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The study during the past one year has been focused on the viscoelastic behavior of polystyrene

in the temperature range close to the glass-transition temperature, Tg. As schematically indicated

in the Bird’s-eye View of Chain Dynamics/Polymer Viscoelasticity attached in page 3, the

involved dynamics and effects in this temperature range are: the motion of a single Rouse

segment, the Tg-related dynamics (or the so-called relaxation), and the loss of ergodicity. The

intricacies and interplays among these physical effects as manifested by the observed

thermorheological complexity are studied in detail in the two attached reports entitled (a) Whole

Range of Chain Dynamics in Entangled Polystyrene Melts from Creep Compliance:

Themorheological Complexity between Glassy-Relaxation Region and Rubber-Fluid Region and

(b) Motion Associated with a Single Rouse Segment versus the Relaxation. Some of the major

accomplishments are summarized in the following:

(1) To the best of our knowledge of a dynamic system, the developed functional form enables

the widest dynamic range (five decades in the magnitude of compliance or eight decades in

time in one case and nine decades in another case; see Figures 1 and 2 of Report a) to be

consistently quantitatively analyzed.

(2) The frictional factor K extracted from the analysis of the creep compliance J(t) is in
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quantitative agreement with the values obtained previously from analyzing the relaxation

modulus G(t) and calculated from the viscosity and diffusion data (see Table 1 of Report

a))a quantity shown independent of molecular weight as expected from the theory.

(3) Showing that the thermorheological complexity arises from the stronger temperature

dependence of the energetic interactions-derived process than that of the entropy-derived

ones.

(4) Revealing the physical picture at the molecular level of the effect of the loss of ergodicty on

the viscoelastic behavior as the temperature is approaching the calorimetric glass-transition

temperature, Tg)vitrification at the Rouse-segmental level.

(5) Showing how the length scale at Tg can be estimated by the internal yardstick provided by

the Rouse-Mooney normal modes, giving 3 nm for polystyrene.

(6) The analysis of the thermorheological complexity observed in J(t) of polystyrene indicates

that the basic mechanism should also be responsible for the breakdown of the Stoke-

Einstein relation as observed in glass-forming liquids, such as OTP and TNB, in

approaching Tg from above.

(7) The study indicates that the motion associated with a single Rouse segment, as observed by

depolarized photon-correlation spectroscopy, is distinctly different from the 

relaxation)because of their proximity in time, the two dynamic processes could be easily

confused in the past.

Dr. A. K. Das came to work in my laboratory as a post-doctor beginning in late March, 2004. He

has made progresses in writing the computer programs for doing molecular-dynamics

simulations. As the time period is quite short and only preliminary results have been obtained,

no detailed report as to the research work being carried out by him will be made at this stage.
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Abstract

The rubber(like)-fluid region of the creep compliance J(t) results reported by Plazek of

two nearly monodisperse polystyrene melts in the entanglement region have been quantitatively

analysed in terms of the extended reptation theory (ERT), giving the frictional factor K

(=b2/kT2m2) in quantitative agreement with the values obtained previously from analysing

the relaxation modulus G(t) line shapes as well as calculated from the viscosity and diffusion

data)a quantity shown independent of molecular weight as expected from the theory. Using the

successful description of J(t) in terms of ERT in the rubber(like)-fluid region as the reference

frame in time, the glassy-relaxation process G(t) that occurs in the small-complianceshort-time

region of J(t) can be studied in perspective. As shown from the analysis in terms of a stretched

exponential form for G(t) incorporated into ERT, the temperature dependence of the energetic
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interactions-derived G(t) process being stronger in a simple manner than that of the entropy-

derived ERT processes accounts fully for the uneven thermorheological complexity occurring in

J(t) as initially observed by Plazek. When the results of analysis being displayed in the G(t)

form, the relative roles of the energetic interactions-derived dynamic process and the entropy-

derived ones in polystyrene are clearly revealed. It is shown that at the calorimetric glass

transition temperature, Tg, the contribution from energetic interactions among segments to G(t) at

the time scale corresponding to the highest RouseMooney normal mode greatly exceeds that

derived from entropy, indicating vitrification at the Rouse-segmental level. At the same time the

RouseMooney normal modes provide an internal yardstick for estimating the characteristic

length scale of a polymer at Tg, giving 3 nm for polystyrene. Based on the obtained results, the

basic mechanism for the thermorheological complexity occurring in polystyrene is analysed. It

is shown that this basic mechanism should be also responsible for the breakdown of the

StokeSEinstein equation in relating the translational diffusion constant and viscosity as observed

in glass-forming liquids, such as OTP and TNB, in approaching Tg from above.

a E-mail: yhlin@mail.nctu.edu.tw
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Between Glassy-Relaxation Region and Rubber-Fluid Region

Y.-H. Lin

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

Because of the large number of atoms and degrees of freedom in a chain molecule, a

polymer is rich in its dynamics, with its relaxation-time distribution easily covering many

decades. For example, the time domain of the polystyrene sample with MW=1.22x105 whose

creep compliance J(t) is analysed in this study stretches over nine decades. In general, a slow

mode of dynamics corresponds to a large length scale in the chain; a fast one to a short one. It is

generally understood1 that the long-time region of the relaxation modulus G(t) is sensitive to the

molecular weight, coupled with entanglement; and the short-time region, with the modulus

approaching that of the glass state, is sensitive to the local energetic interactions among segments.

In between, there are the transition and plateau zones, which are closely related to chain

entanglement (for instance, from the plateau modulus GN one can obtain the entanglement

molecular weight, Me=4RT/5GN). Over the years, it has been a challenge to understand the

dynamics corresponding to different length scales at a molecular level and even more so to study

all of them consistently in a unified way. To analyse consistently the whole range of chain
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dynamics in a unified way requires a theory that has interfaced dynamics at different length-

scales seamlessly. In the past two decades, the constitutive molecular models have been

developed and tested. This report represents a further progress, showing an application of what

have been developed and discussing the implications of the obtained result, particularly in the

understanding of the glass transition. It has been shown2,3,4,5,6 that the DoiEdwards theory,7

describing the entanglement effect in terms of reptation of the primitive chain, has laid a solid

foundation; and the extended reptation theory (ERT),5,8 developed by incorporating intra-

molecular Rouse-type motions into the DoiEdwards theory, is quantitatively successful. As

they have been studied in detail elsewhere, the dynamic processes in ERT will be described only

briefly here. This report will first show mainly two aspects: (1) The validity of ERT is again

confirmed by the analysis of the creep compliance J(t) as evidenced by the obtained frictional

factor K (=b2kT2m2, where , b and m are the friction constant, length and mass of the

Rouse segment) being in quantitative agreement with those obtained from analysing the data of

relaxation modulus, viscosity and diffusion, and shown independent of the molecular weight as

expected from the theory. (2) The quantitative description of the rubber(like)-fluid (or large-

compliance/long-time) region of J(t) in terms of ERT can be used as the reference frame in time,

with respect to which the small-compliance/short-time region of J(t) can be analysed in

perspective, giving microscopic information about the dynamics closely related to the glass

transition from a totally new viewpoint.

Developed on the basis of the DoiEdwards theory, ERT gives the relaxation modulus:
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)/(1)( AA ttF  (2)

where A(t) represents the RouseMooney modes of motion of an entanglement strand with both

ends fixed (In the short-time region, the entanglement links are regarded as fixed, cross-linked

points because the chain has not had the chance to slip through the links yet. In this report, the

region where the A(t) process is applicable will be referred to as the RouseMooney rubber

region or simply as rubber region. The A(t) process has often been used to represent the so-

called transition zone in the literature1; experimentally, the transition zone should include a large

portion of the glassy-relaxation process, which will be studied in this report.); X(t), the chain

slippage through entanglement links to equilibrate the uneven tension along the primitive chain;

B(t), the primitive-chain contour-length fluctuation; and C(t), the reptation motion corrected

for the chain length-fluctuation effect. For easy explanation as well as for referring to the

research results as described in literature, the time region that covers the X(t), B(t) and C(t)

processes is grossly referred to as the rubberlike-fluid region, and that covers all the four

processes A(t), X (t), B (t), and C (t) as the rubber-fluid region (see the note at ref. 9).9 The

relaxation times of these different processes are each expressed as a product of the frictional

factor K and a structural factor. We refer the functional forms of the four relaxation processes

and their respective characteristic (relaxation) times to the previous publications,2-5,8 but point

out that, normalizing (dividing) all the relaxation times by the relaxation time of the first mode of

A(t), A
1, the whole G(t) can be expressed as a universal function of the normalized molecular

weight M/Me.

ERT has successfully predicted the characteristics of transformation with molecular

weight of the G(t) line shape of the nearly monodisperse sample system; and the molecular-

weight dependence of the zero-shear viscosity and the steady-state compliance Je
0, and their

respective transition points Mc and Mc’.2-6,8 However, the analysis of the relaxation modulus or

viscoelastic spectrum in terms of ERT has been limited to the modes of motion associated with
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length scales above that of a Rouse segment. The main reason is that the smallest structural unit

in ERT is the Rouse segment, whose molecular weight m is estimated to be about 850 for

polystyrene.10,11,12,13,14,15,16,17,18 Experimental limitation also prevents the modes of motion faster

than that of a single Rouse segment from being studied. The measurement of G(t) in the high

modulus region is often limited by the lack of a compliance-free transducer. Thus, in the

previous studies of polystyrene,2-5, 8 the highest modulus that could be studied was about 107

dynes/cm2, which is of the magnitude a little smaller than that corresponding to m=850.12-14 On

the other hand, the creep experiment based on the use of the frictionless magnetic bearing by

Plazek allowed the creep compliance J(t) as small as 10-10 cm2/dyne to be measured

accurately.19,20 These small measurable compliance values correspond to the large modulus

values of reciprocal magnitude. As ERT can be used to analyse quantitatively the relaxation

modulus G(t) of magnitude smaller than 107 dynes/cm2, it is expected to describe well the creep

compliance J(t) in the large-compliance/long-time region. From the analyses of the relaxation-

modulus curves of a series of nearly monodisperse polystyrene samples of different molecular

weights in terms of ERT, the obtained frictional factor K is shown to be independent of

molecular weight. This result is critically important to ERT, indicating that the functional forms

of the dynamic processes as arranged in eqs.1 and 2 as well as the structural factors of their

respective relaxation times are accurately given. Thus, with both the molecular weight and

entanglement molecular weight Me known (Me determined independently from the plateau

modulus GN=4RT/5Me), the analysis of the large-compliance/long-time (rubber(like)-fluid)

region of J(t) in terms of ERT is boiled down to the determination of the single parameter K.21

The small-compliance/short-time region of J(t) reflects the fast local segmental motions,

which are much affected by the strong energetic interactions among segments. In this region of

J(t) with compliance comparable to that of the glass state, the dynamic process is much related to

the glass transition of the polymer. It is often referred to as the glassy relaxation. In the case of

polystyrene, it has been shown by Plazek19,20 that as the temperature is close to the glass
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transition temperature)below ~ 120o C)the time-scale shift factors of the J(t) curves with

temperature in the softening (glass-rubber) region become greater than in the rubberlike-fluid

region. As the viscosity is dominated by the terminal relaxation process, such an effect was also

demonstrated by the divergence of the temperature dependences of the viscosity and recoverable

compliance Jr(t) as the temperature decreases below 120oC. This difference in temperature

dependence means that the principle of thermorheological simplicity breaks down between the

rubberlike-fluid region and the glass-rubber region in this low-temperature range. As will be

shown in this report (see Figure 4), the rubber region in J(t) is under the influence of the glassy

relaxation; the thermorheological complexity actually occurs between the glassy-relaxation

process and the processes in the rubber-fluid region, instead of between glass-rubber region and

the rubberlike-fluid region (see the note at Ref. 9 for explanations for the term“rubber(like)”

used in this report, which is related to this effect). The thermorheological-complexity

phenomenon not only is interesting but also should be important for our understanding of the

glass transition. Using the quantitative description of the rubber(like)-fluid region of J(t) in

terms of ERT as the reference, the glassy-relaxation process at different temperatures are

characterized quantitatively and consistently in this study. In this way, the whole range of chain

dynamics)covering motions corresponding to sub-nano-scales, the Rouse-segmental length

(2nm), the entanglement distance (7.6 nm) and the length scale of the whole molecule (14 nm

for sample A; 23 nm for sample B))is revealed. The results of analysis at different

temperatures are displayed in the G(t) form. Through the molecular picture as contained in ERT,

the basic mechanism for the thermorheological complexity is analysed, and the relation between

the thermorheological complexity and the glass transition is studied.

2. Calculation of Creep Compliance

The creep compliance is related to the relaxation modulus by the convolution integral:
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With G(t) known, J(t))the target function)can be calculated from Eq. (3). The convolution

integral may be solved numerically by the method of Hopkins and Hamming.22,23 In this method,

the interval of integration is divided into subintervals which are small enough so that a mean

value of the target function over the subinterval can be taken outside of the integral. In this way,

a recursion relation can be set up, from which the target function eventually emerges as a

discrete set of values. In the case, as done in the present report, where equal spacing in log t is

used for choosing the subintervals, transient-viscosity quantities used in the recursion equation

need to be evaluated first by the interpolation procedures as detailed in ref. 23. In calculating the

J(t) curves shown in this report, using ten points per decade in time is sufficient, as no difference

can be discerned in the comparisons with curves calculated with a much higher resolution.

To incorporate the glassy-relaxation process into ERT, eq 2 is replaced by the following

equation

)/()/(1)( GGGAA tAttF   (4)

where G(t) represents the glassy-relaxation process and AG is its relaxation strength. In using eq

4, it is expected that G(t) is a much faster process than the normal-mode processes in A(t); the

fast local segmental motions in G(t) can be regarded as the sources of the random fluctuation

forces in the Langevin equation from which A(t) is derived.5,8, 24,25 As shown below, this is true

except when the temperature is basically at the glass transition temperature, where the loss of

effective ergodicity is expected to occur; therefore, the applicability of the Langevin equation

should be questioned. The number of normal modes Ne in the A(t) process is set to be 16

corresponding to the mass of a Rouse segment, m, being about 85010-18 and the entanglement
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molecular weight Me=13500.2,4,5

In this study, it has been found that the glassy-relaxation process can be well described by

the stretched exponential form

  10;)/(exp)/(   
GGG tt (5)

For a relaxation process as given by eq 5, the average relaxation time is defined by


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 G
GGG dtt (6)

where is the gamma function. In the whole relaxation-time distribution, the glassy-relaxation

region is situated in a certain position relative to the rubber(like)-fluid region, where all the

relaxation times are proportional to the frictional factor K.26 We may express the relative

position by

KsG  (7)

where s is a proportional constant and has the unit of Dalton square. Although s is not unit-less,

it can be regarded as a “normalized” glassy-relaxation time, as it represents the glassy-relaxation

time with K fixed at 1 or any constant. In the neighbourhood of Tg, the parameter s increases with

decreasing temperature, reflecting the thermorheological complexity between the glassy-

relaxation region and the rubber-fluid region.

