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Abstract—This paper analyzes the impacts of intrinsic
process variations and negative bias temperature instability
(NBTI)/positive BTI (PBTI)-induced time-dependent variations
on the stability/variability of 6T FinFET static random access
memory (SRAM) cells with various surface orientations and gate
dielectrics. Due to quantum confinement, (110)-oriented pull–
down n-channel FETs with fin line-edge roughness (LER) show
larger Vread,0 and Vtrip variations, thus degrading READ sta-
tic noise margin (RSNM) and its variability. Pull-up p-channel
FETs with fin LER that are (100)-oriented show larger Vwrite,0
and Vtrip variations, hence degrade the variability of WRITE
SNM. The combined effects of intrinsic process variations and
NBTI/PBTI-induced statistical variations have been examined to
optimize the FinFET SRAM cells. Worst-case stress scenario for
SNM stability/variability is analyzed. With the presence of both
NBTI and PBTI in high-k metal-gate FinFET SRAM, the RSNM
suffers significant degradation as Vread,0 increases, whereas Vtrip
simultaneously decreases. Variability comparisons for FinFET
SRAM cells with different gate stacks (SiO2 and SiO2/HfO2)
are also examined. Our paper indicates that the consideration
of NBTI/PBTI-induced temporal variation changes the optimal
choice of FinFET SRAM cell surface orientations in terms of the
μ/σ ratio in RSNM.

Index Terms—FinFET, negative bias temperature instability
(NBTI), positive bias temperature instability (PBTI), static ran-
dom access memory (SRAM), surface orientation, variability.

I. INTRODUCTION

MULTIGATE FinFETs are promising device candi-
dates for post-22-nm complementary metal–oxide–

semiconductor (MOS) technology generations due to their
superior short channel effects, better subthreshold slope, and
reduced random dopant fluctuation. The sidewall surface (con-
ducting channel) orientation of FinFET devices can be easily
changed by rotating the layout of the devices to improve the
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carrier mobility, and thus circuit performance [1]–[3]. The
fluctuation of the fin width due to line-edge roughness (fin
LER) is widely recognized as a major source of variability
for FinFET devices [4]. As the fin width scales down, the
quantum–mechanical effect becomes more significant. How-
ever, the different surface orientation, with different quantiza-
tion effective mass and quantum confinement, may result in
distinctly different variability [22], [25].

In addition to time-zero intrinsic process variability, nega-
tive bias temperature instabilities [NBTI; for p-channel FET
(PFET)] and positive BTI [PBTI; for n-channel FET (NFET)]
have become major long-term reliability concerns as they
weaken MOSFETs over time, thus resulting in temporal degra-
dation in the stability and variability of the static random access
memory (SRAM) cells [5]–[9]. The (110)-oriented Si surface
has more dangling bonds before passivation and is therefore
expected to have more bonded hydrogen at the interface in com-
parison with (100)-oriented Si surface. As such, the NBTI/PBTI
degradation is more significant in (110)-oriented device than
in (100)-oriented one [10], [11]. FinFET devices with different
surface orientations exhibit distinct threshold voltage variations
resulting from the intrinsic process variations and NBTI/PBTI-
induced temporal variations. Fig. 1(a)–(c) illustrate the layouts
of 6T FinFET SRAM cells with various combination of (110)
and (100) surface (conducting channel) orientations by rotating
the FinFET devices. The layouts are based on scaled ground
rules from 32-nm node according to the International Technol-
ogy Roadmap for Semiconductors projection.

In this paper, for the first time, the combined effects of
time-zero intrinsic process variability and long-term temporal
variability (due to NBTI/PBTI) are considered for optimiz-
ing the FinFET device orientation combinations to improve
the stability/variability of 6T FinFET SRAM cells with ox-
ide and high-k gate dielectrics, respectively. For NBTI/PBTI,
the temporal degradation in SRAM stability/variability under
worst case stress pattern/condition is considered. This paper is
organized as follows. Section II describes the device design
and simulation methodology used in this paper. Section III
investigates the stability and variability of the 6T FinFET
SRAM cells with various surface orientation combinations and
gate dielectrics. In the first part of Section III, the fin LER is
considered to optimize the 6T FinFET SRAM cells in terms of
μRSNM/σRSNM, where μRSNM is the mean of READ static
noise margin (RSNM), and σRSNM is the standard deviation
of the RSNM. In the second part, the combined effects of fin
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Fig. 1. (a) PU (PL/PR), PD (NL/NR), and PG transistors (AXL/AXR), all
with (110) orientation. (b) (110) PU, (100) PD, and (110) PG transistors.
(c) (100) PU, (100) PD, and (110) PG transistors.

