the OPF inio ac-
coaml. Our online algarthm can get a good enough solution of
the considered problem efficiently o resolve the compuinticnal
complexity coussd by the approsch of global searching tech-
miques snch i the nean field theory-based anrealing algonihm
[5]. evelwtionary algorithm [ 16], and the taba seanch method [9).
W have demonsiraied the compatatonal efficeency of cur on-
line algonthm aned the quality of the obtamed solubon by com-
paring with the wha search method and the conventional ap-
praach through simulations,

Abave all, sur ordinal optinization theory-based algonthm
has o very important implication in power system contrel and
management, becnuse most of the power system oplimizaisn
problems invodve discrete controd variables; o popalar example
problem i addition 1w the curment one s the opumal capacilor
placement problem,

AN A

I OMF Theors [T1, (8]

Iiv arder v make the computation of tie NP hasd problein
N, oy, 3] ractable, where L is a nonstructuned huge
samiple space, the 001 theory soften the goal From the best for
samre b gowdl emonigh with high probability such that o gres
reduction of the search space can be achieved. To procesd with
the search reductions, the 00 theory stars from delining o nep-
reseniative set of L7y, denoted by M. which can he ohinined
by either o uniform selection or o hewristic method, Uswally,
the size of M. densted by N, is sufficiently lange, say 1000 &
Gowll Envtigh Subset of M, denoted by G5y, is formed by
the wop ranked 0%, =ay 1 = L5 samples of M. As shown in
[V3], LGS © Gy, with a very high probabilicy 0093, where
iy, denoses the Comod Enough Subset of Ly Formed by the
top g, sy ng, = 5, samples of Uy Thus, o seck 4 good
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enough soluson of L7, 11 s sufficient 10 seek o gosd enough
solution of . However, n 435y is easy o specify bt diffi-
cult b chinin; for example, i oour probdem, one needs o solve
N 1000 MDCT (g 1), that is N nonlinear constrained op-
timration problems. 10 determine Iheﬂﬂ_.,— whach is, of course,
computationally intractable for lorge power systems. Thus, o
reduce the search somples whale ohlining members in G35y,
the T theory advecates the use of a very crude mindel in eval-
uating the “geadness™ of any propesed solutson sample. Using
such o crude model ome can with manageable effort estimate
what are the top m% of the samples. Call this estimated Lop m'E
the Selected Sabsct (555, In other words, the 55 is determaned
by first ranking the samples in M hased on an easily conpaied
crude maodel of i) noted by [Tugl + o whene w denoles
the modeling noise or ermmor. then choese the top # samples 1o
form 55, The OO theory then provides a undversal alignment
probability between the intersectiom of the G5y and the 55
[10]. Furthermore, OO0 theory provides in [10] a fomula for
ohtaining the valwe = as the value of a six-parameler funcon
FAS L I’:.-.I the meaning of these porameters is de-
scribed helow, kand f denote the desired number of alignments
between 5% and G5 5 and the size of G& s, respectively. & de-
mibes a class of ornlered perfomance curve (CC), a summsary
ol which = presenied laber i remark 2. The OPC class chosen
for the M samples sirongly depends om the desigmer” s familianty
of the system. for example. if ooe is familiar with the strociure
of the sy=tem, be or she may employ a betver bowniste method
than inilorm selectbon wo devermine the wet M from Dged( -]
represents e noise characierstics of the modeling ermr w: o
uniform noise density U[="W, W] is assumed, and the magni-
e W stromgly depends o the crude medel g ] o chosen
for desermuning 55, 2y isthe alignment probabilicy and is taken
por b 0093 i most of the applications. Simple expressions lor
the functon 20k g N OE(- 1.0 L based on o Monee Carlo
study aver numenoas OPCs distributed uniformly among the
five bromdly gemeric ¢lasses ane given in [9]. The formula al-
b s 1o dbeteranine the valoe & by a simple and direet caleula-
tion. Cnee the valoe 5 15 detenmined, we need only 1o salve the
MIRCT 2 ) for those #samples of 55, and the nesualting k op
samples ordered by the objective values of the BT w7
in 55 will be members of G5 with probabiliny S =003, In
cr problem. we need only ooe good enoagh solsion, thos the
top ranked .1n.|1|.p|.¢' is whal we are locking for.

