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Abstract—A novel random telegraph signal (RTS) method is
proposed to characterize the lateral distribution of injected charge
in program and erase states in a NOR-type silicon–oxide–nitride–
oxide–silicon Flash memory. The concept of this method is to use
RTS to extract an oxide trap position in the channel and then to use
the trap and RTS as internal probe to detect a local channel poten-
tial change resulting from injected charge during program/erase.
By using this method, the lateral width of the injected charge-
induced channel potential barrier is shown to be around 20 nm in
channel hot electron (CHE) program. Our method also confirms
that Channel Initiated Secondary ELectron (CHISEL) program
has a broader injected charge distribution than CHE program. A
mismatch of CHE program electrons and band-to-band tunneling
erase holes is observed. Program-state Vt retention loss models,
charge vertical loss versus lateral migration, are reexamined by
using this method. The polarity of a program-state charge dis-
tribution along the channel is explored within 10–20 program/
erase cycles. Nitride charge vertical loss is verified by this method.

Index Terms—Charge lateral distribution, random telegraph
signal (RTS), retention loss, silicon–oxide–nitride–oxide–silicon
(SONOS).

I. INTRODUCTION

N ITRIDE-BASED trapping storage Flash memory has re-
ceived much attention recently because of its immunity

from stress-induced leakage current and the coupling of floating
gates in conventional Flash memory [1]. Two-bit/cell NOR-type
silicon–oxide–nitride–oxide–silicon (SONOS) Flash memory
has been realized by storing bit charges in two sides of a channel
by channel hot electron (CHE) program and band-to-band
tunneling (BTBT) hot hole erase [2]. Control of program/erase
charge lateral distributions of each bit is a major thrust to
improve cell performance and scalability [3]. Many attempts
have been made in the past to characterize a trapped charge
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lateral profile in a SONOS cell [4]–[11]. Two lateral profiling
techniques were often used, i.e., a charge pumping (CP) method
[7] and an inverse I–V modeling approach [4]. The CP method
provides a direct measurement result but has the following
drawbacks: First, the profiling method is based on an assump-
tion that interface traps have a uniform distribution along the
channel [12]. This assumption is not true in certain device
fabrication conditions, e.g., pocket-implanted cells in a buried
diffusion bit-line array, where interface traps are distributed
near the source–drain junctions of a cell. Second, a CP current is
hardly sensed in a small-area SONOS cell due to a few interface
traps in a cell. Third, the CP profiling technique is applicable
only when a charge density increases monotonically along the
channel [6]. For a two-pole charge profile in erase state, the CP
method is not appropriate. On the other side, the inverse I–V
modeling is an indirect method. A charge lateral distribution is
extracted from a 2-D device simulation by fitting the simulated
subthreshold and gate-induced drain leakage characteristics to
the measurement results. The inverse I–V modeling also suf-
fers from some limitations. First, it requires the knowledge of a
2-D device doping profile in device simulation. A specific shape
of a program/erase charge distribution is usually given a priori
in simulation, e.g., a rectangular charge packet or a Gaussian-
like charge distribution [4], [5]. Second, the method does not
yield a unique solution. The simulated width of a program-
state charge distribution varies considerably in literature, from
20–40 nm in [4]–[6] to 85 nm in [13]. In this paper, we will
propose a new charge profiling technique based on random
telegraph signal (RTS). This technique is very sensitive to in-
jected electrons or holes in program/erase operation and charge
loss during retention. Moreover, this technique is suitable for
a small-area cell and does not need a 2-D numerical device
simulation.

RTS in the channel current of a SONOS cell arises from
electron emission and capture at an oxide trap near the SiO2/Si
interface. Recently, it has been recognized as a major scaling
concern in Flash memories [14] since Vt fluctuations originated
from a large amplitude RTS will cause a read error in a
multilevel cell Flash memory [15], [16]. On the other hand,
since RTS is very sensitive to a local potential change near the
trap, it can be used as an internal probe to detect variation in
a trapped charge density during program, erase, and retention.
The waveform of RTS may exhibit two-level or multilevel
switching in a current, depending on the number of traps in a

0018-9383/$26.00 © 2010 IEEE



624 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 3, MARCH 2011

Fig. 1. Two-level RTS waveform resulting from electron emission and capture
at an oxide trap. τc and τe are electron emission time and capture time. The trap
position is xt from the drain junction. The channel potential right below the trap
is denoted by Vts.

device. For simplicity, only devices with two-level RTS (single
trap) are chosen in this paper. In this way, we can clearly
measure trap emission time and capture time. In this paper, we
determine a trap position in the channel from RTS and then
use the trap and RTS as internal probe to detect a local potential
change due to injected program/erase charge or charge retention
loss. A program charge lateral profile is obtained by collecting
the measured potential changes in devices with different trap
positions. By using this method, we compare the width of the
charge distributions by CHE program and Channel Initiated
Secondary ELectron (CHISEL) [17] program. A misalignment
between CHE program electrons and BTBT erase holes will be
characterized. Finally, mechanisms of program-state Vt reten-
tion loss will be reexamined by using this technique.