LER and the NBTI/PBTI-induced temporal variability are then
considered to optimize the 6T FinFET SRAM cells with oxide
and high-k dielectrics, respectively. Section IV concludes this
paper.

II. DEVICE DESIGN AND SIMULATION METHODOLOGY

In this paper, the 6T FinFET SRAM cells designed with
18-nm Lg FinFET devices [Wfin = 5 nm, Hfin = 15 nm,
channel doping = 1e17 cm−3, Vdd = 1 V, gate stacks:
SiO2(0.6 nm)/HfO2(2.5 nm) or SiO2(1 nm)] are analyzed
using 3-D atomistic technology computer-aided design
mixed-mode simulations [12]. The quantum-confinement
effect is calibrated with the exact solution of Schrödinger’s
equation [13] to accurately account for the threshold voltage
sensitivity to process variations for (100)/(110) N/PFETs.
Reaction–diffusion model [14] is used to calibrate the
threshold voltage drift due to NBTI/PBTI [10], [15]. To assess
the dominant process variation source, i.e., fin LER [4], [16],
the rough line edge patterns are generated using Fourier
synthesis approach [17] with correlation length = 20 nm and

Fig. 2. (a) RSNM comparisons for eight types of 6T FinFET SRAM cells.
(b) WSNM comparisons for eight types of 6T FinFET SRAM cells.

Fig. 3. (a) RSNM variation and (b) WSNM variation due to fin LER.
(Correlation length = 20 nm and rms amplitude = 1.5 nm [4]).

root mean square amplitude = 1.5 nm [4]. Atomic-level 3-D
mixed-mode Monte Carlo simulations with 200 samples are
then performed for each case.

III. 6T FINFET SRAM CELLS WITH (100)/(110)
SURFACE ORIENTATIONS

Pull-up (PU), pull-down (PD) and pass-gate (PG) transistors
with (110) and (100) orientations can be combined for eight
types of 6T FinFET SRAM cells. Fig. 2(a) shows the RSNM
and Vread,0/Vtrip (defined in Fig. 3(a) inset) comparisons
among the eight types of cells. The RSNM is defined as the
minimum noise voltage present at each of the cell storage
nodes necessary to flip the state of the cell. Vread,0 is the
READ disturb voltage determined by the voltage divider effect
between the PG and PD transistors. Vtrip is the voltage needed
to flip the cell inverter. Increase in Vread,0 or decrease in
Vtrip will degrade the RSNM. FinFET SRAM cells with (110)
PG devices show lower Vread,0 and higher RSNM than that
with (100) PG devices. Due to stronger (100) PD device,
(PU, PD, PG) = (110, 100, 110) and (100, 100, 110) show
lower Vread,0 and higher RSNM than the standard SRAM cell
with all (110) devices. Fig. 2(b) shows the WRITE static noise
margin (WSNM) and Vwrite,0/Vtrip (defined in Fig. 3(b) inset)
comparisons. The WSNM is determined by the smaller of the
two squares that can fit between the cell-static voltage transfer
characteristics during a WRITE operation (see Fig. 3(b) inset).
Vwrite,0 is determined by the voltage divider effect between the
PU PFET and PG transistors. Lower Vwrite,0 will benefit the
WSNM. As can be seen, (100) PG device with stronger strength
(higher mobility) shows lower Vwrite,0 and larger WSNM.
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Fig. 4. (a) Normalized σRSNM and μRSNM/σRSNM comparison consid-
ering fin LER. (110,100,110) SRAM cell shows largest μRSNM/σRSNM.
(b) Vread,0 and Vtrip variation comparisons considering fin LER.

