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Abstract

Let x:M - S" be a compact immersed
Willmore surface in the n-dimensional unit
sphere. In this report, we prove that if

. 1
inf; max,q ., (P, —ZHj)SZ, when n=3,

. 1 4 1 1 2
inf; max,, ., (®, —gH; o +6H; +;6H; )SE’ when n>4,
where G is the conformal group of the

ambient space,® and H  are the square of

the length of the trace free part of the second
fundamental form and the length of the mean

curvature vector of the immersion goOx

respectively, then x(M) is either a totally
umbilic sphere or a conformal Clifford torus
or a conformal Veronese surface.
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1. Introduction

Let x:M - S" be a compact immersed
surface in the n-dimensional unit sphere S".
Denote by h;’ the components of the second

fundamental form of M, by H* =)/ the

a-component of the mean curvature vector
and by H the length of the mean curvature
vector,

o _H°
H=\>(H. Let¢f =h - 59

®= Z(qo; )? the square length of the trace

free tensor. Then the Willmore functional of
X is given by

and

W(X):J-M o,

where the integration is with respect to the
area measure of M. This functional is

preserved if we move M via conformal



transformations of S". The critical points of
the Willmore functional W are called
surfaces. They the

Willmore satisfy

Euler-Lagrange equation

AH +3gf @’ H? =0,
where A is the Laplacian in the normal
bundle
NM (see [Ch]). Thus any minimal surface in
S" is a Willmore surface. The set of Willmore
surfaces turns out to be larger than that of

minimal surfaces.

For M being a minimal submanifold in the
n-dimensional unit sphere, there are vast
estimates for the square of the length of the
second fundamental form. Significant works
in this direction has been obtained by Simons
(see [S]), Chern, do Carmo and Kobayashi
(see [CDK]), Peng and Terng (see [PT]) etc.
One expects that similar estimates are also
valid for generalized Willmore submanifolds.
Based on this observation, Li proved that if
M is a compact Willmore surface in the
n-dimensional unit sphere, the square of the
length of the trace free part of the second
fundamental  form  satisfying  certain
inequality, then M is the totally umbilical
sphere, or the Clifford torus, or the Veronese
surface (see [L1], [L2] and [L3]). It is
remarkable that the Clifford torus and
Veronese surface are minimal surfaces except

totally umbilical spheres.

For M being a hypersurface with constant
mean curvature in the n-dimensional unit
sphere S". Alencar and do Carmo obtained a
pinching constant which depends on the

mean curvature (see [AD]). For higher

codimension, Santo was able to generalize
this result to submanifolds with parallel mean
curvature vector (see [Sa]). It is interesting to
find an upper estimate for @ including the

mean curvature because in general a
Willmore surface is not minimal. Our starting
point is to find such an estimate. The second
estimate estimate

improves an given

previously by the author (see [CH]).

Theorem A
Let M be a compact immersed Willmore

surface in the n-dimensional unit sphere S".

1
Ifn =23, d>s2+ZH2 onM, then either ® =

0 and M is totally umbilical or

1
CD=2+ZH2. In the latter case, M is the

Clifford torus.

Ifn24,cpsg+lH2+ /i‘+1H2+iH4, then either
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® = 0 and M is totally umbilical or

o=24ly /i‘ e v Lip In the latter case,
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M is the Veronese surface.

Because of the fact that the Waillmore
functional is conformal invariant, it is more
interesting to find an estimate concerning the
conformal classes of Willmore surfaces. It is
remarkable that the Clifford torus and the
Veronese surface are the minimal surface in
the 3 and 4 dimensional unit spheres (see
[CDK]). Just as the results of Li, Theorem A
does not characterize any non-minimal
Willmore surface except the totally umbilic
spheres. However, these estimate is sharp in
the sense that for every given positive €, there

is a compact Willmore surface M in S’ and



S*  satisfying and

0 <CDS2 +1H2 + ﬂ' +1H2 +i[—]4 +& respectively
3 8 9 6 96

which are not the Clifford torus and the
Veronese surface.

0< cps2+iH2 +&

For characterizing a non-minimal Willmore
surface, for each immersion x of M into the

unit n-sphere S" , we consider the infimum of

if n =3 and

o-Lrp— [f el Lpp if >4 obtained by
8 9 6 96

composition of x with g where g ranges over
of S" This
depends on the

immersion Xx. We show that this conformal

maximum values of CD—%‘H2

all conformal mappings
conformal invariant
invariant characterizes the totally umbilic
sphere and the conformal classes of the
Clifford torus and the Veronese surface.
Since the conformal group G of the ambient
space S" is not compact, the proof involves
some new tricks. The following is the main

result of the report.

Theorem B
Let M be a compact immersed Willmore

surface in the n-dimensional unit sphere S".

If n=3and inf,; max,g, ., (P, —iH;) <2,

then either @ = 0 and M is totally umbilical
or M is a conformal Clifford torus.
1 4 1 1

2
Ifn=4 andinf;; max g, (P, —gHz - §+6H5 +9—6H: )Sg,

then either ® = 0 and M is totally umbilic or
M is a conformal Veronese surface, where G
is the conformal group of the ambient space
S", ®, and H, are the square of the

length of  the trace free part of the second

fundamental form and the mean curvature

of the immersion g  x respectively.