II. EXTRACTION OF AN INTERFACE TRAP POSITION

Measurements were carried out on SONOS Flash cells with
an ONO thickness of 8.5 nm (top oxide), 7 nm (nitride), and
5.5 nm (bottom oxide), respectively. The channel width and
length are W/L = 0.11 μm/0.1 μm. The CHE program con-
dition is Vgs = 8 V and Vds = 3.7 V. The BTBT hot hole
erase is at Vgs = −4 V and Vds = 5 V. RTS is measured at
a small Vds that the device is operated in the linear region, and
the channel electric field is rather uniform. A typical two-level
RTS waveform is shown in Fig. 1. The average electron capture
time 〈τc〉, as illustrated in Fig. 1, can be expressed as

〈τc〉 =
1

neσυth
(1)

where σ is a trap cross-section, υth is a thermal velocity, and ne

is an electron concentration in the channel right below the trap.
ne is a function of a gate overdrive, i.e., ne = f(Vgs − Vts),
where Vts is the channel potential at the trap position and is
equal to (1 − xt/L)Vds. xt is the distance of the trap from the
drain edge, and L is the channel length, as shown in Fig. 1.
It should be mentioned that a uniform channel electric field
is assumed here. A pocket implant may induce a nonuniform
electric field. This nonuniform electric field effect, however,
can be reduced by using a larger gate overdrive voltage in RTS
measurement.

A trap position (xt) in the channel can be extracted in a way
similar to [18]. Two different drain voltages (Vds = 0.05 V and
0.3 V) are used in RTS and 〈τc〉 measurement. Since τc depends
on the electron concentration ne or a voltage drop between the
gate Vgs and the channel right below the trap Vts, the amount of
the lateral shift of these two curves (ΔVts) in Fig. 2 is equal to

Fig. 2. Gate voltage dependence of the average capture time in RTS at two
drain voltages Vds = 0.05 V and 0.3 V. The lateral shift of these two curves
corresponds to ΔVts.

Fig. 3. Cumulative trap position distribution along the channel. L = 0.1 μm
is the channel length, and xt is the distance of a trap from the drain.

the difference of the voltages at the point of the trap xt, which
is raised by the two drain voltages. Therefore, the trap position
in the channel can be extracted from ΔVts/ΔVds = 1 − xt/L.
In this paper, the RTS extraction is conducted in more than
150 fresh cells. For simplicity, we only record devices with
two-level RTS (i.e., a single trap). The trap lateral position
distribution along the channel is shown in Fig. 3. In fresh
SONOS cells, more process-induced interface traps are found
near the source–drain junctions. The trap vertical positions,
which are extracted by using a method in [19], are within a
distance of 0.9–1.5 nm from the Si/SiO2 interface. With the
information of a trap position in each device, we choose devices
with appropriate trap positions as internal probes to investigate
program/erase charge lateral spread. The local channel potential
at the trap position can be extracted from the ratio 〈τc〉 to 〈τe〉
in RTS according to the following equation:

〈τc〉
〈τe〉 = g exp

(
ET − EF

kT

)
(2)

〈τc〉
〈τe〉

∣∣∣
prog

〈τc〉
〈τe〉

∣∣∣
fresh

= exp
(

qΔϕs

kT

)
(3)
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Fig. 4. RTS patterns at three program ΔVt = 0.3, 0.9, and 1.2 V in a CHE
program cell. The RTS measurement condition is Vgs = 3.5 V and Vds =
0.05 V. xt = 0.2L.

where g is a degeneracy factor [20], [21]. ET is a trap energy,
and Δϕs is a local potential change at the trap position due
to injected program charge. The trap energy does not need to
be known. In this paper, it is the ratio of (〈τc〉/〈τe〉)prog to
(〈τc〉/〈τe〉)fresh rather than the absolute value of 〈τc〉/〈τe〉
that matters. We extract the relative change of a trap energy
level with respect to EF from the ratio of (〈τc〉/〈τe〉)prog

to (〈τc〉/〈τe〉)fresh. Since EF is invariant after programming,
ΔET should be equal to qΔφs. Note that (3) still holds, even
though a phonon-assisted transition process is considered.