1 Rewwarrk 2- Mudretten of the Ondered  Perforemamce
Creve (O FIR] Consider o standard eptimization problem
By ey, S g ), whiere [y is the samiple space, and (-] is
a performancs measune deflined on the sample space. The OPC
of a collection of ordened samples tig,» g meen o thiy selected
from L7 is determined by the spread of the order performance
Sy Jpge==- .fl"_ . where [y denotes [y ). Without loss
of generality, :]’ can be normalized into the range [0, 1],
that is, for 1 = lyew,Mei = (ffq = Ml e =
Meanwhile, the ordered 5:1mp4¢5!'1 walruExl']d‘lr -.::Euﬂallr. Dé]n:
abo mapped  imo the range [0 1] sueh that fer oall
= L. Nodlugl = = (i = 10N = L1 Then
are five broad calegories of OPC models: iy lots of good
samples, i} lots of intermediate bat few goosd ard bad samples,
iii § equally disiributed good, bad. and intermedisie samples, ivi
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Fig. 7. Ciraphicsd expresion for the Tve TPC madele

lots of good and lots of bad samples bt few intermediane ones,
aisd ) lows ol bad samples. A praphical expression for these five
OPC models or gypes s shown in Fig. 7. To accommodate the
above five OPC types and differeninte the curves within one
typez by wsing the smallest number of parameiers, the inverss
mapping of the incomplete Beta function, parametarized by
a pair of numbers o and =, is employed. More preciscly, the
standardized OPC is devermined by a two-parameter smooth
curve Alr|a.s) = Flr|ey) = Flz|(1fak(l/41)
where Pz .= is the Incomplere Beta function of the two
parameters (s=L In gaseral, ¢ <2 1,9 = 1 comssponds 1o
the OFC of Iy pe ko = 1+ =1 comesponds 1o the 0P
of ype (i) a8 = Loy = 1 comesponds 1o the OPC of type
(i e < L =0 1 coresponds to the O of wpe (vl
ae = Lo <2 1 comesponds o the OPC of tvpe (v

I Dhetermmertyon o bre Sice af Lelecied Subyeld {850 jor (er
Preshiewn | T}

In our problem, the desirgd numsher of alignments berwesn
55 and Gy k. us 1L The corresponding smallest number of
alignments between 55 and G55 k. o0 achieve the abowve de-
sired alignnmeent 15 alsa | | 13) as indicated in Section LA, Thus,
we con determine the valoe 2 = Jk g, N O 80 =1, Pyl by the
formula given in [ 10], in which we ake ¢ = Sk = 1LY =
LoD, Py = 50 s o worst case thal s type (v OFC, and a
uniform large noise distinbutien U[=2.52.5] for the noase char-
acteristics £ - ]. The value of # for our problem we obizined
froom the nh-rm; formiwln is 3L 11 showld be noted that the value s
wi obtated bascd on the above setugp is conservative die 1o the
selection of L7 and £ -

AFFENHX H

T estimaie the value of kY indicabed m Secton LLLC. we em-
ploy the technigque of alignment probability | 10] as semmanoed
in Appendiz A, In the current problem, we apply the following
similagities of the terminalogics deseribed in Appendin A, We
first denote the 55 chtained in i) of the three-stage approach
presented in Section LB as 537, then treating this 557 s the
sel I m O theory, that is we set N = EE':'. Thus, the top
ranked sample in 88% = {ud .0 = 1,....5] ordered based
on the abjedtive values of 3T i1 will be considersd
as U5y, In the frst phase of our two-phase stralegy presenbed
in Section L, we uwse a good approximaie model to deters
mine the estimated good enough subset, that is the 55, Now we
should determine the size of the 55 io ensure that 05, C 88
with very high probability based on the echnigue of alignment

probahiling [10]. Sisce the size of M ere s only around 50,
whach is Far oo small & apply the fonmula provided m [ 10] as
sumamamized in Appendix A, we hove o perlform a Monte Carlo
study followed From the guidelines given in | 10] toestimate the
varlise &Y (ie. the size of 55, as described below )

We fimt place the s(= 50) samples in N = (55"} by
egually spacing them o the mormaled onbered nterval
[0, 1]. We studied a total of 49 OPCs dstnbuted uniformly
amang the Ave broadly genenc types formed from the fol-
lwing parameters & = 200003 Lk 20k Qa0 500, aml
5 = 0ot Lk 20 ik 500, the mwaning of the wo
parameters o amd 7 ane described in Remark 2 of Appendiz A,
We employ o modersie nome £f «] with uniform noise density
U[—ar5.005). bocamse our gquadratic approximation for the
B g 73] gven in (70 i3 im fact a good approxinste model
from the viewpoint of an OFF problem rescancher. As a mabier
of fact. the range of the moase considersd above equals the
range of OPC, which can resuli in {with nenzero probability )
swapping e rank of some good encugh samples with the
worsl samples. In all of owr Moale-Carlo caleulations. we
simalate 10 000 realizations of rl.ui_'l:r OPCs. For the :l]i..gnml:rﬂ
probability equals 099, we found that &Y = 3 In other words,
1Y & {ual(fi i = lieus k™). This implies thar afier
solvimg the #{= 50 quadratic approximate problens shewn in
(70 we need only solve V(= 3] exsct MIDCT fugd 71].