As shown below (Section 3.1), the line shape of J(t) in the rubber(like)-fluid region is

well described by ERT as expected, allowing the K value to be determined. The whole J(t) curve

can be calculated with Ag, , and s as contained in eqs 4, 5, 6 and 7 as the adjustable parameters
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for fitting to the line shape in the short-time/small-compliance region (<5x107 cm2/dyne) of

the measured J(t). In the initial stage, we are mainly concerned with the line shape of J(t); in the

fitting process, we calculate the whole J(t) curve at some fixed K value and allow it to shift along

the time coordinate to fit to the J(t) result measured at a certain temperature. After good fitting

over the whole time range of the J(t) result has been obtained, the absolute value of K for the

temperature can be calculated from the shift factor. Different parts of J(t) in the small-

compliance region are sensitive to these individual parameters in greatly different degrees.

Specifically, with a properly chosen AG value which will give the observed glassy compliance,

Jg=limt0 J(t)1010 cm 2/dyne, affects the J(t) line shape virtually only in the small-

compliance region, < 108 cm 2/dyne. The region, 1085x107 cm2/dyne, while being

insensitive to a change in , is determined by the product of AG and G or AG and s with K

being fixed; in other words, it is directly related to the integration area of AGG(t). Since AG is

very much dictated by the Jg value of the studied sample and can be easily quantified, the

position in time of the glassy-relaxation region relative to the rubber(like)-fluid region can be

used to determine the s value. Under the condition that a particular measured curve (at a certain

temperature of measurement) and the calculated curve are matched, while the shifting factor

along the time coordinate obtained from the matching allows the K value to be calculated, the s

value can be determined uniquely by monitoring the agreement between the calculated and

measured curves in the -insensitive region, 10-8 5x10-7 cm2/dyne. With the s value

determined this way, the value can then be determined by comparing the calculated curve with

the measured in the small-compliance region, < 10-8 cm2/dyne. Following the above described

procedure, a set of the parameters: AG, and s can be uniquely determined for the system at a

certain temperature. While AG and are very much independent of temperature, s increases

significantly with decreasing temperature.

3. Comparison with Experimental Results
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3.1. Creep Compliance Curves. Plazek has reported the creep-compliance results of

two nearly monodisperse polystyrene samples in the entanglement region,19,20 denoted by A and

B here: A with Mw = 4.69x104 and B with Mw= 1.22x105. Even though the samples are nearly

monodisperse, eq 1 need be convoluted with their molecular weight distributions to calculate G(t)

and then J(t) for comparison with experimental results. The convolution only affects the

rubberlike-fluid region. As shown previously,2-5 the Schulz distribution27 should be a good

representation of molecular-weight distribution for samples like A and B. The polydispersity of

the Schulz distribution is characterized by the single parameter Z (Mw/Mn=(Z+1)/Z). In the

present analysis of J(t), Z is used as an adjustable parameter. Close agreements between the

calculated and measured J(t) curves have been obtained with Z=20 for both samples,

corresponding to Mw/Mn=1.05.

From the analyses of the G(t) curves of a series of polystyrene samples of different

molecular weights, with Me=13500 calculated from the plateau modulus GN=2x106 dyne/cm2, the

frictional factor K is found to be independent of molecular weight to as low as just above Me and

is determined to be 4.7x10-9 within a small experimental error at 127.5oC (see Table 1).2,5 As

shown in Figures 1 and 2, the J(t) curves of samples A and B measured at different temperatures

are compared with the curves calculated, through eq 3, from the G(t) calculated on the basis of

the combination of eqs 1, 4, 5, 6, and 7 with K=5x10-9 and GN=2x106 /1.057. The factor 1.057 in

the GN value used is the ratio of the product of density and absolute temperature T between

127.5oC and 100oC; it is used here for convenient comparison of the calculated J(t) curves with

Plazeks results which have all been reduced along the compliance axis by the factor ToTo

using 100oC as the reference point (see Figure 1 of ref. 19 and Figure 7 of ref. 20). Thus,

Figures 1 and 2 use a mixed reference system: 100oC as the reference temperature for the

compliance coordinate and 127.50.4oC for the time coordinate.28,29 The shown fittings

between the calculated and measured J(t) curves are done by visual superposition with the aid of

a graphical software.30 Being wavy, each J(t) curve has three bending points: two concaves and
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one convex as shown in the figures. Because each bending point basically denotes a position in

the two-dimensional plot of log J(t) vs. log t, the matching between the calculated and measured

curves around each bending point allows one to determine the absolute value of compliance

(reduced to 100oC and thus is independent of temperature) and the relative value of time

(dependent on temperature). And the simultaneous matching over two bending points is a key

criterion for determining the line shape of J(t). In the shown close agreements between the

calculated and measured J(t) curves, for sample A no shift along the J axis is required for all the

curves; for sample B no shift along the J axis is required at 105.5, 101.0 and 98.3oC, while a shift

of the experimental data upwards by 5% is made (for a slightly better agreement than can be

achieved without making such a shift) at 119.8 and 113.8oC. All the agreements in line shapes as

shown in Figures 1 and 2 involve two bending points except at the lowest temperatures, 97 and

98.3oC for samples A and B, respectively. At these two lowest temperatures, since the

parameters AG and are well determined by the good fittings at other temperatures, the s values

determined from the close agreements between the calculated and measured in the very low-

compliance region, even though around only a single bending point, should be dependable as

well. This is confirmed in the accompanying paper 31 and by the consistency between the

composition of the J(t) curves measured at different temperatures as shown in Figure 1 and that

shown in Figure 2 of ref. 19.32 (see the note at ref. 32)

For all the calculated curves in close agreements with the measured results as shown in

Figures 1 and 2, the AG values are 5482 and 4119 giving Jg= 7.69x10-11 and 1.02x10-10 cm2/dyne

for sample A and sample B, respectively, while =0.41 for both samples. The difference in AG

between samples A and B is directly related to their difference in Jg, which is quite apparent by a

visual examination of the experimental results. The larger Jg of sample B should be due to the

presence of residual plasticizers which was regarded by Plazek20 as the cause for its smaller

values and weaker temperature dependence of viscosity at temperatures close to Tg in

comparison with a normal polystyrene sample of comparable molecular weight (see Figure 11 of
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ref. 20). This association is further confirmed by the smaller frictional factors extracted from the

J(t) line-shape analysis for sample B as shown in the next section. Because the plasticizer

molecules are very mobile, their presence in sample B will cause a fast relaxation process of very

small relaxation strength to occur in G(t), and in effect gives rise to some additional free volume

Thus, the residual plasticizers in sample B have the effect of reducing somewhat the glassy

compliance)as clearly visible in the J(t) results of Plazek) as well as the value of the frictional

factor K. However, the entanglement molecular weight is virtually not affected at all because

there is only a residual amount of the plasticizer. As a result, the interrelations (ratios) among

the relaxation times A, X, B, and C which are determined only by the structural

factors)functions of the normalized molecular weight M/Me)are not affected;2-5,8 in other words,

the line shape of the viscoelastic spectrum over the rubber-fluid region will not be affected. As

AG is reduced by about 25% by the residual mobile plasticizer molecules, the glassy-relaxation

region in sample B will be directly affected. However, as the discrepancy is only 25%, some of

the information obtained from the J(t) line-shape analysis of sample B can still be used; clearly

the K value obtained from sample B cannot be used. This will be further discussed below over

the results obtained from analysing the J(t) data.

3.2. Frictional Factor, K. For sample A, the frictional factor K at 127.5oC can be first

calculated from the time-scale shift factor obtained from superposing the calculated J(t) curve on

that measured at 125oC as described in Section 2 and then corrected for the temperature

difference between 127.5 and 125oC using the temperature dependence of its viscosity.19,29 In

this way, K=4.8x10-9 is obtained in quantitative agreement with those determined from the

analyses of the G(t) results as reported before and mentioned above as well as those calculated

from the viscosity29 and diffusion33,34,35 data. The agreement of the K values as shown in Table 1

(see the Appendix as well) is significantly rigorous, considering the constancy of K over a wide

range of molecular weight and that these K values are obtained from analysing experimental

results measured independently by totally different kinds of instruments)strain-controlled vs.
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stress-controlled rheometer)and of quantities of different nature)viscoelasticity vs. diffusion.

For sample B, the frictional factor at 127.5oC can be calculated first from the time-scale

shift factor obtained from the superposition of the calculated with the J(t) curve measured at

134.5oC or at 119.8oC and then corrected for the temperature difference using the temperature

dependence of the viscosity of a normal (uncontaminated) polystyrene sample with a comparable

molecular weight.29 We obtain K=3.7 x10-9 if through 134.5oC and K= 3.0x10-9 if through

119.8oC. Both these two values are somewhat smaller than that for a normal sample, particularly

the latter, supporting the presence of residual plasticizers in sample B. Furthermore, the

presence of residual plasticizers in sample B has a larger effect, as in comparison with a normal

sample, on its viscosity or frictional factor at a temperature close to Tg than at a higher

temperature. This is the reason, to which Plazek attributed the smaller values and weaker

temperature dependence of the viscosity of sample B in the temperature region close to Tg.20

This is clearly also reflected by the smaller K value of sample B obtained through 119.8oC than

through 134.5oC.

Due to the presence of residual plasticizers in sample B, as pointed out above, the K

values obtained from sample B cannot be included in Table 1, which shows the molecular weight

independence of K . In the accompanying paper,31 the obtained K values for sample A from

127.5 to 97oC are listed in Table 1; the consistency between the temperature dependence of K

and that of viscosity (as /T) is shown in Figure 5.

3.3. Thermorheological Complexity. The thermorheological complexity as first

pointed out by Plazek 19,20,36 in reporting his J(t) results is shown caused by the increase of the

normalized glassy-relaxation time s with decreasing temperature. The s values that give the close

fittings between the theory and experiments as shown in Figures1 and 2 are shown as a function

of temperature for both samples together in Figure 3. These two molecular-weight dependence

curves of s are parallel with each other indicating a similar effect taking place in both the

systems. Over the shown temperature range, s increases by about an order of magnitude with
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decreasing temperature. One can basically superpose the curve of sample A onto that of sample

B by multiplying the s values of sample A by a factor of 2.6.

While the frictional factor K in the X(t), B(t) and C(t) processes is independent of

molecular weight to as low as just above Me (see the Appendix), the frictional factor in the A(t)

process denoted by Khas been found to have a plateau value 3.3K in the high molecular-

weight region, start to decline at M/Me10 with decreasing molecular weight, and become

identical to K as M/Me 1.2,5 The same molecular-weight dependence of K/Kis also observed

for the blend-solution system 4,5 when it is expressed in terms of the normalized molecular

weight: M/Me for the pure melt and M/Mefor the blend solution (Me=MeW-1 where W is the

weight fraction of the entangled component; see the note at ref. 37).37 The dependence of K/K

on M/Me (or M/Me) can be described by the empirical equation.4,5
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The dependence of K/K on M/Me has been explained before and will be further discussed below

with respect to the results obtained in this study. As calculated from eq 8, K=1.61K for sample

A; K=3.16K for sample B. These two Kvalues differ by a factor of 1.96. This ratio is close to

that between the s values obtained for samples A and B at the same temperature. Since the

product of AG and s is what matters in determining the s value as explained in Section 2, the

difference between 2.6 and 1.96 is most likely related to the AG value for B being somewhat

smaller that that for A; indeed, the product of 5482 (AG of sample A) and 1.96)the expected

normal situation)is very close to that of 4119(AG of sample B) and 2.6)the situation disturbed

by the presence of residual plasticizers. The presence of residual plasticizers affects the line
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shape in the glassy-relaxation process region of sample B somewhat. As the distortion of the AG

G(t) line shape is not large, the comparison of the two sets of results can still reveal that the

dynamics of the whole G(t)-A(t) region, not limited to the A(t) process, are characterized by

relaxation times depending on molecular weight in the same way as K(or KK as given by eq

8). This will be more clearly illustrated below (Section 4.2) in the comparison the G(t) line

shapes in the glassy-relaxation region between samples A and B.

3.4. Fitting Parameters. It is advisable at this point to summarize the parameters

involved in the theoretical fitting to the J(t) line shapes of samples A and B as described above

and discuss their uniqueness and significance. The relevant parameters involved in describing

the J(t) line shapes over eight decades in time in one case and over nine decades in the other case

are AG, , s (or either G or G), Me, K, K’(or K’/K), Z and m. Among these parameters, most

have been predetermined:

The entanglement molecular weight Me has been determined independently from the

plateau modulus)a static property. An error in the Me value will lead to an error in the obtained

K value because both Me and K appear in the equations for the relaxation times A, X, B, and C ;

thus, an accurate determination of Me is essential. Me=13500 has been obtained from the

convergence in consistence of the assumed Me value with the plateau modulus value obtained in

the least-square fitting process of the quantitative G(t) line-shape analysis.2,4,5 This Me value is

also confirmed by the close agreement with the value 13300 determined by the integration

method.38

With the accurately determined Me, the frictional factor K was found independent of

molecular weight from an extensive G(t) line-shape analysis. In the G(t) line-shape analysis, the

polydispersity of the studied nearly monodisperse samples need be considered. The

polydispersity parameter Z values obtained from the G(t) line-shape analyses are extremely well-

behaved; they fall between Z=30 and 120 corresponding to Mw/Mn=1.03 1.01, well within the

range expected for a nearly monodisperse sample. The Z parameter affects mainly only the
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shape of the G(t) curve in the terminal region; any possible small uncertainty in Z virtually has

no effect on the obtained K value. Thus, the obtained molecular-weight independence of K is

virtually not affected by the polydispersity variation among the studied nearly monodisperse

samples.

The dependence of the K’/K ratio on molecular weight as phenomenologically described

by eq 8 was determined from the relative position of the A(t) process region to the plateau-

terminal region by the G(t) line-shape analyses.2,4,5

The molecular weight m of a Rouse segment, which determines the number of normal

modes in A(t), mainly affects the interface region between the energetic interactions-derived

dynamic process (AGG(t)) and the entropy-derived dynamic processes (the ERT processes:

A(t),X(t), B(t) and C(t)). The AGG(t) process and the ERT processes are of different nature;

thus, a discontinuity occurring at the interface between the two intrinsically different kinds of

dynamic processes is not surprising. Using eqs 1, 4 and 5 for the line-shape analysis, we have

substituted a discontinuity for a somewhat smoother transition as should most likely occur in

reality. The discontinuity picture can be considered as a first-order approximation and should

work well if the location of discontinuity as represented by the m value is properly chosen.

m=850 falls within the range of the values determined by various techniques10-18 with small

variations. The discontinuity approximation and the proper choice of m are supported by the

extensive close agreements between the calculated and measured J(t) curves as shown in Figures

1 and 2.