III. RESULTS AND DISCUSSION

A. CHE Program Charge Lateral Profile

To profile the lateral charge distribution by CHE program-
ming, four SONOS cells are used with a respective trap position
at xt = 0.03, 0.05, 0.2, and 0.3 L from the drain junction.
Fig. 4 shows RTS traces of the channel current at three program
ΔVt(= 0.3 V, 0.9 V, 1.2 V) in the xt = 0.2L cell. The RTS
measurement is fixed at Vgs = 3.5 V and Vds = 0.05 V. The
device is in strong inversion at the measurement biases. The
program window is limited to about 1.2 V. The reason is that
the ratio of 〈τc〉/〈τe〉 is sensitive to a local potential change
and varies considerably with a program window. The 〈τc〉/〈τe〉
might be out of a measurement range if a program ΔVt is too
large. Fig. 5 shows the measured average capture time 〈τc〉
and emission time 〈τe〉 versus program ΔVt. The minimum
integration time is 0.5 ms, and the total sampling period is 10 s.
The observed trends in the 〈τc〉 and 〈τe〉 versus program ΔVt

are similar to previous results [22]. The ratio of average capture
time to emission time 〈τc〉/〈τe〉 and a corresponding surface
potential change (Δϕs) at xt from (3) are plotted in Fig. 6. As
more electrons are injected into the nitride layer, the conduction
band edge at xt and the trap level move upward with respect
to the Fermi level. Thus, the 〈τc〉/〈τe〉 ratio increases with
ΔVt. The measured 〈τc〉/〈τe〉 versus ΔVt in the four cells are
shown in Fig. 7. For an xt closer to the drain junction, e.g.,
the xt = 0.03L cell, the τc/τe ratio increases more rapidly
with ΔVt, implying a higher program charge density at the
trap position xt = 0.03L. In contrast, the τc/τe remains almost

Fig. 5. Average capture time τc and emission time τe versus program ΔVt in
a xt = 0.2L cell.

Fig. 6. Ratio 〈τc〉/〈τe〉 and a local surface potential change (Δϕs) at the
trap position (xt = 0.2L) versus program ΔVt. The local potential change is
calculated from (3).

Fig. 7. Evolutions of 〈τc〉/〈τe〉 with program ΔVt at four different trap
positions xt = 0.03, 0.05, 0.2, and 0.3 L.

unchanged in the xt = 0.3L cell, which means that the injected
program charge does not reach the trap point during program.
The surface potential energy change along the channel for a
program window of ΔVt = 0.6 V is presented in Fig. 8. The
program charge-induced potential barrier is within 30 nm. Our
result is consistent with most of published results from the
inverse I–V method [4]–[6] and from Monte Carlo simulation
[6], [23].
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Fig. 8. Channel potential energy distribution extracted from RTS. The CHE
program window is ΔVt = 0.6 V. The width of the potential energy barrier is
about 20 nm.

Fig. 9. Comparison of 〈τc〉/〈τe〉 evolutions with program ΔVt in CHE and
CHISEL program. A substrate bias of −2 V is applied in CHISEL program.

B. CHE Versus CHISEL Programming

To compare the width of injected charge by CHE and
CHISEL program [23], a SONOS cell having a trap at xt =
0.2L is used. The device is programmed by CHE first. The ratio
of τc/τe versus a program ΔVt is recorded. Then, the device is
erased and reprogrammed by CHISEL. In CHISEL program, a
substrate bias of −2 V is applied. Fig. 9 shows the evolution
of τc/τe with ΔVt by CHE and CHISEL. The τc/τe ratio
increases more quickly by CHISEL than by CHE. This means
that the local channel potential at xt = 0.2L is affected by
injected charge earlier in CHISEL program as ΔVt increases.
In other words, the program charge has a broader distribution
in CHISEL than in CHE program at the same program ΔVt.
Our findings here are consistent with the result in [24].

