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control and the other isthat it needs a high complexity
state-search algorithm. By treating equalization as a
classical pattern classification problem, we propose a
new structure and algorithm of the nonlinear equalizer
to remedy the above problems and explore their
potential applications. Our idea is to employ a large
set of linear discriminant functions instead of a small
set of nonlinear functions. By this manner, a tradeoff
can be made between performance and computational
complexity. In many cases, the resulting performance
loss is small while the computational complexity
reduction can be large. An adaptive method using
stochastic gradient descent is also developed to
identify the functions. The adaptive method is robust
and has very low computational complexity. An
adaptive method is developed such that the proposed
algorithm is applicable in time-varying environments.
Simulations show that our approaches can efficiently
approximate the Bayesian equalizer.

We aso apply the proposed algorithms to
antenna array communication systems. This results in
new nonlinear spatio-temporal equalizers. While these
algorithms efficiently approximate the spatio-temporal
Bayesian equalizers, they inherit other good properties
of the temporal counterparts.

(Vol terra)

Keywords: Adaptive, Bayesian, Nonlinear equalizer

(multipath channel)
Abstract (intersymbol interference)

The Bayesian equalizer, with or without decision
feedback, is known to be optima for the
symbol-by-symbol type of equalizer. However, the
computational complexity for the Bayesian equalizer ( sequence esti mate)
is usually very high. At present, the existing nonlinear (symbol -bggsgimboér)
equalizers include the Volterra equalizer, neural
network equalizer and the recently proposed signal likelihood
space partitioning technique. The disadvantage of the
former two equalizers is high computationa
complexity. There are two problems in the latter
equalizer. One is the complexity cannot control easily
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