The facts that the K value obtained for sample A at 127.5oC agrees closely with the

values obtained previously (see Table 1) and that the obtained Z value (=20; corresponding to

Mw/Mn=1.05) is well within the expected range allow us, to the same effect, to regard K and Z

along with Me, K’(or K’/K as given by eq 8) and m as predetermined parameters. In other words,

AG, and s are the main fitting variables in this study, affecting the small-time/small-compliance

region of J(t). The end result is the seamless quantitative description of J(t) over the whole time
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range. Here, it should be stressed that the foundation for the quantitative description of J(t) is

ultimately K being independent of molecular weight. Because of the success of ERT as

represented by the molecular-weight independence of K, theoretically, there is no limit to the

time range of J(t) that can be analysed, depending on the molecular weight of the sample under

study.

Among the three variables AG, and s, as indicated above, AG is basically dictated by the

glassy modulus)the reciprocal of the glassy compliance JG)and is only sensitive to the J(t)

line shape in the small-compliance region, <108cm2/dyne. Thus, the determination of the best

values for AG and is effectively decoupled from that of s, which reflects the shift with

temperature of the J(t) curve in the 1085x107 cm2/dyne region along the normalized time

coordinate (In this study, the time coordinate under a fixed K value, as chosen to be 5x109 in

Figures 1 and 2, is regarded as a normalized time coordinate). The whole thermorheological

complexity in J(t) is reduced to the simple change in s with temperature shown in Figure 3. This

reduction is of particular significance as we can notice in Figures 1 and 2 that the shift with

temperature in the 5x107 cm2/dyne region is not as large as that in the 108 cm2/dyne region.

The thermorheological complexity in J(t), even though being temporally uneven, is fully

explained by the simple change in s, which, very importantly, has a clear physical meaning,

namely representing the stronger temperature dependence of the energetic interactions-derived

dynamic process than that of the entropy-derived ones. The mechanism how the temporal

unevenness of the thermorheological complexity is related to the simple change in s will be

shown in Section 4.1.

Thus, although in the appearance there are 8 parameters involved in calculating the J(t)

curves in quantitative agreement with the measured ones over the whole time range, the whole

thermorheological complexity in J(t) is uniquely represented by the simple change in s with

temperature as all the other parameters can be determined independently beforehand or from the

J(t) line-shape analysis in a specific region.
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It is advisable here to comment on the large dynamic range revealed by the J(t) line-

shape analysis)6 decades)as shown in Figures 1 and 2, which should be rare, if even been done.

Two main reasons make this wide range of analysis possible: The first is the consistently

accurate J(t) data of Plazek over a wide dynamic range, covering four decades in a single creep

run in the best cases. The second is the correctness of the ERT-based functional form used to

analyse the J(t) data; the close agreement between the calculated and measured guides the

overlapping and correlation of the J(t) data measured at different temperatures, which extends

one decade of dynamic range (see the note at ref. 32). Then, the theoretical equation allows the

results of analysis to be extended for another decade in the flow region.

To put the combination of eqs 1, 4 and 5 in a proper perspective, it may be pointed out

that while ERT is a molecular theory, the inclusion of AGG(t/G) as defined by eqs 4 and 5 is a

phenomenological description. Using the stretched exponential form characterized by the three

parameters AG, and G is a common practice in describing a observed dynamic process closely

or directly related to the glassy-relaxation process of a glass-forming polymer or liquid39,40 In

fact, being described by a stretched-exponential form is considered as one of the canonical

features of the Tg-related dynamic process. Even though it is generally understood that the three

parameters: AG, and G, are closely related to the energetic interactions among the molecules or

polymer segments, there is currently no molecular theory for relating them. Although we don’t

have the microscopic knowledge of the three parameters, from the results obtained from the J(t)

line-shape analysis, particularly the change in s with temperature, an informing large picture of

the polymer dynamics can be revealed as discussed below.

4. Discussion

4.1. Comparison of J(t) and G(t). Shown in Figure 4 is the comparison of the curves of

log G(t) and log J(t)1 vs. log t calculated with K=5x10-9 at the s value corresponding to 113.8oC

for sample B. One can see that the G(t) curve has clear line-shape features showing the separate
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processes as given in eqs 1 and 4, while the solution of the convolution integral (eq 3) for

calculating J(t) "smears" the separate features greatly. To illustrate this, both the G(t) and J(t)

curves calculated without the contribution of the AGG(t) process are shown for comparison with

the full curves. One can see that the influence of the AGG(t) contribution in J(t) extends to the

time region corresponding to the A(t) process; in contrast, the AGG(t) and A(t) processes in G(t)

are localized in the individual time regions where they occur and are well separated. Thus, the

stronger temperature dependence of the G(t) process can much affect J(t) in the time region

corresponding to the A(t) process. In other words, in J(t) the effect of the increase in s with

decreasing temperature extends to the region around 5x10-7 cm2/dyne instead of being only

localized in the time region of the glassy relaxation G(t). As the effect diminishes gradually

with time scale, the temperature dependence in the region around 5x10-7 cm2/dyne is not as

strong as that in the glassy-relaxation region)this is the temporal unevenness of the

thermorheological complexity in J(t) as pointed out above. The unevenness has been first

observed by Plazek20 (see Figure 9 of ref. 20) in saying“The divergence seen in the region of the

‘knee’of the reduced (recoverable compliance) curve indicates that all of the retardation

mechanisms do not have the same temperature dependence.”Indeed, this observation is an

unusual discovery as Plazek stated“This discrepancy would not have been detected without a

large range of time scale.”However, without the help of a valid molecular theory as the base,

this observed phenomenon has not been given a full explanation for more than thirty years. Here,

we show that the intricacy arises mainly from the smearing effect of going through the

convolution integral in eq 3 and that the source of the whole phenomenon is traced back to a

rather simple physical effect.

In the case of sample A the glassy-relaxation process has a small yet basically negligible

effect on the flow region of J(t) as well, because its terminal region is relatively not that far away

due to its smaller molecular weight. The effect becomes more obvious as s becomes larger with

decreasing temperature. (see Figure 1)
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4.2. Thermorheological Complexity as Displayed in G(t). As shown in this study, in

spite of the smearing effect in J(t), the whole range of the J(t) curves can be analysed in the

framework of ERT into which AGG(t/G) is incorporated, revealing the dynamics in different

time regions. Using the results obtained from the analysis of J(t), the hierarchy of the dynamic

processes can be displayed in the G(t) form for a clearer discussion. In Figures 5 and 6, we show

the G(t) curves calculated with K = 5x10-9 for samples A and B, respectively, at the s values

corresponding to 114.5, 104.5 and 97oC for A and 113.8, 105.5 and 98.3oC for B. In these

figures, the curves calculated without the contributions of AGG(t) and without both of AGG(t)

and A(t) are also shown. The differences between these curves correspond to the separate

contributions of the AGG(t) and A(t) processes. In these figures, the locations of the relaxation

times, G, A
p (for the normal modes of A(t); p=1,2...15), X, B, and C are also indicated. The

number of normal modes used for A(t), i.e. Ne1=15, is a very reasonable choice as it

corresponds to the mass for a Rouse segment, m, to be about 850, which falls within the range of

the values determined by various techniques with small variations.10-18 Segmental motions

within a chain section shorter than 850 is regarded as belonging to the glassy relaxation. From

the {A
p} points shown in Figures 5 and 6, one sees that the relaxation times of the high

RouseMooney modes are closely packed; in choosing the number of modes, to differ by one or

two basically does not affect the main point that we shall make and discuss below.

A
15 is the relaxation time of the fastest among the modes that contribute to the modulus

of entropy origin; it can be regarded basically as the motional time constant associated with a

single Rouse segment v. Thus, it is a key time constant for comparison with G. As shown in

Figures 5 and 6, the G values at the shown temperatures are all much shorter than A
15 for both

samples A and B. The great disparity between G and A
15 appears basically consistent with the

stochastic assumption in the Langevin equations, from which the theoretical expression of A(t)

is derived. At the highest shown temperatures (114.5oC for A and 113.8oC for B), the modulus

due to AGG(t) has basically relaxed to a negligible level at t=A
15 (G/R=0.05 and 0.12,
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respectively, where G is the glassy contribution, calculated from the AGG(t) term; and R is the

rubbery contribution, the sum of the remaining terms). The validity of the Langevin equations

should hold well here. At the intermediate temperatures (104.5oC for A and 105.5oC for B), the

contributions arising from energetic interactions among segments and derived from entropy are

of the same order of magnitude at t=A
15 (G/R=0.96 and 1.3, respectively), indicating that the

ergodic assumption behind the Langevin equations may become not totally valid. As the

temperature decreases basically to the calorimetric Tg (at 97oC for A and 98.3oC for B), the

contribution to the total modulus from the energetic interactions greatly exceeds the entropy-

derived contribution at t=A
15 (G/R=11.7 and 9.8, respectively), indicating vitrification at the

Rouse-segmental level. At these low temperatures, the full validity of the Langevin equations

should be questioned, even though G<A
15. In this situation, the combination of the functional

forms given for AGG(t) and A(t) can be considered as a good phenomenological representation

for the processes in the short-to-intermediate time region of J(t) However, A(t) can be regarded

as what the RouseMooney modes of motion would be if the glassy-relaxation process had not

moved to longer times in the normalized scale. Thus, what is shown at Tg in Figures 5 and 6

does not only tell us that at tA
15 the rubbery elasticity has been overshadowed or basically

replaced by the energetic interactions-based elasticity but also allows us to use the relaxation

times of the various RouseMooney modes as “graduations”of a yardstick for estimating the

extent of the influence of the glassy-relaxation process.

In terms of G(t), we can more directly illustrate the small distortion of the AGG(t/G) line

shape by the residual plasticizers in sample B and further make it clear that the distortion does

not really affect what can be revealed)namely, the ratio between samples A and B of the

relaxation times in the whole G(t)-A(t) region, not limited to the A(t) process, follows that of

K’(or KK as given by eq 8). The two sets of G(t) curves as shown in Figures 5 and 6 have

approximately the same one-to-one corresponding temperatures: 114.5 vs. 113.8; 104.5 vs. 105.5;

and 97 vs. 98.3. Both 97 and 98.3 are each close to the Tg of samples A and B,
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respectively.41,42,43 The G/R ratios at the three corresponding temperatures being basically of the

same magnitude: 0.05 vs. 0.12; 0.96 vs. 1.3 and 11.7 vs. 9.88, clearly indicate that the dynamics

of the whole G(t)-A(t) region, not limited to the A(t) process, are characterized by relaxation

times depending on molecular weight in the same way as K’. In fact, allowing for 25%

deviations between two corresponding curves, which can account for the difference in AG

between samples A and B as well as the small differences in temperatures, the two sets of G(t)

curves as shown in Figures 5 and 6 can basically superpose on each other in the whole G(t)-A(t)

region rather well with a shift factor of 2 along the normalized time coordinate, expected from

the ratio of K’/K between the two samples. In comparison with this factor, a 25% deviation is

rather small; in other words, the above drawn conclusion is sound.

The separation of the energetic interactions-derived dynamic process AGG(t/G) and the

entropy-derived ones with the former having a stronger temperature dependence as shown in

Figures 5 and 6 is consistent with the separation of the glassy and rubbery components of the

dynamic Young’s modulus spectra by Inoue et al.12,13 analyzing dynamic mechanical and

birefringence results (see Figure 7 of ref. 12). However, the spectra of the rubbery component of

Inoue are limited to the A(t)-process region and the early part of the plateau region by the nature

of their experiment. As shown in the accompanying paper,31 the obtained temperature

dependences of A
15 (equivalent to that of K) and G are, respectively, in close agreement with

those of the viscosity and recoverable compliance obtained by Plazek.19,29 At the same time, the

temperature dependence of the rubbery component and that of the glassy component separated

by Inoue et al. are shown to be in agreement, respectively, with those of the viscosity and

recoverable compliance of Plazek in ref. 13. Thus, the present study shows the consistency

between the results of Plazek and Inoue et al. in both the forms and temperature dependence.

Such a link can be made, because, as opposed to the usual data reduction as used by Plazek and

Inoue et al., key parameters are obtained from the analysis of the J(t) data in terms of eqs.1, 4

and 5, which allow the results to be recast in any viscoealstic form (see the Appendix of ref. 31).
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4.3. Comments based on Literature Results of the Transition Zone. In general, it has

often been indicated that the relaxation in the transition zone is independent of molecular weight1.

However, this is based on the results obtained in the high-molecular-weight region where, as

indicated by eq 8 for polystyrene, K’/K is independent of molecular weight (above10Me). In

fact, the raw J(t) data of Plazek show that at the same temperature sample B reaches the same

compliance level in the small compliance region, say at 109cm2/dyne, significantly later than

sample A even though sample B is contaminated by residual plasticizers. The ratio between the

two time values is estimated to be roughly that obtained above, 2, after their difference in K is

taken into account)note: both Figures 5 and 6 are displayed under the same K=5x109. The

similar molecular-weight dependence of the transition zone (the G(t)-A(t) region) is also

observed in other polymers. For instance, in the J(t) results of poly(cis-isoprene) obtained by

Nemoto et al44: the transition region (J(t) curve from 109 to 108 cm2/dyne; see Figure 1 of

ref. 44) of a sample with molecular weight at 1.4Me occurs earlier by a factor of 4.5 than those

at higher molecular weights (>4Me),45 which show very weak molecular-weight dependence. The

similar effect also occurs in the J(t) results of poly(vinyl acetate) obtained by Ninomiya and

Ferry46: the transition region (J(t) curve from 109 to107 cm2/dyne) of a sample at 1.5Me

occurs earlier by a factor of 2.5 than that in the high molecular-weight limit. All these results

indicate that all the relaxation processes in the transition zone become faster significantly as the

molecular weight is decreasing towards Me. Except for polystyrene, there are not sufficient

results to indicate clearly the onset and the magnitude of the molecular-weight dependence of the

transition zone for different polymers. With the frictional factor K for polystyrene being

independent of molecular weight as guidance for the universal behaviour in the plateau-terminal

region, the molecular-weight dependence in the transition zone should not be used directly as the

basis for the iso-frictional correction for the study of the molecular-weight dependence of

viscosity,47 which is dominated by the K-determined long-time relaxation processes.