C. CHE Program/BTBT Erase Charge Mismatch

In this section, we discuss the lateral misalignment between
CHE program electrons and BTBT erase holes. To this purpose,
we choose two devices with a trap located at the position of
0.05 and 0.3 L, respectively, from the drain junction. The two
devices are programmed by CHE and then erased by BTBT hot
holes. Figs. 10 and 11 show the evolution of the τc/τe during
program and erase in the two devices. The τc/τe increases with
a program ΔVt and then decreases during erase. In Fig. 10, our

Fig. 10. 〈τc〉/〈τe〉 versus program ΔVt during CHE program and BTBT hot
hole erase. The device has a trap at 0.05 L from the drain. The inset shows the
〈τc〉/〈τe〉 in a log scale.

Fig. 11. 〈τc〉/〈τe〉 versus program ΔVt during CHE program and BTBT hot
hole erase. The device has a trap at 0.3 L from the drain.

monitor point is at xt = 0.05L in the channel. The τc/τe curves
during program and erase match reasonably well, suggesting
that program electrons at 0.05 L can be totally neutralized
by erase holes. To examine the charge polarity in erase state,
the τc/τe near ΔVt = 0 V is redrawn in a log scale in the
inset of Fig. 10. The erase state τc/τe is actually lower than
its value in a fresh state. This result provides evidence of
hole accumulation near the drain junction in erase state. This
phenomenon becomes more pronounced in an over-erased cell,
i.e., ΔVt < 0 V. On the contrary, in Fig. 11, where the monitor
point is at xt = 0.3L, the τc/τe ratio is significantly above
its original value after a program/erase (P/E) cycle. The larger
τc/τe value after one P/E cycle implies the existence of some
residual program electrons at xt = 0.3L although the cell has
been erased to its original Vt. Combining the results in Figs. 10
and 11, the charge distributions in program and in erase are
depicted in Fig. 12. A misalignment of injected erase holes and
program electrons [13], [25] is concluded.

D. Program Charge Retention Loss

Two types of models have been published to explain the
observed program-state Vt retention loss in a SONOS cell. The
first one is nitride charge vertical loss through P/E cycling-
induced oxide traps [26]–[30]. The second type of the models
explains the Vt retention loss by lateral redistribution of nitride
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Fig. 12. Program/erase charge distributions in the channel. The stars represent
oxide traps. The program electrons at xt = 0.05L are completely compensated,
but some far electron at xt = 0.3L are not compensated by erase holes.

Fig. 13. 〈τc〉/〈τe〉 in a program-only cell versus bake time. The xt is 0.03 L.
The bake temperature is 120 ◦C. The program ΔVt is 1 V.

charges in program state [31]–[34]. The possibility of program
electron lateral movement [34] is explored by the RTS method
in Fig. 13. The cell has only one-time program and is then
subject to high-temperature bake. The trap position is at 0.03L
from the drain. The result shows that the τc/τe remains the same
during the bake, indicating that the program electron concen-
tration is unchanged. Another explanation for a program-state
Vt loss is nitride trapped hole lateral migration. A three-pole
electron–hole–electron distribution in program state has to be
assumed in the hole lateral migration models [31]–[33]. We
use the RTS method to examine the charge polarity along the
channel in program state. The trap position (monitor point) in
measured devices spreads from the drain junction to 0.4 L into
the channel. We measured program-state and erase-state RTS
at different P/E cycles. Fig. 14 shows the program state and
erase state τc/τe versus P/E cycles in an xt = 0.05L device.
At other xt, the τc/τe dependence on P/E cycle has a similar
feature, and the result is not shown here. The maximum cycle
number in Fig. 14 is 16. The reason is that the RTS pattern
becomes complex at more P/E cycles due to new oxide trap
creation. In our monitored range of P/E cycles, program state
τc/τe is always above its original value, showing a negative
charge polarity in all the measured cells. We do not find any
evidence of positive charge (hole) accumulation in program
state at least within 10–20 P/E cycles. However, we would
like to point out that a program-state charge profile may vary
with operation biases, device doping profile, and P/E cycling
conditions [33]. Although there is no sign of hole accumulation
within 10–20 P/E cycles in the present operation conditions,
we still observe an apparent charge retention loss in these cells

Fig. 14. Program state and erase state 〈τc〉/〈τe〉 at different P/E cycles. The
xt is 0.05 L. The 〈τc〉/〈τe〉 in fresh state is also shown in the figure. The
program ΔVt is 1 V.