Theorem A characterizes the totally umbilic
spheres, the Clifford torus and the Veronese
surface by use of an integral inequality in
terms of @ and H.The conformal estimate
is dealt in Theorem B. The main idea in the
proof of Theorem B follows very closely the
proof we gave of Theorem A. In this proof,
we consider a minimizing sequence {gm} in
G. If this minimizing sequence is convergent
in G, the assertion follows from Theorem A.
Otherwise, we will show that M must be
totally umbilic. The proof requires some
careful modifications in progress.

In this report, we will give the outline of the
proof of Theorem B in the case of
codimension one. The proof of higher

codimension is more complicated.

2. The proof of Theorem B

In this section we show briefly the proof of
Theorem B in the case of codimension one.

Step 1. By the hypothesis, there is a sequence

1 1
gn in G such that ® —Zan <2+— onM,
m

for all m=1,2,... , where ®, and H, are

the square of the length of the trace free part
of the second fundamental form and the
mean curvature of the immersion g,, X,
respectively. Without loss of generality, we
may assume that g, in the open unit disk Da.
The closure of D4 being compact, there exists
a convergent subsequence . We may assume
that g, converges to gy for some gy in the
closed unit disk. If gy in D4 , then the desired
conclusion follows from Theorem A. So we
need only consider the case that gg is a
constant unit vector. In this case we will
show below that M is totally umbilic.



Step 2. Suppose, to get a contradiction, that
@ is positive somewhere on M. To avoid
ambiguity, we shall now use the notations da
and da,, for the area measures of x and g;,, X,
respectively. Since g,, x are Willmore
surfaces, the integral inequality of Theorem
A gives
H,
4

2[®,da, < [®,(®, -—2)da,
M M

<2 +i) [®,da,.
M

Since Willmore functional is invariant under
conformal transformations of S° ,

2(1-|g,|" [ ®da
< [0l +(xg, )y ® —i((l +(x,g,)H +2{e.g,))1da

1 2
<@+)1-|g,[H]®.

m M
Lettingm — oo, we find that

2 1 2
[ LA+ (oo)'@ = (1 + (o gD H +2(er,0))"Ida =0.

. 2
On the other hand, since ¢ -fn <oyt
"4 m

on M, we have

(1+<x,gm>>2¢—%((1+<x,gm>>H+2<e3,gm>>2

< (z+l)(1—\gm\z).

m
When m tends to infinity, we find that
(14<x,20>) ®-1/4((1+<x,go>)H+2<e3,20>)*
is nonpositive on M. We then conclude that
(14<x,20>) > O=1/4((1+<x,go>)H+2<e3,20>)’
or ® =0 on M, and hence
(1+<x,80>)*®=1/4(1+<x,g0>)F? provided ® >
0, where F=(1+<x,gp>)H+2<e;,go>. This
implies that either F=2(l+<x,go>)\/$ or
F=- 2(1+<x,g0>)\/$ on each of the
connected components of the set of points
where © > 0.

Step3. For each fixed m, let x = g, ox.

Since g, x is a Willmore immersion, as the
proof of Theorem A, we have the following
equation again

J— 2

0=[> g +¢ Hy +®Q +H7-6)d£
M

J— 2

J— H B _
42%;1{ —¢; H +¢(2+7-¢)da

M

2

_ |UH _ H? — -
=quo;k - +®Q2+—-D)da.
) 2 2

When m tends to infinity, it follows that

1 1
0={> —E\DF\Z.HD(EFZ —(1+(x, g, )’ ®)

2 1 2 1 2
= 2 —_|OF]" . +—®F
AJ;Z‘/’W 2‘ ‘ + 4
1 1
2 J(‘ﬂm +w122)2 + (wzll +l//222)2 _E‘DF‘Z +Z(DF2
M
1 2 1 2
> [~—|oF +—oF
)4 4
=0,
here we use the identity (1+<x,gp>)"®*=
1/4®F%. Therefore we have Wi11=W122 and
V211=W222 . Combining the last two equations
with certain properties of y;jx and simplifying,

we can express i in terms of Fy and F,

1
wm :ll/m :‘//212 :_‘//221 :ZF1

and

1
wm :wzll :‘/’222 = _wuz :ZFz-

Step 4. Let U =2(1+<x,g, >)\/$, and let

Q) be a connected component of the set of
points where @ is positive. Then

U, = 2\/6<319g0> +4%(1 +<X,go>)ﬂu +4%(1 +<x9go>)@21

U, = 2\/6<ezygo> + 4%(1 + <xago>)¢hz + 4%(1 + <x:go>)mzz

on Q. Since ik can be expressed in terms
of F; and F», we then obtain that for all i,

¢
U =y, \/éFj

on Q. Therefore we have [D U]2 = %|DF|2

on Q. On the other hand, we know that U = +
Fon Q, [DU]2 = |DF|2 on Q. We then

conclude that the gradient of F vanishes on Q,
and hence F is a constant on Q. Since every



immersion is locally an embedding, 1+<x,gy>
vanishes only at most finite points on M, and

(1+<x, go>)"®? :% ®F on M, this constant

must be nonzero by the continuity of .
Since F is a nonzero constant satisfying the
equation AF +®F =0, ® vanishes on Q,
we get a contradiction. This contradiction
shows that @ vanishes identically, and M is
totally umbilical. This completes the proof of
Theorem B in the case of codimension one.

The main idea for the case higher
codimension follows very closely the proof
given above if we consider the weaker

o .. . L4
pinching condition inf (@, —< )5 °

However, the proof of Theorem B for higher

codimension is more complicated.
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