Furthermore, as the temperature dependence in the glassy-relaxation region or the transition zone
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has been shown to be stronger, as in the polystyrene case under the present study, than in the

rubber-fluid range for several different polymers,36,48,49,50,51 the temperature dependence in the

transition zone should not be used directly for correlating viscosity data measured at different

temperatures as one of the involved temperatures is sufficiently close to Tg.44

4.4. Basic Mechanism for the Thermorheological Complexity. The process AGG(t)

that describes the J(t) curve in the small-compliance/short-time region is clearly derived from

energetic interactions among segments. As shown above, the chain section of the Rouse-

segment size is gradually stiffened by the energetic interactions with decreasing temperature

until it is overwhelmed by the effect at Tg. Correspondingly, the increase in the parameter s

with decreasing temperature suggests the existence of an additional dynamic time scale

“normalised” with respect to K, which in turn suggests the existence of a corresponding

structural length scale. Indeed, as s has the unit of (Da)2, the mass size of the structure increases

as s1/2 with temperature decreasing toward Tg. Clearly, such a structure has to be based on

energetic interactions among segments. Based on what we have observed in the above analysis,

this structure should have the following basic properties:

(1) The structure has a length scale and a lifetime, both of which increase with decreasing

temperature. We can somewhat arbitrarily choose G/R=3 as a criterion for designating the

lifetime of the structure. G/R=3 indicates a state which has relaxed considerably from

G/R10)by a factor of e1)which is about the value at t=A
15 when the temperature is at Tg; at

the same time, the state is still much under the influence of the energetic interactions. Thus, the

time when G/R reaches 3 can be regarded as a time constant that reflects the duration of the

structure. Here, we simply refer to it as the lifetime of the structure and denote it by S. From

the calculations whose results are shown in Figures 5 and 6, one finds that for both the samples

while S < A
15 at 104.5-105.5oC, S has reached A

6 A
7 at Tg. A

p is the relaxation time of

the mode of motion associated with a length scale (a2/p)0.5 where a is the entanglement

distance.5,52 Thus, the size of the domain influenced by the energetic interactions increases as
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the temperature is lowered towards Tg.. Of course, this is directly corresponding to the increase

in the mass size of the structure (s1/2) as pointed out above. As defined above, the structural

lifetime S is of the order of 1520G. And the length scale affected by the glassy-relaxation

process or the length scale of the structure is 3 nm (for p=67; and a=7.6 nm for

polystyrene5,38,53) at Tg. Interestingly, this length-scale value for polystyrene is the same as

that estimated from the calorimetric data based on an argument considering fluctuations in a

‘cooperatively rearranging region.54,55 In general the length scales of glass-forming materials as

obtained by different techniques are in the range 15nm.54,55,56,57,58 The crossing over A
15 by S

just before the temperature reaches Tg is a critical microscopic event for the eventual vitrification

of the polymer material. In the accompanying paper,31 for being able to reflect the temperature

dependence of the glassy-relaxation process accurately and the effect on bulk mechanical

property by maintaining the same order of magnitude, the structural relaxation time is defined as

S=18G (see Table 2); the relative changes of these two kinds of characteristic times with

temperature in the case of sample A will be further studied.

(2) As induced by an applied strain, the stress on such a structure is developed on

energetic interactions, and relaxes as the interlocking of segments in the structure loosens up due

to thermal motions. The structural lifetime is an important factor that needs to be included in the

consideration of the diffusion constant associated with a Rouse segment, D, when the structure

has a size greater than that of the Rouse segment as described above. Even when the length scale

of the structure is greater than that of the Rouse segment, D can still be defined by the distance a

Rouse segment has travelled statistically over a long period of time. This is clear as, in the

rubberlike-fluid region, the J(t) line shape remains unchanged with temperature;59 the relaxation

times: A
1, X, B and C , which are inversely proportional to D,2,5-8 can be calculated from the K

value obtained from the line-shape analysis as explained in Section 3.2. In other words, as K can

be determined)as listed in Table 1 of ref. 31 for sample A from 127.5 to 97oC)so D can be

defined and obtained.
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Based on the basic properties of the structure as described above, the thermorheological

complexity between the glassy-relaxation region and the rubber-fluid region can be explained as

in the following: Being Brownian motion, the diffusion constant of a Rouse segment can

generally be expressed as

t
lkT

D



2


(9)

where l is the step length that the Rouse segment has moved in a time interval t. The only

criterion for choosing t and l is that the steps are independent of one another; after a sufficiently

large number of steps of movement have taken place, the central limit theorem assures that the

dynamic process becomes Gaussian.5,52 Here, we consider the time step t in a“normalized” 

scale by dividing it by K. The normalization has a similar sense as Figures 1, 2, 5 and 6 being

displayed under a fixed K. As what will be discussed below has much to do with the fact that the

normalized glassy-relaxation time s increases with decreasing temperature, it will be easier to

explain the concepts in the normalized time scale. In the normalized scale, D is a

constant)independent of temperature. When there is not the structure whose relaxation is

described as above)as the situation expected to be at high temperatures)we can have a wide

range down to very small values to choose l and t for satisfying eq 9. This is often referred to

as the continuous (small-step) or "free" diffusion.39,60 At a temperature close to Tg, the structure

is formed with a certain lifetime S (in the normalized scale), which increases as s increases; then

the smallest independent time step that can be chosen is of the order of the lifetime of the

structure S 1520G (all in the normalized scale). We can choose as the time step

because is still much shorter than A
1, X, B and C (all these time constants are constant in

the normalized scale). Here, what has changed is that the diffusion regime has moved to longer
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times. Corresponding to being longer, a larger length scale d is expected for the step length.

And both and d increase with decreasing temperature. With and d chosen this way, the

normalized diffusion constant can be kept constant as required. Because of the formation of the

structure, the local segmental reorientation time directly related to the lifetime of the structure

has lengthened greatly in the normalized time scale; however, the relaxation times (normalized)

in the long-time region: A
1, X, B and C, remain the same. In other words, in the real time (not

normalized), the relaxation times in the long-time region are proportional to K /kT /d2

when the structure is formed, while the local structural relaxation time is proportional to G 

. The temperature dependence of is expected to be stronger than that of /d2. This

difference in temperature dependence is the basic mechanism for the thermorheological

complexity as indicated by the analyses of the J(t) curves at different temperatures in this study.

To satisfy the conditions for choosing and d, a likely dynamic process for the Rouse

segment to take is by cooperative large-step jumping involving more than one Rouse segment.

The cooperative large-step jumping has long been recognized based on the magnitude of the

apparent activation energy near the glass transition.39,61,62 Molecular dynamic simulations for

glass-forming LennardJones mixtures,60,63 through the study of the van Hove self-correlation

function, have clearly indicated the shifting of the diffusion regime to longer times as the

temperature is lowered)similar to the effect as pointed out in the above analysis. Associated

with this effect taking place is that the dynamics become not only spatially heterogeneous but

also dynamically correlated; in other words, the dynamic process is no longer that described by

continuous diffusion. Such dynamic heterogeneity and correlation have also been observed

directly by confocal microscopy in the colloidal fluids near Tg.64 Dynamic heterogeneity in

glass-forming liquids and polymers in the vicinity of Tg has also been indicated by various

studies using different techniques.65,66,67,68,69,70 It is generally believed that dynamic

heterogeneity implies the existence of a length scale, whose value at Tg, as much stimulated by

the notion of the cooperative rearranging regions (CRRs) of the Adam and Gibbs theory,71 has
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been a subject of both theoretical and experimental studies.54-58,72 In spite of all the gained

understandings, a precise relation between the length scale or CRRs and dynamic heterogeneity

has still to be formulated. The time scale and the length scale involved in the above discussion

of the thermorheological complexity are obtained from analyzing the bulk property J(t); thus,

they are macroscopically averaged values. How these values can be better defined at the

molecular level should be most likely answered by comparing studies with various

spectroscopies.

The viscoelastic behaviour of polystyrene in approaching Tg as discussed above)namely,

the discussion of G or S vs. A
1, X, B and C)demonstrates what has been well said by

Sillescu54 about a dynamically heterogeneous system:“--, a system may be heterogeneous and

non-ergodic at times t <1 s, but perfectly homogeneous and ergodic on a time scale of hours.”

To further illustrate this, we can use the K and s values for sample A approaching Tg as listed in

Table 1 of the accompanying paper31 to calculate the nonergodic and ergodic relaxation times for

comparison as shown in Table 2. In the relatively short yet macroscopic time scales of G or S,

the strong energetic interactions in forming the structure keeps many configurations from being

explored, while in the long time scales of A
1, X, B and C, there are enough time to explore the

configurational space effectively, leading to entropy-derived modulus (as represented by the

entropy force constant) and dynamics (as described by the Langevin equation). Below 110oC,

loss of ergodicity gradually takes effect in polystyrene.

The formation of an energetic interactions-based structure indicates that the glass

transition is a thermodynamic phenomenon; at the same time, the structure having a lifetime

indicates that it is also a dynamic phenomenon. The dual nature of the glass transition

phenomenon has long been recognized experimentally. For a practical purpose, a Tg-related

temperature is often determined by monitoring the occurrence of the glass-rubber relaxation by

dynamic mechanical measurements fixed at a certain frequency as the temperature is varied.1,73

Since both K and s change with temperature, so does the characteristic time of the glass-rubber
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relaxation in G(t))often referred to as the -relaxation time. Thus, the Tg-related temperature

determined this way depends on the probing frequency. The traditional ways of defining the -

relaxation time will be compared with what will be obtained from the further analysis in the

accompanying paper.31 Another factor: non-equilibrium state at and below Tg, makes the

measured Tg depend on the cooling rate of the sample. Such an effect can be clearly observed in

monitoring the specific volume as the temperature is lowered.1,74 In this study, the non-

equilibrium aspect of Tg is not a concern, as the systems under analysis should all be in the

equilibrium state.19 Either probing rate or cooling rate is an externally imposed condition. In this

report, we show that there is an intrinsic rate or time scale that plays a critically important role in

the glass transition of a polymer, namely the relaxation time of the highest RouseMooney mode,

A
15. The crossing over A

15 by S signals the start of vitrification at the Rouse-segmental

level)the basic change at the molecular level corresponding to the transition of the bulk

consistency from rubber to glass. Since the Rouse segment is the most basic structural unit in

terms of which all the long-time viscoelastic behaviour of the polymer can be described,5 a

fundamental change at the Rouse-segmental level)vitrification)is expected to have a dramatic

effect on the bulk property. As the relative position of S to A
15 is changed by the

thermorheological-complexity effect, the glass transition is closely related to the observed

thermorheological complexity in J(t). This topic will be further studied in the accompanying

paper.31

Models have been proposed for the supercooled liquids involving the concept of

domain,39,71,75,76,77 all based on energetic interactions among particles or segments. A basic idea

in all these is, either explicitly or implicitly, that the system moves from the region of free

diffusion to one of "landscape"(potential-energy hypersurface)-dominated dynamics as the

temperature decreases towards Tg. Such a view is much supported by molecular dynamics

simulations.78,79 However, the thermorheological complexity)arising also from energetic

interactions and related to the glass transition by the above-described mechanism)has never been
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considered in any of these models, as far as we know. The temperature dependence of K is

usually described by the Fulcher and TammannHesse (FTH) equation or the

WilliamsLandelFerry (WLF) equation.1,80,81 The thermorheological complexity is more than

the non-Arrehnius temperature dependence, which has been provided an explanation for or

accepted in these models.

Similar to the phrase“vitrification at the Rouse-segmental level”used to represent the

overwhelming of the entropy-derived modulus by the energetic interactions-derived contribution

at the Rouse-segmental time scale t=A
15 as revealed above, Adachi and Hirano51 proposed an

idea of local vitrification based on their observation that below 230K the ratio of the relaxation

times of the normal and segmental modes in poly(cis-isoprene) as observed by dielectric

relaxation decreases with decreasing temperature. However, their physical picture is totally

different; they attributed the weaker temperature dependence of the normal mode to the

shortening of the effective normal-mode length scale caused by the vitrification taking place

locally at some points distributed on the chain. They also reported that they did not observe the

decrease in the relaxation strength and broadening of the distribution of the normal-mode

relaxation times to support their picture. Although not really a direct indication of local

vitrification as shown in the present analysis, their observation that the time-temperature

superposition is not applicable over the whole frequency range as the temperature approaches Tg

should arise from the same basic mechanism as for the thermorheological complexity in J(t) of

the polystyrene system under the present analysis, just as the stronger temperature dependence of

the glassy component in comparison with that of the rubbery component as revealed by Inoue et

al. analyzing the dynamic mechanical and birefringence results for several different

polymers.12,13, 49,50 Thus, the thermorheological complexity is quite a general phenomenon; the

existence of such an effect has been pointed out by the researchers in polymer rheology through

the years without offering a fundamental explanation.12,13,36,48,49,50 In this study, we show

through the analysis and discussion of G or S vs. A
1, X, B and C the mechanism behind it
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and its relation to the glass transition of a polymer.

The basic mechanism as proposed for the thermorheological complexity occurring in the

polystyrene system should also be the reason for the breakdown of the StokeEinstein equation

in relating the translational diffusion constant Dg with the shear viscosity s, which has been

observed for glass-forming liquids, such as OTP (o-Terphenyl) 82,83,84 and TNB (tris-

Naphthylbenzene),85 when Tg is approached from above. Without the entropy-derived modes of

motion as described by ERT in such liquids, sAGG(t) dt; similarly to what is explained

above, Dg d2while s . Thus, the diffusion constant is enhanced.

4.5. Free Volume and Relaxation Times. The frictional factor is responsible for the

temperature dependence of the relaxation times, mainly following the FTH or WLF equation.

Thus, according the traditional idea, the frictional factor is related to Tg in a certain way. It has

been well known that free volume is a useful concept for describing the molecular-weight

dependence of Tg
1,42, 86 and the steep increase of viscosity with temperature decreasing towards

Tg.1,87 In other words, the free volume in a polymer depends on temperature as well as molecular

weight. The molecular-weight dependence of the free volume is mainly associated with the

number of chain ends per unit volume. While K is shown independent of molecular weight, Tg

has changed by about 8 degrees for polystyrene over the studied molecular-weight range

(Me).42,43 The explanation for this seemingly unusual phenomenon is that K is associated with

the modes of motion along the primitive chain: X(t), B(t) and C(t), to which the free volume

localized at both ends of the chain is always available. Such a mechanism is very similar to the

behaviour of clusters of mobile particles found in the molecular-dynamics simulation of a glass-

forming LennardJones liquid and observed in a supercooled colloidal fluid.88 On the other

hand, Kbeing associated with the A(t) process)the normal modes of motion of an entanglement

strand with both ends fixed)is affected by the average free volume in the neighbourhood of the

whole entanglement strand, which is a function of the molecular weight of the bulk. As a result,
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K/K decreases with decreasing molecular weight (eq 8). The comparison of the results of the

two studied samples indicates that s, while increasing with decreasing temperature, has the same

molecular-weight dependence as that of K’/K over the shown temperature range (Figure 3).