AMENMY C

Wie call asample g 1] feasibde if the MIRCT w111 in (3] for
che given ags] has o feasible solution: etherwise, we call this
nigl1) infeasible. In addition, we consider the optimal ohjective
wvalue of an infeasible sample as g 3], Dbvously, 1o obtain
the top ranked sample of 55 ordered by the ohjective valee of
MNP i) we need o solve the MDCPlugiil) for all
samples in 5% However, the samples in 55 ¢hosen based on
the madel (&) do nol guaraniee to be feasible, Subsequently, we
hsve 1o answer the quesison that what if all s samples in 55 are
infeasible and dees one need o search for a Feasible solution
from 97 As o mabier of fact, if all s samples of 55 are infeasibe,
then we can be resopably sure (e, with probability mone then
(145 ) ihe probability that thene are feasible sanples among the
iw very v as concludad by the mesthod of point estimntion of the
opinicn poll imstatistcs ([ 20), Chap. 3 and [22]1, This is bricfly
illustrated bebow, Suppose the target populatson of interest
consists of M persons and M of them favor a certum propesitson.
What we showald like b know is the propontion p o= I:M_,I'J'l_:l-
We consider the opinion poll as o binomial experiment and ires
the samiphe that favers the propositicn as a “success,” Then the
true suocess probability pcan be estimated by § = k/n. where
il ."l|'] denates the hmated mumber of tnals, and b denotes the
observed nomber of snccesses, Mow o question is how good is
the estimate? Let us desermine the probhabiliny thar the estimaie
# does mob deviaie From the rue suecess probability p by mone
than some small guantity d. In other words, we want o know
the probatality-1ad)-that p = of = § = p + d. Subsisiuting
#i. Pial ] denates the probahility that k lies in the following mnge
Fipe = il < Jo < i -+ s, This probahility can be evaluated with
the: heelp ol nonmal approximation, asd P} = G085 i00n = ]l,"'-;l'!.

13



Movw our Feasibiliey bt can be vieowed @ the above opinion
poll experiment such thal the feasible sample 15 considensd as
a success. Using the following simalarities, g ~~ nand § «~ k.
if there are t feasible samples among the s{= 5dk], then we con
be pesonably supe that the probability of picking up a feasible
wine froin the Mi= .I.ﬂ.ﬂ}]: 5.1n||ﬂu::| n !‘I"-El'.'llwim devialon iwl
mavre than 1%, which equals (L1414, Ths, if all 5= 50
samples of 55 are infeasible, then we can be reasonably sune
the probability that thene are feasible samples in the & s (0with
deviation not more than 01414, This addresses the question
raised in (il ol Secuon ILE. In the above argument, we inler-
ently assume that the samples in 88 were uniformly selecied:
however, thiz 1% nol our case. Asx a moiber of fock, the samples
which are more likely 1w satisfy the constraints gle, gt = 0
are mone probably selected inw 55, This i illusirated bedow,
The criteria thal we rank the samples o be selected inio 55 is
according 1o (6l That is the sample sgli} with kwer value of
|5 fiagd £33 will be ranked higher, Sinee (6) can be rewritien in
the Following form A (w8 AT A (ul b udii), whene
Sl foudé]) =2 W ol{a™(ul ul i — ugld] ) Thus,
if digl el s mone likely o be easible then ot will cause lower
value of [|A@e"(uZ) ulii))| and will induce lower valoe of
| & fiugax)). Consequently. it will be more probably selecied
imto 53,

ArrrNiny [

For the sake of samplicity in explaining the dsal-vype method
for salving the quadratie approsimate problem (T we consider
the otal generalion cost as the objecive function, and the in-
cquality constraints consist of the gensration limits and voliags
security consiraints only. The same method can be applicd 1o
thi cases with the 1tal system kosses a e objoctve function.
Coses ineluding the coupling thenmal limat in the ineguadity con-
straints can be similarly irested by toking the modification in
[12] imio sceoam,

Based on the above assumiplion, J{a.ug! is 4 comves fuime-
o ol . only, dwes i the sequel, we use e mtation fILF) as
the ohpective funclion, Since the cost of an individual generator
is @ quadratic function of the generation, thus V22" (ul]] is
a constant diagonal mairix, Furthernsore, sinee the generation
liminand voluge securnny ane decouphed bas-wise, the ineguality
constraints M2 1) + VAT S AT < 0 can be decom-
posed imio

Rz (a2)) + Ve kil (a0 1AL < 0ui = lyunna ] (E)

where B dencites the number of buses in the svsem: Aoy and
fey denote the inenensent of continuous varsshles amd tlee in-
aquality constraint fursctions assoc iated with bas & Thas, (7 honn
be written in the Following form:

m,l-.*..r“'fm.r +7TAr
ET
aubjoct to AT Ax = ualjl)

CTar; <d;, i=l,..., I
where the consiant matrices 1 = TE_fl'_.:"'[m':] + 81 A =
Vealr"(ulhull and & = Vo hk(r*(6l}) the con-
stant vectors oy = —hdr ull} and ¢ o= Vool

|
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and the dependent vector Buglf]] = —mrtiulhul) —
Voo (x*us bl it — ugli)). Clearly. the matrix Ji is
positive definite, and we can sssume that A is of full ok,
hecauss oherwise we can always delete the redundant egualicy
G Fai L.