Fig. 15. Program state 〈τc〉/〈τe〉 is plotted against gate stress time. The
program ΔVt is 1 V. The P/E cycle number is 18. The gate stress voltage is
Vg = −5 V. The trap position xt is 0.05 L. RTS waveforms immediately after
program and after 4-s gate stress are shown in the inset of the figure.

under a gate stress condition (Vg = −5 V) in Fig. 15. The τc/τe

ratio decreases with gate stress time. RTS traces immediately
after program and after 4-s gate stress are presented in the
inset of Fig. 15. The observed decrease in τc/τe is attributed
to charge vertical loss, i.e., stored electron emission through
the bottom oxide. Fig. 16(a) shows the read current variation
versus gate stress time in a 33-P/E-cycled cell. The setup for this
measurement is shown in Fig. 16(b) [16]. An electronic switch
is used to accurately record gate stress time. The sampling
rate is 10 kHz, which enables the observation of read current
switching with a time resolution up to 0.1 ms. Both RTS and
long-term nitride charge escape are observed. Individual nitride
charge loss is manifested by a long-term abrupt increase in a
read current. During two consecutive nitride charge escapes,
RTS is observed. It should be stressed that the “average”
read current level remains constant between two consecutive
nitride charge emissions. This stepwise evolution characteristic
provides an evidence of the vertical charge loss. One major
argument in [32] against the vertical loss model is that “the
bottleneck of the carrier loss is either the tunneling or the
Frenkel–Poole (FP) detrapping.” This argument is misleading
since they did not consider the recapture of nitride conduction
band electrons into nitride traps before tunneling out through
the bottom oxide. By taking into account the recapture process,
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Fig. 16. (a) Read current variation with cumulative gate stress time in program
state. The P/E cycle number is 33. (b) Experimental setup for read current
measurement. The measurement consists of two alternating phases, i.e., a gate
stress phase and a read phase. In gate stress, a negative gate voltage (−3.5 V)
is applied to accelerate nitride charge loss. The sampling rate is 10 kHz. The
program ΔVt is 2 V.

we showed [35] that, even in the FP emission-limited condition
(i.e., FP emission time longer than oxide tunneling time), the
nitride charge retention time can be approximated by

τ(retention) =
τe(FP ) + τc(FP )

τc(FP )
τox

∼ exp
(

ET − q(qF/πε)1/2

kT

)
τox (4)

where τe(FP) and τc(FP) are the FP emission and capture times,
respectively. τox is an oxide tunneling time or, more specifically,
positive oxide trapped charge (hole) assisted tunneling time.
F is an electric field in nitride. Other variables have their
usual definitions. The preceding equation can well explain
many salient features of the observed program-state Vt retention
loss, e.g., log dependence on retention time [26], [30], [39]
and P/E cycle number [37], [39], negative dependence on gate
stress voltage polarity [27], [30], [38], and positive dependence
on retention temperature [26], [30], [31]. The comparison of
the model predictions from (4) and experimental results is
summarized in Table I. It should be mentioned that trap anneal
effect during high-temperature bake is not considered in (4).
Thus, a deviation between the model and measurement results
in the temperature dependence is expected. Although the charge
vertical loss model can explain the preceding measurement
results well, other Vt retention loss mechanisms may coexist
in different operation bias or device process conditions.

Finally, we would like to remark that the aforementioned
RTS measurement is limited to a low P/E number because of
cycling-induced new oxide trap creation. The program-state
hole accumulation is not seen at the present program window,

TABLE I
DEPENDENCE OF PROGRAM-STATE Vt RETENTION LOSS ON RETENTION

TIME, P/E CYCLES, GATE STRESS POLARITY, AND TEMPERATURE FROM

THE VERTICAL CHARGE LOSS MODEL (IN AN FP EMISSION-LIMITED

CONDITION) AND FROM EXPERIMENTAL RESULTS

1 V. The RTS measurement result in Fig. 14 does not exclude
the possibility of hole accumulation and, thus, a dipole forma-
tion in other cycling and device process conditions [33].

IV. CONCLUSION

We have demonstrated a novel RTS method to characterize
program and erase charge lateral spread in a SONOS Flash
memory without the need to know a doping profile. In the RTS
method, the τc/τe is very sensitive to program/erase/retention
charges. It exhibits an exponential dependence on a local poten-
tial, compared with a linear dependence of the CP method. The
RTS method can provide a better resolution than a CP method
or an inverse I–V modeling approach. A mismatch between
program electrons and erase holes has been shown by this
method. Read current instability due to nitride charge vertical
loss and random telegraph noise has been directly observed.
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