Similarly to K, Tg depends on molecular weight for being related to the free volume of the bulk

polymer, which increases with the number of chain ends per unit volume. It is interesting to note

that for polystyrene Kand Tg start to decline with decreasing molecular weight from a plateau

value at about the same molecular weight 10Me.43 The dynamic anisotropy as represented by

K/K>1 disappears)i.e. K/K1)as M decreases toward Me. Thus, the molecular-weight

dependence of K/K as well as s should be related to entanglement, though in an indirect or

"feedback" way, as entanglement has a length scale larger than those associated with the motions

involving Kand s. In the above discussions, we show that the molecular-weight dependence of

Tg should be only related to the A(t) and G(t) processes, whose relaxation times depend on

molecular weight as K’. On the other hand, the relaxation times of the X(t), B(t) and C(t)

processes depend on molecular weight through their structural factors; their frictional factor K is

independent of molecular weight.

What we have obtained here and previously suggest that some of the traditional views

need be re-examined and refined regarding polymer viscoelasticity and glass transition. For

further studies, the key observations are summarized as in the following:

(1) The frictional factor K is independent of molecular weight to as low as just above Me;

the change in K with temperature is entirely responsible for the temperature dependence

of the relaxation times: X, B and C.

(2) The ratio of K/K exhibits the normalized-molecular-weight dependence as described

by eq 8.

(3) K and Kare for the dynamic processes with a relaxation strength or modulus derived

from entropy, i.e. without involving a structure based on energetic interactions. Thus, K
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and K' should depend on temperature in the same way. The validity of this reasoning is

supported by the result that the change in the J(t) line shape with temperature is uniquely

and fully described by the simple change in s=GK as well as confirmed by the result

obtained by Inoue et al.12,13

(4) The parameter s depends on temperature and molecular weight as shown in Figure 3.

The mass size of the energetic interactions-based structure formed in approaching Tg is

proportional to s1/2. From 115120oC to Tg, the mass size of the structure has increased

by a factor of 3 for both the samples.

(5) In spite of the small distortion in the AGG(t) line shape of sample B by the residual

plasticizers it contains, the result of analysis indicates that s between the two studied

samples over the shown temperature range has the same molecular-weight dependence as

KK; in other words, the dynamics in the whole G(t)-A(t) region, not limited to the A(t)

process, are characterized by relaxation times maintaining the molecular-weight

dependence same as that of K/K given by eq 8. The ratio of s between the two studied

samples at the same temperature should not mean that the mass size of the structure is

greater in sample B than in sample A. The molecular-weight dependence of s following

that of K’/K should arise from the same effect that is responsible for the molecular-weight

dependence of K’/K, which is attributed to the free-volume effect associated with the

number of chain ends per unit volume.

In the above list, points (1) and (2) are the results of the previous studies; points (3), (4) and (5)

are based on the present study. In view of the universal nature of viscoelastic behaviour in the

plateau-terminal region, point (1) should be universal. The temperature-dependence trend as

given in point (4) is well supported by studies of polymers other than polystyrene showing that

the temperature dependence in the glassy-relaxation region or the transition zone is stronger than

in the rubber-fluid range, as pointed out in Section 4.3. Also pointed out in the same section, the
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literature data in the glassy-relaxation region or the transition zone of other polymers indicate

that the relaxation processes in the transition region become faster significantly as the molecular

weight is decreasing towards Me. This trend of change is the same as that of K’/K as given in

points (2) and (5). However, whether the onset point of the decrease in the counter part of s or

K’/K with decreasing molecular weight and magnitude of the molecular-weight dependence for

other polymers will be as given by eq 8 remains to be seen. On the other hand, the limiting

behaviour K’/K1 as MMe should be universal.

The combination of point (1) and points (4) - (5) represents a quite different view from

what has been held traditionally.1 The fact that K being independent of molecular weight is

rigorously proven by the results as shown in Table 1 strongly suggests that this view be valid.

Thus, further studies in this area may lead to a totally new understanding of the glass transition

phenomenon and its related dynamics.

5. Summary

Although the J(t) results of Plazek of two nearly monodisperse polystyrene samples in

the entanglement region were published more than 35 years ago, they remain basically

unanalyzed, particularly in terms of a functional form which has a valid molecular theory as the

basis. As a result, in spite of the extremely wide range of time they span, the rich information of

polymer dynamics that they contain have remained basically untapped until this report.

In this study, two classes of contributions to the relaxation modulus G(t) are identified:

One, AGG(t), originates from energetic interactions; the other, containing the four dynamic

processes of ERT: A(t),X(t), B(t) and C(t), is derived from entropy. The relaxation

functional forms of all the processes are given: phenomenological form for AGG(t); molecular

expressions for A(t),X(t), B(t) and C(t). In terms of the G(t) function, the J(t) results of

Plazek are successfully analyzed. We first show that the J(t) results of the two nearly

monodisperse polystyrene samples are well described by ERT in the rubber(like)-fluid region,



39

giving the frictional factor K for the uncontaminated sample)sample A)in quantitative

agreement with those obtained previously from analysing the G(t) results and calculated from the

viscosity and diffusion data. This gives an confirmation)from an independent investigator and

different type of measurement)to the validity of ERT. Then it is demonstrated that the successful

description of J(t) in the rubber(like)-fluid region in terms of ERT can be used as the reference

frame, with respect to which the glassy-relaxation process that occurs in the small-

complianceshort-time region of J(t) can be analysed meaningfully and profitably. The

contributions from this study are manifold:

The unified quantitative analysis of the whole range of chain dynamics, from the glassy-

relaxation region to the flow region, shows how the dynamic processes occur one after another as

clearly displayed in the G(t) form. Displaying the hierarchy of the dynamic processes in

perspective, the analysis by itself has far-reaching application potential, for instance, for

comparing studies with other spectroscopies sensitive to dynamics at different length scales and

for seeing how the hierarchy is affected if some structural modification is made to the polymer.

It is shown that in polystyrene the temperature dependence of the energetic interactions-

derived glassy-relaxation process is stronger than that of the entropy-derived processes in the

rubber-fluid region as the temperature is close to Tg, in agreement with the result obtained by

Inoue et al.12,13 The thermorheological complexity in J(t) is shown arising from this difference

in temperature dependence; the temporal unevenness in the observed complexity in J(t) is

revealed as due to the smearing effect of the convolution integral in eq 3.

Corresponding to the thermorheological complexity, the increase of the normalized

glassy-relaxation time s with decreasing temperature indicates that a structure based on energetic

interactions among segments occurs as the temperature is close to Tg. With decreasing

temperature, both the length scale and lifetime of the structure increase; furthermore, the mass

size of the structure is expected to increase as s1/2.

This study, making use of the molecular picture in ERT, gives microscopic information
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about the glass transition of polystyrene from a viewpoint that cannot be reached by the

traditional approaches.39 In fact, the entanglement effect has often been seen as an

“obstacle”)by causing a viscosity increase of many orders of magnitude)to the study of the

glass transition of a polymer when the convention of viscosity reaching 1013 poise39,40 is to be

used to indicate Tg. Here, because ERT enables the whole rubber(like)-fluid region in J(t) to be

analyzed, we turn entanglement to our advantage)namely, using the description of rubber-fluid

region as a reference frame for studying the glassy-relaxation process that occurs in the short-

time region. Through the molecular picture of ERT, the following two important pieces of

information related to the glass transition have been revealed: (a) It is shown that for polystyrene

the length scale of the energetic interactions-based structure is 3nm at Tg in agreement with the

value obtained from the calorimetric data.54,55 Much to the credit of the notion represented by

the‘cooperatively rearranging regions’of the Adam and Gibbs theory, the length scale at Tg has

been the focus of various studies. This study represents a new methodology for studying it in an

entangled polymer. As opposed to several techniques which require imposing external length

scales to the studied material,54-58 the yardstick for estimating the length scale in this study is

provided internally)i.e. by the normal modes in the A(t) process. This method has the

advantage of being free of any surface effect which may quite easily affect the result in the case

that the material is studied in confined geometries; the surface effect is currently very much an

issue of interpretation. In principle, the present method can be applied to any entangled polymer,

as long as it is nearly monodisperse.89,90 This would be particularly useful as the values of

entanglement distance, a, of various polymers have been well documented.5,38, 53 (b) It is shown

that, corresponding to the rubber-glass transition of the polymer taking place at the calorimetric

Tg, S becomes greater than A
15 indicating vitrification at the Rouse-segmental level. Such a

fundamental change at the Rouse-segmental level should be responsible for the dramatic change

in the bulk mechanical property at Tg. S becoming greater than A
15 at Tg for a polymer
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suggests the question whether there is a physical time constant l that can be studied,

characterizing the liquid state in a glass-forming liquid, which is to be surpassed by the

structural-(-) relaxation time S for the glass transition to take place. So far such a time is set in

an arbitrary way by the convention that S reaches 1001000 s at Tg.39,54,91 The S value at Tg

shown in Table 2 is consistent with the convention.

It is shown that the basic mechanism for the thermorheological complexity deduced from

the present study should be also responsible for the breakdown of the StokeEinstein relation

observed in glass-forming liquids, such as OTP and TNB, near the glass-liquid transition. While

the thermorheological complexity has been puzzling to polymer rheologists for years, the break-

down of the StokeEinstein relation has been actively studied in the past decade. The proposed

mechanism allowing the two seemingly unrelated phenomena to be linked represents a new way

to see and study the glass transition phenomenon.
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Appendix: Comparison of the K Values Obtained from G(t), J(t), Viscosity and Diffusion

Data.

Here, with respect to the frictional factor K, we make a more thorough comparison with

the literature data than in ref. 6, particularly taking the effect of the finite molecular-weight

distribution of the nearly monodisperse samples on their viscosity values into account. The

contributions of the A(t) and B(t) processes to the viscosity are negligible when the molecular

weight is sufficiently high (>7Me). Under such a situation, an analytical expression for the

viscosity can be obtained in ERT (see eq 29 of ref. 8 or eq 9.24 of ref. 5). Using this equation, K

can be calculated from the viscosity and density data. The results obtained by Plazek and
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ORourke 29 for samples with Mw= .94x; 1.89x; and 6.0x105 are used in the calculations giving

K=7.1x, 5.9x, and 7.7x10-9, respectively, at 127.5oC; and 3.2x, 2.4x, and 2.7x10-12, respectively,

at 174oC. It has been shown that the viscosity of a nearly monodisperse sample is slightly larger

than that of an ideally monodisperse one with the same (weight-average) molecular weight.2,5,92

Being for ideal monodispersity, the analytical expression leads to a slightly larger K value as the

experimental viscosity value is used in the calculation with the weight-average molecular weight

being regarded as the molecular weight in the equation. The bulk of correction can be made to

the obtained K value if the Mw/Mn value is known. While being not given, the Mw/Mn values of

the three samples can be estimated from matching their measured steady-state compliance Je
0

values29 with those calculated from the linear viscoelastic

equation,
2
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dttGtdttGJ e , wherein the G(t) is first calculated from convoluting

eq 1 with the Schulz distribution using the polydispersity parameter Z as the only adjustable

parameter. In this way, Z=23, 20, and 10 (correspondingly, Mw/Mn=1.04, 1.05, 1.1) are obtained

for the three samples, respectively. These values are well within the range expected for a nearly

monodiperse sample. Then the correction factors for K due to the finite molecular-weight

distribution can be obtained by comparing the viscosity results calculated from the analytical

equation and from integrating numerically the G(t) which has first been calculated from

convoluting eq 1 with the Schulz distribution using the above obtained Z values, both kinds of

calculations being done with the same (weight-average) molecular weight and K for each sample.

The thus obtained correction factors are 1.24, 1.22, and 1.34 for the three samples, respectively.

That the first sample, while having a Z value slightly larger than the second one, has a slightly

larger correction factor is due to the fact that at its molecular weight the A(t) and X(t) processes

can still make a small noticeable contribution to the viscosity. Taking the correction factors into

account, the K values are obtained to be 5.7x, 4.9x, and 5.8x10-9, respectively at 127.5oC; and

2.6x, 2.0x, and 2.0x10-12, respectively at 174oC.

In ref. 6, the diffusion proportional constant Kd =DGM2 determined directly by the
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diffusion measurements and calculated from the frictional factor K (Kd=R2Me/32MK) obtained

from the analyses of the viscoelastic data are compared at 174oC. The comparison can be

equivalently made in terms of K instead of Kd; see ref. 6 for the details. From the Kd value

(8x10-3 cm2(Da)2/sec) of Kramer et al.,33-35 one obtains K=2.5x10-12 at 174oC.

The above K values obtained at 127.5 and 174 oC along with those obtained from

analysing the G(t) and J(t) results are listed in Table 1. The K values at 127.5oC as listed in the

first row of the table represent the viscoelastic results of totally 11 samples of different molecular

weights ranging from 3.4x104 to 6x105; the average over these samples with equal weighting is

4.93x109 with a standard deviation of 10% which is basically the same statistically as the

average listed in the first row. In the same series of samples whose G(t) results were analyzed, a

sample with a molecular weight just above Me (Mw=1.67x104=1.24Me) gives K=4.0x10-9, which

is about 20% lower than the above average value. Considering the fact that the molecular weight

of this particular sample is so close to Me and that any small amount of the components in its

molecular-weight distribution having molecular weight smaller than Me has the effect to reduce

the obtained K value somewhat, this deviation, though greater than the standard deviation by a

factor of 2, is very consistent with the results of other samples. If this sample is included in the

statistical analysis, the average is 4.85x10-911%. The results listed in Table 1 as well as

discussed above clearly show that the K values obtained independently from different kinds of

measurements: G(t), J(t), viscosity and diffusion are quantitatively consistent and that the

constancy of K extends to the molecular weight as low as just above Me.
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Figure Captions:

Figure 1.

Creep compliance J(t) data of sample A measured at 114.5 (); 109.6 (); 104.5 (); 100.6 ();

and 97 () oC in comparison with the theoretical curves ( ))) ; from left to right, respectively)

calculated with K=5x10-9, GN=1.89x106 dyne/cm2; and the AG, and s values as explained and

given in the text.