&L PN Menhend

We will employ the PPN methed proposed o [1T] [12).
[14] ter ssollve 190, The DPPOMN metheod solves the following dual
problem of (%) insicad of solving (9 directly:

mfr.q.u’.i.] i 10
where the dieal function
)= i, 2 ATHAT + VAT Ar — Wil (D)
and 1} = UZ, {1, where
f = {4, |CT Az, < dh}

and f Nl =0l j e ke
The DPFPON methed 13 an nerative method using s Tal-
lowing iterations;

AlE+17 = ME+ rifLANE)
where £ is the irerason index, 1E) is a positive step-size deter-
imined by am Armijo-rype rule [ 11 [12]. [ 14]. and the ineoemeant
A MY is compuled by

PAMEE+ Vs M) =0

where the mainx

(12

(13h

(144

F=—ATH A (15}

is 0 megative definite matrix, which represents the Hession of
e AL, however, not considering the constraints Aor < {0 os will
b sl Luter i (17) The gracient of of AT ar 365 can be con-
puted by

Tl A = AT Ak = Blugj1)

where A5 s tee optamal selution off the eplimization problen
o the righit-hand side (RHS 1 ol (110, [14].

As shown an [11] and [12], the optimal sedution for the op-
timization problem on the RHS of (11, A%, can b obtained
using a two-phase approach. The first plase is 1o solve the fol-
leswing wnconstrained eptimazation problem anal ytically:

{16h

min %m”"ﬂm + AT (AT Ar = Mugli)) (1)
which 1 the eptimization problem on tbe BHS of {11) wathout
consdering the constrainls Ar € 13 Let AF be the oplimal
solobon of (17 then

Ab = =i~ AL i 18)

The secomd phise is o project the S0 onie 48 that is projecting
T onlo $E. for ¢ = Jlevee-I3. and the n=|.ln|1|.n5 pn.'ljl:l.'li.-uu T3
the cptimal salution of the oplimization problem on the BHS of
(111, Ak,

1 Kurrry oo the CPPOY Wethod:  Staning from a _H'_i‘,
we cam use the two-phase method mentionsd above e salve for

14
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Ak, the optinel solution of the eptimization problem on the
RHS of (115 Owce AF is obtained, we can compuse W At]]
by (160 Associaked with the mainx 4 expressed in{ 15), we can
sodve for AAEY froam (140, We then updae ACF + 15 by (13
using an Armap-type stepesize T and proceed with the next
tleration.

I, Cosnpidermomsal Eific sency

Wi s that thee matrin 9 in (150 is sparse, bocause £ is di-
agomal, and the noneero entnes of A represent the structure of
the conmectivity of the power system, which is sparse. Thus, we
can chiain SAE) at ench iteration ¢ by solving ihe sparse lineas
(14} using spoarse matns techmique, However, the mos) distin-
guished point for applying the DPPON meabod bere is than ohe
matris @ s constant sparse matcls for all samples w7}
B8, This implics that te LU factoneation and (e associated
e mory management for the nonsere enties for the sparse ma-
tnx < 1s diome ance snd for all, Ths, of coarse, will spve tremen-

dows compuiztionsl-time in salving all the = dual problems § 1.

M Comvemgence aad Sofunien

The < in {1515 @ negative definite matrix, becawse Ji is pos-
itive definiie and A is of full rank. Thus, 3401 obiained From
(140 will be an ascent divection of the dual function (111, With
the Armijo-aype step-size TEEL[ L] TE2L [14], convergence of the
DPPO method hadbeen shoanin [11].[12], and | 14). Le 5% de-
e the optimal solution of the dual prablem 10, and S A%
denobes the optimal salution of the epuimization problem on the
RHS of {113 when A = A" Since our primsal problem (9) s a
guadrutic programming problem wath a sinctly convex objective
functiom, by stromg dusliny thecae nn | 3], the S50 A §is the solution
of (90, Furthermaeee, if the dual fanction 04§ tends o approach
o during the solution process, we can con lide that wugl § § s in-
feasible for {7 with the obgective value oo,
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