Figure 2.

Creep compliance J(t) data of sample B measured at 119.8 (); 113.8 (); 105.5 (); 101.0 ();

and 98.3 () oC in comparison with the theoretical curves ( ))) ; from left to right, respectively)

calculated with K=5x10-9, GN=1.89x106 dyne/cm2 ; and the AG, and s values as explained and

given in the text.

Figure 3

The normalized glassy-relaxation time s of samples A () and B () at different temperatures.

See the text.

Figure 4

Comparison of the G(t) ( ))) ) and J(t)-1 ( ) curves for sample B at 113.8 oC (same J(t) as

the corresponding one shown in Figure 2). Also shown are the curves calculated without the

AGG(t) process: ( ) ) ) ) for G(t) and ( ) for J(t)-1; the dotted line indicates the G(t) curve

calculated without both the AGG(t) and A(t) processes.

Figure 5

Calculated G(t) curves corresponding to three J(t) curves shown in Figure 1 for sample A: a for
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114.5oC ( ))) ), b for 104.5oC ( )) ), and c for 97oC ( )) ). Line d is calculated without

the AGG(t) process; line e is calculated without both the AGG(t) and A(t) processes. The

( ) ) ) ) lines from bottom up represent the sums of line e and the first 3, 6, 9, and 12 modes in

A(t), respectively. The dots represent the locations of the relaxation times as indicated. In the

three dots under G, the left one is for a; the middle one, for b; and the right one, for c.

Figure 6

Calculated G(t) curves corresponding to three J(t) curves shown in Figure 2 for sample B: a for

113.8oC ( ))) ), b for 105.5oC ( )) ), and c for 98.3oC ( )) ). The rest are the same as in

Figure 5.
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TABLE 1: Frictional factor K from G(t), J(t), viscosity and diffusion results

From ViscositycFrom G(t)
a series of samplesa

3.4x104Mw1.1x105

From J(t)b

Mw=4.69x104 Mw=9.4x104 Mw=1.89x105 Mw=6.0x105

From
Diffusiond

Averagee

K(127.5oC)x109 4.78% 4.8 5.7 4.9 5.8 (5.7)f 5.2±10%

K(174oC)x1012 (2.1)f (2.1)f 2.6 2.0 2.0 2.5 2.3±14%

a ref. 2.

b This study.

c ref. 29.

d refs.3335.

e The average values are obtained from averaging over the values not enclosed in a bracket.

f Values in a bracket are calculated from the shown values at the other temperature using the ratio
of the two average K values.
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TABLE 2: Time Constants of Dynamic Processes in Sample A at Temperatures Close to Tg:
Ergodic (Entropy-derived) vs. Nonergodic (or with Loss of Ergodicity;
Energetic Interactions-derived)

With loss of ergodicity or
nonergodic

ErgodicTemp oC

G or S

sec.
A

1 X B C

sec.
104.5 .196 3.2

(3.53)a
587 4179 8798 19699

100.6 2.74 48.7
(49.4)a

4759 33779 71121 159232

97Tg 55.7 1193
(1002)a

48276 342661 721472 1615305

a Defined by S=18G; see ref. 31.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Motion Associated with a Single Rouse Segment

versus

the Relaxation

Y.-H. Linb

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

Abstract

The dynamics in polystyrene melt and concentrated solution as probed by depolarized

photon-correlation spectroscopy has been shown to reflect the motion associated with a single

Rouse segment. In the concentrated-solution case (entanglement-free), the analysis using the

frictional factor K (=b2/kT2m2) extracted from the viscosity data in terms of the Rouse theory

and aided by the Monte Carlo simulation based on the Langevin equation of the Rouse model

confirms the conclusion in a precise manner. In the melt case (entangled), the Rouse-segmental

motion as observed by depolarized photon-correlation spectroscopy is compared with the 

relaxation and the highest RouseMooney normal mode extracted from analyzing the creep

compliance J(t) of sample A reported in the previous paper. Another well-justified way of

defining the structural- (-) relaxation time is shown basically physically equivalent to the one

used previously. Based on the analysis, an optimum choice S =18G (G being the average

glassy-relaxation time) is made, reflecting both the temperature dependence of G and the effect



55

on the bulk mechanical property by the glassy-relaxation process. In terms of thus definedS,

two traditional ways of defining the -relaxation time are compared and evaluated. It is shown

that as the temperature approaches the calorimetric Tg, two modes of temperature dependence are

followed by the dynamic quantities concerning this study: One includes the time constant of the

highest RouseMooney normal mode, v; the temperature dependence of the viscosity corrected

for the changes in density and temperature, /T; and the average correlation time obtained by

depolarized photon-correlation spectroscopy, c. The other, being steeper, is followed by the

-relaxation time S derived from the glassy-relaxation process, and the temperature dependence

of the recoverable compliance Jr(t) as obtained by Plazek. The comparison of the dynamic

quantities clearly differentiates the motion associated with a single Rouse segment as

characterized by v or cfrom the relaxation as characterized by S; due to the lack of clear

definition of these two types of motion in the past and the proximity of one to the other in the

time scale)actually the two crossing over each other)as the temperature is approaching Tg, the

two modes could be easily confused. Below 110oC, the rate of cchanging with temperature

lags behind that of v is explained as due to the loss of effective ergodicity taking place in the

system.

b E-mail:yhlin@mail.nctu.edu.tw



56

Motion Associated with a Single Rouse Segment
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1. Introduction

The Rouse model93 is based on picturing a polymer chain as a linkage of beads and

springs.94,95,96 Each bead-spring segment is often referred to as the Rouse segment. The

distribution of the separation between two neighbouring beads is described by a Gaussian

function. The motion associated with a single Rouse segment is basically equivalent to the

highest Rouse normal mode of motion in a polymer chain. If the polymer chain is very long, and

we are interested in only the few slowest modes of chain motion)for instance, as mainly

reflected by the zero-shear viscosity)the length of chain section assigned to a Rouse segment is

not an issue as long as the chosen section is much smaller than the whole chain and at the same

time sufficiently long. However, the highest Rouse mode becomes relevant; and how to define a

Rouse segment becomes a concern, if we are interested in the relatively fast Tg-related 

relaxation which shows up in the high-modulus region of a typical viscoelastic spectrum as the

temperature is lowered towards Tg.97,98,99,100,101,102,103 An ideal Rouse segment cannot be found in

reality, as the Gaussian function allows the spring between two beads to be stretched infinitely)a
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situation that cannot occur because of the rigidity of chemical bonds. Thus, if a Rouse segment

can be defined experimentally, it has to be probed in the linear region, for instance, by

measurements of linear viscoelasticity and photon-correlation function. Furthermore, the Rouse

segment as expected to be seen here is not a clear geometric identity but rather is represented by

an optimum size or mass that, for instance in an entanglement-free case, allows the experimental

results to be best described in terms of the discrete Rouse model for a chain with a finite number

of beads.3,4 In this report, the theoretical aspect of relating the depolarized photon correlation to

viscoelasticiy in a concentrated polystyrene system will first be reviewed. Then, three related

points will be addressed: (1) The dynamics in polystyrene melt and concentrated solution as

probed by depolarized photon-correlation spectroscopy has been shown to reflect the motion

associated with a single Rouse segment as expected from the theoretical analysis. In particular, it

will be illustrated how this is shown in a precise manner in the entanglement-free concentrated

solution case, supported by the agreement of the obtained mass of a single Rouse segment with

that obtained by Inoue et al.104 from analyzing the dynamic mechanical and birefringence results.

The Rouse-segmental motion in melt (entangled) as observed this way will be compared with the

relaxation and the highest RouseMooney normal mode extracted from analyzing the creep

compliance J(t) of sample A reported in the previous paper)the results of sample B cannot be

used here because of its contamination by residual plasticizers. (2) A distinction between the

Rouse-segmental motion as studied by the depolarized photon-correlation spectroscopy and the 

relaxation should be made. Due to the lack of clear definition of these two types of motion in the

past and the proximity of one to the other in the time scale, the mode of motion that should have

been considered as the Rouse-segmental motion could be confused with the relaxation.105 (3)

In this report, another well-justified definition of the structural- (-) relaxation time is shown

basically physically equivalent to the one used previously.11 For reflecting both the temperature

dependence of the glassy-relaxation process accurately and the effect on the bulk mechanical

property, an optimum choice S =18G is made. In terms of thus defined S, two traditional
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ways of defining the -relaxation time5 are compared and evaluated. Finally various dynamic

quantities obtained from analyzing the depolarized photon-correlation and creep compliance

results are compared and discussed.

2. A Summary of Molecular Theories of Polymer Viscoelasticity

Successful molecular theories of polymer viscoelasticity in the entanglement-free region)

the Rouse model4,106,107)and in the entanglement region)the extended reptation

model4,108,109,110,111) have been developed using the Rouse segment as the most

basic)smallest)structural unit. These theories are mean-field theories; the bulk viscoelastic

quantity is simply the sum of the average values from individual model molecules.2-4 The

friction constant associated with each Rouse segment or equivalently the frictional factor K as

defined below is a basic element of such a mean field: 4,11,14-19

22
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where m and b are the mass and length of a Rouse segment, respectively. K alone carries the

temperature dependence of the Rouse segment-based relaxation times, which often follows the

FTH or WLF equation.5 The extended reptation theory (ERT)4,16 is developed by incorporating

the intramolecular Rouse-type motions into the DoiEdwards theory.112 In addition to the use of

the Rouse segment, ERT contains the basic mean-field assumption of the DoiEdwards theory,
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where L denotes the contour length of the primitive chain, a is the distance between two ends of

an entanglement strand with mass Me or equivalently Ne (=Me/m) Rouse segments, and R2

represents the mean square end-to-end distance of a polymer chain with mass M or equivalently

No (=M/m) Rouse segments. The frictional factor K in ERT is shown to be independent of

molecular weight to as low as just above the entanglement molecular weight Me (see the

Appendix and Table 1 of ref. 11), proving the validity of ERT.4,1419 The validity of the Rouse

theory4,14,15 as well as its consistency with ERT by sharing the same frictional factor K 4,18 has

been extensively tested by experimental results. It is an important contribution of ERT to bridge

the gap between the Rouse and Doi-Edwards theories by showing that they have the same

footing at the Rouse-segmental level. Because of this result, the frictional factor K extracted

from the viscoelastic results in terms of either the Rouse theory or ERT can be used in the same

way in comparing with the depolarized photon-correlation results, as done previously9,10,113,114,115

and in this study.

For both the studies of the motion associated with a single Rouse segment and the 

relaxation, the strategy we take is to use the successful description of the slow (low-frequency)

viscoelastic properties)for instance, the zero-shear viscosity and the viscoelastic spectrum from

the low-frequency end of the transition zone to the terminal zone)in terms of the molecular

theories as the reference frame.9-11,21-23 The molecular theory used for analysing the

experimental results depends on whether the system is in the entanglement or entanglement-free

region. Then, the frictional factor K thus determined can be used to calculate the time constant

of the highest Rouse normal mode for comparison with other dynamic results or be used to

“normalize”the -relaxation time for further comparative analysis.

In the Rouse model, the relaxation modulus G(t) for a monodisperse polymer of

molecular weight M or Nr beads is obtained as1,3,4
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where is the concentration of the polymer (mass per unit volume) and {R
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For Nr>>1, the zero-shear viscosity may be obtained from G(t) as
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If the molecular weight of a Rouse segment, m, is known, the relaxation time of the highest

Rouse viscoelastic normal mode, v, can be calculated according to

24
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 (7)
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which is obtained by substituting p=Nr1 into eq 5 and taking (Nr1)/Nr1 for Nr sufficiently

large. The frictional factor in eq 7 can be obtained from the viscosity data analysed in terms of

eq 6. Thus, from the viscosity measurement, the information of the Rouse-segmental motion

characterized by v can be obtained.

A summary of ERT has been given in the previous paper11 (eqs 1 and 2).

The relaxation times of the A(t), X(t), B(t), and C(t) processes are each expressed as a product

of the frictional factor K (denoted by K’for A(t)) and a structural factor. Except for the A(t)

process, we refer all the functional forms of the relaxation processes and their respective

characteristic (relaxation) times to the previous publications.4,16-18 As first shown by Mooney,

4,16,116,117 A(t/A) and A
p have the same forms as R(t/R) and R

p (eqs 4 and 5), respectively,

with M replaced by Me and Nr replaced by Ne. In applying the eq for A
p, the frictional factor K

needs to be replaced by K’as given by eq 8 of ref. 11.

3. Rouse-Segmental Motion as Probed by Depolarized Photon-Correlation Spectroscopy

The usual mode of photon-correlation spectroscopy)self-beating)is based on the

condition that the scattered light field obeys Gaussian statistics.118,119 This makes it particularly

suitable and popular for probing dynamics in systems“populated”by Brownian particles as

exemplified by the numerous studies of polymer chain dynamics in solutions.27,120 Depolarized

dynamic light scattering being much affected by the fast fluctuations of polarizability anisotropy,

it is expected that depolarized photon-correlation spectroscopy mainly probes the reorientation

motion of a correlated region.121 Since the Rouse segment is the most basic Brownian particle in

the Rouse model, which describes very well the polymer viscoelastic behaviour over at least the

intermediate- and long-time regions of an entanglement-free concentrated system,4,14,15 the

depolarized photon-correlation function may provide the information about the motion of a

single Rouse segment. Such an expectation is borne out by recent studies9,10,21-23 as summarised

below:
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Depolarized photon-correlation spectroscopy was first used to study the chain dynamics

in a well-entangled polystyrene melt by Patterson et al.13 It was later pointed out by Lin9,10 that

the average correlation time cobtained by Patterson follows the same temperature dependence

as that of viscosity of nearly monodisperse polystyrene samples obtained by Plazek and

ORourke122 from 130 to 110oC (see Figure 5; the correction for the changes in density and

temperature as made in the figure causes only a negligible difference). The cvalue changing

by a factor as large as 356 over this temperature range, the agreement is significant, suggesting

strongly that the observed time constant is basically v)i.e. of the same order of magnitude)as

given by eq 7, which shares the same frictional factor K as that of viscosity (eq 6).

K of polystyrene at 127.5oC is given by the average value listed in Table 1 of ref. 11 to be

5.2x10-910%. The structural factors of the relaxation times of the RouseMooney normal

modes {A
p} are independent of molecular weight. At the same time, if the molecular weight is

sufficiently high, K/K is at the plateau value 3.3 based on eq 8 of ref. 11. The polystyrene

sample studied by Patterson et al. was prepared by thermal polymerization at 90oC. Under such

a condition, its number-average molecular weight is expected to be around 400,000; 123 in other

words, it is in the highly entangled region where the plateau value of K/K is applicable, even

though its molecular-weight distribution is not nearly monodisperse. Thus, we can use the above

K value at 127.5oC and the ratio K/K =3.3 to obtain K. As explained in ref. 11, the mass of a

Rouse segment of polystyrene, m, being about 850,6-12, 21-23,124,125 leads to Ne=16. Using the

value of K’obtained as described above and Ne=16 or equivalently m=850 we can calculate

vA
15 from eq 7 or eq 5 (with K substituted by K; and Nr replaced by Ne=16) to be 5.1x10-3

sec, which, clearly as expected, is of the same order of magnitude as the cvalue at 127.5oC,

3.5x10-3, obtained from Pattersons results by interpolation.

In the case of polystyrene, it has been shown that the effective optical anisotropy per

monomer unit from polystyrene in melt and in solution (cyclohexane as the solvent, whose
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depolarized light scattering is negligible) is the same126,127 indicating that the static correlation

between segments belonging to different chains is nil. And the dynamic pair correlation is in

general much smaller than the static pair correlation.29,128 On the basis of neglecting both the

static and dynamic pair correlation among segments belonging to different chains, and assuming

that the size of the polymer coil is much smaller than the scattering wavelength and that the

collective reorientation time is much shorter than the time needed for the centre-of-mass of the

polymer chain to travel the distance of a scattering wavelength, the time-correlation function for

depolarized Rayleigh light scattering can be expressed as.9,10,21-23

   C t S f t R P ts( ) ( ) ( ) ( )  2 0u u (8)

where P2 is the second-order Legendre polynomial; u(t) is the unit vector representing the

direction of the symmetry axis of a correlated region)the whole region is regarded as a Kuhn

segment or equivalently a Rouse segment 129)along the polymer chain at time t; fs(t) is a

normalized time-correlation function that reflects the motions associated with the local chemical

bonds, which are grossly referred to as the sub-Rouse-segmental motion; the relaxation strength

S depends on the details of bond angles and steric interactions among chemical bonds; and R is a

constant that is related to how anisotropic the correlated region is.

The depolarized photon-correlation functions of two entanglement-free concentrated

solutions (60wt%) of polystyrene with Mw=9100; Mw/Mn=1.02 and Mw=18100; Mw/Mn=1.01 in

cyclohexane at the condition, i.e. at 35oC)denoted by samples S1 (59.832wt%; 0.552 g/cm3)

and S2 (60.287wt%; 0.556 g/cm3), respectively)have been measured and analysed.21-23 Along

with the depolarized photon-correlation measurements, two solution samples with accurately

determined concentrations in the close neighbourhood of the concentration of each of the two

samples, S1 and S2, are prepared for viscosity measurements by the falling-ball method, which,



64

with both the ball and solution sealed in a glass tube, is particularly good for studying solution

systems as solvent evaporation can be prevented. Then, by interpolation or extrapolation, the

viscosity values at the concentrations of samples S1 and S2 can be individually determined;

subsequently, their v values can be calculated (eqs 6 and 7) for comparison with their

depolarized photon-correlation results. Furthermore, the obtained information of the

concentration dependence of viscosity allows the viscosity results to be compared under the

same concentration and can be used to correct for the small concentration difference between

samples S1 and S2 when their depolarized photon-correlation results are compared. The

discussions below are all based on the results after the corrections have been made; the details of

the corrections can be found in ref. 21.

The obtained molecular-weight dependence of viscosity at the same concentration (60

wt%) indicates that the Rouse theory is applicable; in other words, the concentrations of the

studied polystyrene solutions are high enough to screen out the hydrodynamic interactions.2 This

conclusion is further confirmed by analyses in terms of the Rouse theory in other aspects of

experiments as will be described below. Through the multi-exponential singular-value

decomposition (MSVD) analysis,27 a bimodal relaxation-time distribution can clearly be

obtained from the depolarized photon-correlation functions of both S1 and S2, as corresponding

to the two modes of motion in eq 8. Because of the limitation of the time window of photon-

correlation spectroscopy, only the tail region of the fast mode fs(t) can be observed. Thus, as far

as the fast mode is concerned, one can only show its existence from the MSVD analysis.

However, much information about the slow mode P2 [u(t)u(0)] has been obtained from the

analysis of the experimental results.21-23 It has been shown that the slow mode, with a rather

narrow relaxation-time distribution)extending over slightly less than two decades, is

independent of scattering angle and molecular weight in accordance with eq 8. In the

polystyrene melt case, the depolarized photon-correlation function is well described by the

stretched exponential form with the stretching exponent near 0.4. This corresponds to a
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unimodal broad relaxation-time distribution, covering more than five decades.130 The fact that

the two modes of motion as contained in eq 8 cannot be separated in melt as in the concentrated-

solution case is explained as due to the stronger interactions among segments causing the two

modes to overlap extensively.

Assuming u(t)=b(t)/b(t), the time-correlation function P2 [u(t)u(0)] can be

calculated by the Monte-Carlo simulation based on the Langevin equation of the Rouse

model.4,22 Also, from the simulation, the ratio between v (corresponding to eq 7) and the

average correlation time r obtained from integrating the simulated P2 [u(t)u(0)] curve can

be calculated for comparison with the experimental results 2/v (2 denotes the average

correlation time of the slow mode obtained from resolving the measured photon-correlation

function, while v is calculated from the viscosity data through eqs 6 and 7). In comparing the

analyses of the depolarized photon-correlation function, viscosity and Monte-Carlo simulation

results, we have found that m=1130 gives a good overall agreement: Corresponding to m=1130,

Nr=8 and 16 for samples S1 and S2, respectively. From the results of the depolarized photon-

correlation function and viscosity, we obtained 2/v =2.4 and 2.6 for samples S1 and S2,

respectively; from the simulation, we obtained r/v=2.2 and 2.5 for Nr=8 and 16, respectively.

Furthermore, as shown in Figure 1, the line shapes of the time-correlation functions of the slow

mode of both samples S1 and S2 (denoted by C2(t)) are in close agreement with the simulation

results of P2 [u(t)u(0)] for Nr=8 and 16. Thus, in spite of the crudeness of the Rouse segment,

the effect of chain connectivity as contained in the Rouse model can quite fully account for the

detailed aspect of the dynamics as showing up in the depolarized photon-correlation function and

its relation with viscosity, supporting the physical picture that the dynamic process probed by

depolarized photon-correlation spectroscopy is the reorientation motion of a Rouse segment.

The mass of a Rouse segment obtained for the studied concentrated polystyrene solutions,

m=1130, is about 25% larger than that in the melt. This small difference should be due to the

presence of solvent; indeed, the small solvent-enhancement effect is about that expected from the
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concentration-dependence of the Rouse segment size obtained by Inoue et al.12 from analyzing

the dynamic mechanical and birefringence results)the expected m value at the studied

concentration is about 1100, versus 850 in the melt (see Figure 10 of ref. 12). The agreement

between the two independent studies based on very different premises131 reconfirms that the

Rouse segment size can be defined and that the motion associated with a single Rouse segment

can indeed be studied; in other words, the study of the Rouse-segmental motion as presented

above is well supported.

In summing up the above studies of polystyrene melt and concentrated solutions, we can

notice differences and common points: The differences between the melt case and the

concentrated-solution case are mainly two: (1) The relaxation-time distribution is much broader

in the former than in the latter, and (2) the cv ratio is smaller in the former than in the latter

(denoted by 2v in the latter case). These two differences can be accounted for by the

stronger interactions among segments in the melt)in the concentrated-solution case, the

interactions among segments can be much reduced by the“lubrication”of the solvent molecules.

Due to the stronger interactions in the melt case, the fast and slow modes as contained in eq 8

overlap extensively; the photon-correlation function cannot be resolved into the two modes.

While the effect leads to a broad unimodal relaxation-time distribution,13,38 the fast component in

the distribution also causes the observed average relaxation time cto be smaller than when

only the slow component contributes to it as in the concentrated-solution case. The main shared

common point is the applicability of the Rouse model)either as R(t/R) or as A(t/A), which is a

part of ERT)in relating the viscoelasticity results to the dynamics observed by depolarized

photon-correlation spectroscopy. As the melt system and the concentrated-solution system at the

point are very similar dynamically and thermodynamically)both free of the hydrodynamic

interactions and excluded-volume effect,2 the precise analysis achieved in the concentrated-

solution case lends additional support to the analysis of the melt results, in which some of the

details are prevented by the much broader relaxation-time distribution in C(t) from being
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revealed.

In summary, the recent studies as briefly described above confirm the initial expectation

that the motion of a single Rouse segment can be studied by depolarized photon-correlation

spectroscopy. This conclusion has a bearing on the comparison of the relaxation with the

highest RouseMooney normal mode, both extracted from the creep compliance J(t) as reported

in ref. 11.

4. The Relaxation in Creep Compliance

With G(t) known)for instance as given by eqs 1, 4 and 5 of ref. 11)J(t) can be calculated

numerically by the method of Hopkins and Hamming.132,133 It has been shown in detail in ref. 11

that the rubber(like)-fluid region of Plazeks J(t) results of two nearly monodisperse polystyrene

samples 134,135 can be well described by ERT and that the dynamic information of the glassy-

relaxation process as contained in the small-compliance/short-time region of J(t) can be

meaningfully extracted by using the successful description of the rubber(like)-fluid region in

terms of ERT as the reference frame. The glassy-relaxation process is found to be well described

by the stretched exponential form
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as incorporated into eq 4 of ref 11. In the whole relaxation-time distribution, the glassy-

relaxation region is situated in a certain position relative to the rubber(like)-fluid region, where

all the relaxation times are proportional to the frictional factor K. The relative position has been

expressed by
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sK
G
 (10)

where s is a proportional constant and has the unit of Dalton square. The parameter s represents

the glassy-relaxation time with K fixed at 1 or any constant; it is regarded as a normalized

glassy-relaxation time. In the vicinity of Tg, the parameter s increases with decreasing

temperature, reflecting the thermorheological complexity between the glassy-relaxation process,

AGG(t), and the ERT processes: A(t), X(t), B(t), and C(t), in the rubber-fluid region and

indicating the existence of a structural length scale as discussed in detail in ref. 11.

Sample B whose J(t) results was analyzed in ref. 11 is contaminated by residual

plasticizers; the K value extracted from it cannot be used for comparing with studies on normal

(uncontaminated) samples. Thus, in this report, we only discuss the results of sample A. It has

been found for sample A that AG (=5482) and the stretching parameter (=0.41) are very much

independent of temperature, while s increases with decreasing temperature significantly)by

about an order of magnitude over the covered temperature range. The obtained K and s values at

different temperatures for sample A are listed in Table 1. Using the obtained K and s values in

the A
p equation (i.e. eq 5 with K replaced by K=1.61K as calculated from eq 8 of ref. 11 for

M=4.69x104; M replaced by Me; and Nr replaced by Ne=16) and eq 10, the vA
15 and G

values at different temperatures can be, respectively, calculated, as also shown in Table 1.

One may calculate the J(t) curves at different temperatures in real time with the K and s

values shown in Table 1. Instead of doing this way, the comparisons of the J(t) curves of sample

A measured at different temperatures to those calculated with K fixed at 5x109 and the s values

listed in Table 1 are shown in Figure 1 of ref. 11. This illustrates using the description of the

rubber(like)-fluid region of J(t) in terms of ERT as the reference frame to show the effect of

temperature on the glassy-relaxation process; such a comparison serves the purpose of reflecting

and characterizing in perspective the thermorheological complexity occurring in J(t) as the

temperature is near Tg. As also shown in ref. 11, unlike the extensive overlapping of the
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different processes in J(t), the individual processes can be clearly shown in the G(t) form. Based

on the G(t) results, a structural relaxation time S was defined as the time when G/R has declined

to 3 as described in detail in ref. 11. The thus defined structural relaxation time becomes greater

than v just before the temperature reaches Tg, indicating vitrification at the Rouse-segmental

level.

As will be shown below, the structural relaxation time defined by G/R =3 can be

considered as basically equivalent to the so-called -relaxation time. In the literature, the -

relaxation time has been "defined" in different ways,5,136 such as the reciprocal of the frequency

at the peak of tan and the reciprocal of the frequency at which the storage modulus G() is at

108 dyn/cm2. The relaxation time defined in any of these ways can in principle be determined

clearly by experiment. However, it does not really characterizes a relaxation process in a simple

and clear manner; with a temperature change, it is affected not only by the intrinsic temperature

dependence of the relaxation process that matters but also by the change in the line shape of the

viscoelastic spectrum)namely, the thermorheological complexity. The structural relaxation time

defined as the time when G/R=3 has a similar defect.

To further illustrate the physical effect on the bulk mechanical property by the glassy

relaxation, another analysis will be made below. This analysis confirms the basic physical

uniqueness of S as defined by the time when G/R=3. Based on these findings, an optimum

definition for S is chosen, which has an unambiguous meaning in its temperature dependence

and at the same time properly reflects the effect on the bulk property by the glassy relaxation.

And it will be shown below that the thus defined S is very close to the -relaxation time defined

by one of the traditional ways.

We consider that the time when the absolute value of the slope d(log G(t))/d(log t),

denoted by H, reaches its first maximum reflects a unique physical meaning associated with the

glassy-relaxation process as explained in the following: As shown previously and mentioned

above, the G(t) process can be well described by the stretched exponential form with =0.41,
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which is very much independent of temperature. In the high-modulus/short-time region where

the glassy-relaxation process dominates,
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As shown in Figure 2, initially following eq 11, log H increases with log t with a slope of =0.41,

indicating a gradually steeper decline of log G(t) with log t. At the time, denoted by tm, when H

reaches its first maximum, while the rate of the glassy-relaxation process has the greatest

influence, its modulus magnitude is losing its dominance as deviation from eq 11 begins taking

place. As it turns out, the location of the H maximum occurs in the neighbourhood of the

structural relaxation time defined as the time when G/R=3. The obtained tm values at different

temperatures are listed in Table 1, which occur in the range of 1525 G, depending on the

temperature. The obtained G values occur in the too short-time region to clearly reflect the

dynamic effect of the glassy-relaxation process on the bulk mechanical property; however, they

carry the intrinsic temperature dependence of the glassy-relaxation process. To have the benefits

of both tm and G, we redefine the structural relaxation time arbitrarily as S=18G, whose

values at different temperatures are also listed in Table 1. Allowing a 20% deviation from this

somewhat arbitrarily chosen S)for instance one may as well choose S=22G)the main point

that will be explained in terms of the defined S remains the same.

For comparing the above-defined S with the -relaxation time defined in the literature,

the storage-, loss-modulus and tan spectra of sample A are shown in Figures 3 and 4, all the

spectra being“normalized”with respect to K=5x10-9 (see the Appendix for the calculations of

the spectra). As, being basically a mirror image, the G() spectrum has a close match to G(t) if

=0.7/t is used in the conversion between time and frequency, we define S=0.7/S.137 The

thus defined S values at 114.5, 104.5 and 97oC are compared in Figure 4 with what have been
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used traditionally: at the peak of tan and at G()=108 dyn/cm2. It can be seen that the S

values at the three shown temperatures occur in the close neighbourhood of the frequencies

where the respective storage-modulus has the value 108 dyn/cm2; however, they deviate

considerably from the respective frequencies at the tan maximum. In a case where a careful

analysis as done in this study is not feasible, using G()=108 dyn/cm2 as the criterion for

deciding the -relaxation time may be a good choice except bearing that the thus determined

relaxation time does not follow exactly the temperature dependence of G as the above defined

S does.

In Figure 4, the frequency corresponding to the highest RouseMooney normal mode,

v=0.7/v, is also indicated. One can see that at a temperature between 104.5 and 97oC, S

becomes smaller than v, signalling the initiation of vitrification at the Rouse-segmental level, a

prelude to the glass transition. This was pointed out in terms of the previously defined

structural-relaxation time,11 which reflected the similar effect of the glassy-relaxation process. In

fact, as values of the previously defined S at different temperatures are very close to the values

based on the present definition (see Table 2 of ref. 11), the discussion of the physical role of the

structural relaxation in terms of S defined by G/R=3 remains essentially the same as in terms of

the above defined S, which has the additional advantage that, as shown below, its temperature

dependence can be unambiguously compared with those of other dynamic quantities.

5. Comparison of the Temperature Dependences of Various Dynamic Quantities

For showing the chain dynamics in the polystyrene melt in perspective, the above

analyses and discussions of the depolarized photon-correlation results and the creep compliance

J(t) can be put together by comparing the temperature dependences of the obtained dynamic

quantities. The comparison, while confirming the validity of the physical picture in terms of

which we have extensively analysed the experimental results, summarizes the different physical

roles as represented by these dynamic quantities.
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Shown in Figure 5 are the cvalues obtained by Patterson;13 the values of v and S as

listed in Table 1; the temperature dependence of the viscosity corrected for changes in density

and temperature, /T;30,42 and the temperature dependence of the recoverable compliance Jr(t)

obtained by Plazek.30,42 It is clear from the comparison that these dynamic quantities follow two

distinctly different modes of temperature dependence: One, being steeper, is followed by S and

Jr(t); the other one is followed by v, c, and /T. In Figure 5, the unit scale on the vertical

axis is for v and S; the shown cpoints represent Patterson’s values multiplied by 0.77;138 and

the /T values and the shift factors in Jr(t), as shown, have been individually multiplied by a

proper factor so that they are superposed closely on the data points of v and S, respectively. In

the figure one can note that the temperature dependence of cabove 110oC is parallel with

and below 110oC becomes less steep than that of v and /T. The reason for the divergence

below 110oC will be explained below. In the steeper mode, the temperature dependence of S

and that of Jr(t) are closely parallel with each other, representing the consistency between the

two means of obtaining the temperature dependence of the creep compliance J(t) in the small-

compliance/short-time region: One is obtained from the analysis of the J(t) results in terms of the

combination of eqs 1, 4 and 5 of ref. 11, while the other is obtained through empirical data

reduction by Plazek.30,42

The temperature dependence of is calculated using the equation obtained by Plazek and

ORourke30,42 from the least square fitting to the data of sample A measured in the region

104.5oC. This temperature dependence is in close agreement with those of other nearly

monodisperse samples with a higher molecular weight to the lowest temperature)always higher

than 104.5oC)which is covered by the viscosity measurements of each individual sample.30 As

v, being calculated from K, reflects the temperature dependence of K and the zero-shear

viscosity is dominated by the dynamic processes whose temperature dependence is determined

by K)the contribution from AGG(t) being in general negligibly small, the temperature
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dependence of v and that of /T agree closely above 104.5oC. With the guidance of the

calculated J(t) curves, the frictional factor K, which is used to calculate the v value, can be

determined at a temperature as low as the calorimetric Tg (see Figure 1 of ref. 11). As opposed

to this, the viscosity of sample A could be determined only down to 104.5oC.30,42 However,

below 104.5oC, the extended /T curve based on the same viscosity equation and the v data

points still have a good agreement. The agreement between the temperature dependences of v

and /T as described above supports that the K values listed in Table 1 have been correctly

determined. To examine the comparison more closely, one may notice that when the

temperature is close to Tg, the AGG(t) contribution to the zero-shear viscosity becomes slightly

noticeable in the flow region of the J(t) curve (see Figure 1 of ref. 11))because the s value

becomes large and, due to the molecular weight being not large, the terminal region of sample A

is not far away in time. This effect may account for the slight tilt-up of the /T curve in

comparison to the v points at temperatures close to 104.5oC as vaguely suggested in Figure 5.

As the effect is very small, the temperature dependence of v and /T is treated as the same in

most discussions in this report.

The steeper temperature dependence of S (or Jr(t)) in comparison with that of v (or /T)

reflects the thermorheological complexity in J(t). At slightly above 100oC, S crosses over v,

signalling vitrification at the Rouse-segmental level. The crossing over is illustrated here in the

real time scale as opposed to that shown in Figure 4 in a normalized time scale.

As pointed out above, the temperature dependence of cbecomes less steep than that of

v below 110oC, indicating surely that the dynamics observed by depolarized photon-correlation

spectroscopy cannot be associated with the - or glassy-relaxation process, whose temperature

dependence is steeper than that of v. Furthermore, the glassy-relaxation process should very

much involve strong interactions among segments belonging to different chains; in contrast, the

effective optical anisotropy per monomer unit of polystyrene in bulk and in solution is the same
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indicating that the dynamics probed by depolarized photon-correlation spectroscopy does not

involve correlation between segments of different chains. Theoretically, one should not expect

such an association either, as the photon-correlation measurement is based on the condition that

the optical field obeys Gaussian statistics, requiring that the studied system be ergodic; as

opposed to this, the emerging greater role of the glassy-relaxation process causes the loss of

effective ergodicity as the temperature approaches Tg. While the parallel temperature

dependence between cand v (or /T) above 110oC supports associating the dynamic process

observed by depolarized photon-correlation spectroscopy with the motion of a Rouse segment, as

discussed in Section 3; below 110oC, the gradual loss of ergodicity can have an effect on the

dynamics as actually probed by depolarized photon-correlation spectroscopy. Especially, since

the longest delay-time used in the photon-correlation measurement by Patterson el al.13 is 1 sec.,

the loss of effective ergodicty is a factor that cannot be ignored as S exceeds 1sec. at around

107oC and the actually measured cvalue exceeds 1sec. at just slightly below 110oC. As

shown by Pusey and van Megan,139 if the intensity correlation function measured on a non-

ergodic medium is analysed by the method normally used for an ergodic medium, the apparent

rate so obtained can be greater than the real rate by a large factor. The factor of course depends

on how severe the loss of effective ergodicity is. Applying Pusey and van Megans analysis here,

the apparent cvalues obtained by Patterson et al. are expected to be smaller than the real

values below 110oC, where some loss of effective ergodicity begins to occur as explained above.

This effect explains the weaker temperature dependence of cin comparison with that of /T

or v below 110oC as shown in Figure 5.

6. Summary

Because of the large number of atoms and degrees of freedom in a chain molecule, a

polymer is rich in its dynamics, with its relaxation-time distribution covering many decades.

Different probing techniques are sensitive to different aspects of chain dynamics. To understand
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the chain dynamics in perspective, it is advisable to use different probing techniques to

investigate the same (kind of) system; at the same time, it is desirable to relate the data obtained

by the different techniques to one another through theoretical analyses and/or simulations. In

this report together with the previous one, we show how the results of polystyrene obtained by

the viscoelasticity and depolarized photon-correlation measurements are combined, giving a

comprehensive picture of the dynamic processes in the short-time region. The basic reason for

the two techniques being particularly complementary to each other is that both probe the

Brownian motion. From a preliminary analysis of experimental results it was shown that the

dynamics in polystyrene melt probed by depolarized photon-correlation spectroscopy should

reflect the motion associated with a single Rouse segment. In the case of the concentrated

polystyrene solution, the analysis benefiting from the Monte Carlo simulation has a high

resolution confirming in a precise manner the interpretation of the depolarized photon-

correlation results. By this it demonstrates that the size of a Rouse segment can be defined

experimentally)in agreement with Inoue et al.6-8,12)and that its motion can be studied. That the

temperature dependence of cis parallel with that of v rather than that of S is a logical

consequence. As much discussed in the previous paper,11 using the description of the Brownian

dynamic processes in J(t) in terms of ERT as the reference frame in the analysis over the whole

range, the glassy-relaxation process)namely, the relaxation)is characterized, showing that the

thermorheological complexity in J(t) as first observed by Plazek is closely related to the loss of

ergodicity in approaching Tg. The temperature dependence of cbecoming less steep than that

of v below 110oC can be explained as due to the increasing loss of effective ergodicty when the

temperature is lowered towards Tg.

In this study we have examined the Rouse-segmental motion in polystyrene as probed by

depolarized photon-correlation spectroscopy in the light of the information obtained from the

analysis of the J(t) results as reported in the previous paper. It shows that the relaxation and

the motion associated with a single Rouse segment are closely buried in the transition
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region)actually crossing each other just before reaching the calorimetric Tg. As a result, it is

easy to mistake one for the other. This study has also proposed a way to define the -relaxation

time in polystyrene, with a clear physical meaning. Whether the same can be equally applied to

other polymers remains to be seen.

Acknowledgement

This work is supported by the National Science Council (NSC 92-2113-M-009-027).

Appendix: Calculations of the Spectra of G’(), G”() and tan (Note: in this appendix, all

the equations referred to are those in ref. 11)

The spectra of storage and loss modulus and loss tangent of sample A as shown in

Figures 3 and 4 are calculated by obtaining first its relaxation-time distributions at different

temperatures as contained in the G(t) curves shown in Figure 5 of ref. 11. The G(t) curves have

been calculated from the combination of eqs 1, 4, 5 and 7 using the parameters AG, and s

extracted from the analysis of the measured J(t) curves. In all the calculations described below,

the effect of the molecular-weight distribution of the sample has been taken into account in the

same way as explained in the analyses of J(t)11 and calculations of G(t).4,16-18 To obtain the

relaxation-time distribution of sample A, we can first consider two portions in eqs 1 and 4

separately: One is the part corresponding to ERT, namely, the portion without the AGG(t) term.

The other is the AGG(t) term as contained in eq 4. In the former, all the theoretical forms of the

relaxation processes and their relaxation times are known. Thus, for this portion a computer

program can be constructed to accumulate the relaxation strengths of all the coupled or

composite processes (arising from the product of two or three exponentially-decaying functions)

with relaxation times that fall in a small time-interval, log t, equally spaced in the log t scale,

giving the relaxation-time distribution with a resolution as high as one practically desires. On

the other hand, the relaxation-time distribution of the AGG(t) term with G(t) given by eq.5 can
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be calculated numerically.38 For the present calculations, the resolution of 100 subdivisions per

decade has been used throughout, which is more than ample. The total relaxation-time

distribution can be formed from the distributions obtained for the two separate portions in

accordance with the theoretical form as given by eqs 1 and 4. The obtained total relaxation-time

distribution is first checked by calculating numerically the G(t) curves for comparison with those

calculated from eqs 1, 4 and 5 directly, i.e. those shown in Figure 5 of ref. 11. Absolutely no

discrepancy can be noticed between the two sets of G(t) curves. With the relaxation-time

distributions confirmed this way, the spectra of storage and loss modulus, and thus of loss

tangent can be calculated numerically in a straightforward manner. This approach of calculating

G(), G”() and tan from G(t))free of the approximation that is often involved in the

conversion between the time and frequency domains5)is possible only because the theoretical

form of G(t) is known. As the measurement conditions)such as the use of the frictionless

magnetic bearing and the control of temperature)in the creep experiment by Plazek are far more

stringent than normally taken, the shown G(), G”() and tan spectra derived faithfully from

the quantitative description of Plazeks J(t) results should be much more reliable than ever

obtained directly from a strain-controlled measurement.
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Figure Captions:

Figure 1.

Comparison of the P2 [u(0)u(t)]2 dynamic processes obtained from the depolarized photon-

correlation functions of the S1 ()and S2 () samples and the simulation results of the Rouse

chain with Nr=8 (the left solid line) and with Nr=16 (the right solid line).

Figure 2

H indicating the declining rate of log G(t) vs. log t, as defined in the text, is shown as a function

of time for sample A at 114.5, 109.6, 104.5, 100.6, and 97oC corresponding to lines from left to

right, respectively; all calculated with K fixed at 5x10-9 and the respective s values listed in Table

1.

Figure 3

Comparison of the storage- and loss-modulus spectra, G() and G”(), of sample A at 114.5

()))), 104.5 ())), and 97oC ())) all calculated with K fixed at 5x10-9 and the respective s

values listed in Table 1.

Figure 4

Comparison of the storage-modulus ( ))) ) and loss-tangent () ) )) spectra of sample

corresponding to those shown in Fig. 3: a for 114.5oC, b for 104.5oC and c for 97 oC. Also

shown are the S=0.7/S values (right for a; middle for b; left for c) calculated with K fixed

at 5x10-9 and the respective s values listed in Table 1; and the v=0.7/v value () calculated

with the same K. The upper dotted line is G’() calculated without the AGG(t) term; the lower

dotted line is calculated without both AGG(t) and A(t).
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Figure 5

Comparison of v (!), 0.77c(#) and S (") as a function of temperature with the temperature

dependence of /T ( ))); the extended line below 104.5oC is indicated by ) and Jr(t) ( ))

)); see the text.
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TABLE 1: The Values of K, s, v, G, tm and S of Sample A (Mw=4.69x104) at Different

Temperatures

t oC K s τv τG tm τS

127.5 4.8x10-9 2.28x10-3

125 9.08x10-9 4.3x10-3

114.5 1.96x10-7 6283 9.3x10-2 1.23x10-3 1.78x10-2 2.21x10-2

109.6 1.2x10-6 10053 .569 1.21x10-2 .186 .218

104.5 1.2x10-5 16337 5.69 .196 3.39 3.53

100.6 9.7x10-5 28275 46 2.74 56.2 49.4

97 9.84x10-4 56550 467 55.6 1349 1002

 All relaxation times are in unit of sec.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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