A. Time-Zero Stability/Variability Due to Process Variation

In this section, the impacts of local random variations
on device variability and optimization of the 6T FinFET
SRAM cells are analyzed. Due to the difference in quantiza-
tion effective mass [18]–[20], the effect of quantum confine-
ment varies for different orientations. FinFETs with smaller
quantization effective mass and stronger quantum confine-
ment are more susceptible to fin LER than that with larger
quantization effective mass. Fig. 3 illustrates the degrada-
tion READ/WRITE stability of 6T FinFET SRAM cell due
to fin LER. Fig. 4(a) shows the normalized σRSNM and
μRSNM/σRSNM comparisons among the three types of
FinFET SRAM cells with higher RSNM. The SRAM cell with
(PU,PD,PG) = (100,100,110) shows larger σRSNM than the
(110,100,110) case. Because (100) PU device with stronger
quantum confinement exhibits larger threshold voltage varia-
tion due to fin LER than the (110) PU device, the (100,100,110)
SRAM cell shows larger Vtrip variation [see Fig. 4(b)] and
σRSNM than the (110,100,110) cell. The voltage margin
between Vread,0 and Vtrip is larger in the (110,100,110)
cell than the (100,100,110) one, which indicates that the
μRSNM is larger in the (110,100,110) SRAM cell. Therefore,
the (110,100,110) SRAM cell shows larger μRSNM/σRSNM
than the (100,100,110) one. The (PU,PD,PG) = (110,110,110)
SRAM cell shows higher σRSNM than the (100,100,110) cell.
The (110) NFET with stronger quantum confinement shows
larger threshold voltage variation, due to fin LER, than the (100)
NFET. Therefore, the (110,110,110) SRAM cell with (110) PD
device shows larger Vread,0 variation than the (100,100,110)
cell with (100) PD device [see bottom of Fig. 4(b)]. Vtrip is
determined by the strength ratio between PU PFET and PD
NFET devices. The (110,110,110) cell with (110) PD NFET
and the (100,100,110) cell with (100) PU PFET show compa-
rable Vtrip variation due to stronger quantum confinement in
(110) PD NFET and (100) PU PFET, respectively, [see bottom
of Fig. 4(b)]. Therefore, the (110,110,110) cell with larger
Vread,0 variation and comparable Vtrip variation shows larger
σRSNM than the (100,100,110) cell.

Fig. 5(a) compares the normalized σWSNM and
μWSNM/σWSNM. Vwrite,0 is determined by the voltage
divider effect between PU PFET and PG NFET devices.

Fig. 5. (a) (100,100,110) SRAM cell shows largest μWSNM/σWSNM.
(b) Vwritet,0 and Vtrip variation comparisons considering fin LER.

The (100,100,110) cell with (100) PU PFET shows larger
Vwrite,0 variation and σWSNM than the (110,100,110)
and (110,110,110) cells with (110) PU devices [see
Fig. 5(b)]. Due to its larger voltage margin between Vtrip
and Vwrite,0, the (100,100,110) cell shows larger μWSNM
than the (110,100,110) and (110,110,110) cells. Even
though the (100,100,110) cell has larger σWSNM than the
(110,100,110) and (110,110,110) cells, it still shows larger
μWSNM/σWSNM due to its larger μWSNM.

B. Long-Term Stability/Variability Due to NBTI/PBTI

Another factor of variability is the degradation of transis-
tor parameters over time that also lowers the operating mar-
gin of SRAM cells. The NBTI (for PFET) and PBTI (for
NFET) increase the transistor threshold voltages and reduce the
drive currents with time. The NBTI/PBTI-induced random dis-
crete charge trapping results in additional statistical variation.
Fig. 6(a) and (b) show the time-dependent threshold voltage
increase (|ΔVth|) due to NBTI and PBTI for SiO2/HfO2/TiN
and SiO2 FETs, respectively, and the insets demonstrate the
good calibration results with published data [7], [8]. For
SiO2/HfO2/TiN FETs, PBTI- and NBTI-induced Vth shifts are
comparable. For SiO2 FETs, NBTI-induced |ΔVth| is larger
than PBTI by approximately one order of magnitude for the
poly-gate FinFETs studied. The generated interface traps ac-
count for the increase in device threshold voltage as follows:

|ΔVth(t)| = qNit(t)/Cg

where Nit is the density of interfacial traps and Cg is the gate
capacitance. Based on this equation, the trap density for each
case can be obtained (as shown in Table I). With the average
number of traps determined for specific surface orientation, the
actual number of traps in each device is randomly generated
based on Poisson distribution [21]. Then, each trap is as-
signed to a random location in the channel/gate dielectric inter-
face [23].

In this paper, the degradation in SRAM stability with time
under worst case stress pattern/condition (extreme asymmetry
condition, only PR with NBTI and NL with PBTI) is consid-
ered, as shown in Fig. 7(a). Fig. 7(b) shows that FinFET SRAM
cells with SiO2 gate dielectric suffer from NBTI and show 9.5%
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Fig. 6. (a) NBTI/PBTI-induced Vth shift for SiO2/HfO2/TiN FET. (Inset)
The model-data calibration. (b) BTI-induced Vth shift for the SiO2 gate
dielectric FET.

TABLE I
TRAP DENSITY FOR HIGH-k AND OXIDE GATE DIELECTRICS WITH (100)

AND (110) SURFACE ORIENTATIONS. THE STRESS TIME IS 1 × 108 s,
TEMPERATURE =125 ◦C, AND Vdd = 1 V

Fig. 7. (a) Worst case stress scenario for READ (R) and WRITE (W) stability.
(b) RSNM comparison among curves (a) without BTI, (b) considering NBTI
only, and (c) considering NBTI/PBTI. The stress time is 1 × 108 s at 125 ◦C.

degradation (stress time is 1 × 108 s at 125 ◦C) in RSNM due
to its decreased Vtrip. FinFET SRAM cells with high-k gate
dielectric under the same stress time and temperature suffer
from NBTI/PBTI and show 33.5% degradation in RSNM due to
its increased Vread,0 and decreased Vtrip (see Fig. 7(b) inset).
As shown, the sensitivity of PBTI on RSNM is larger than
NBTI. Fig. 8 shows the impact of NBTI/PBTI-induced |ΔVth|
on the RSNM. The FinFET SRAM cells with (110)-oriented
PU(PD) devices suffer larger NBTI(PBTI) degradation due to

Fig. 8. RSNM degradation due to NBTI/PBTI. (Inset) The RSNM degrada-
tion due to NBTI only.

Fig. 9. (a) WSNM comparison between SRAM cells without BTI and con-
sidering NBTI/PBTI. The WRITE curves of solid and dashed lines overlap with
each other. (b) Slight degradation in WSNM due to NBTI/PBTI under worst
case stress condition. NBTI/PBTI stress time is 1 × 108 s at 125 ◦C.

higher number of interface traps, resulting in larger degradation
in RSNM. In contrast with the significant RSNM degradation
due to NBTI/PBTI, Fig. 9(a) and (b) show that the WSNM only
slightly degrades. In Fig. 7(a), NBTI weakens PR and makes
VR easier to write than VL; therefore, WSNM is mainly deter-
mined by writing VL. The long-term WSNM variability slightly
degrades, as compared with the time-zero WSNM variability.
Fig. 10 shows the long-term RSNM variability considering
LER and NBTI/PBTI-induced Vth variation for high-k and ox-
ide gate dielectric FETs. PBTI dominates the RSNM variation
for high-k metal gate SRAM cells; thus, SRAM cells with (110)
PD devices show larger σRSNM, Vread,0 variation [see bottom
of Fig. 11(a)] and Vtrip variation [see bottom of Fig. 11(b)].
However, for SiO2 FETs, NBTI dominates its RSNM
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Fig. 10. (a) Normalized σRSNM and μRSNM/σRSNM comparison consid-
ering fin LER and NBTI/PBTI-induced variation. The (110,100,110) SRAM
cell (HfO2) shows the largest μRSNM/σRSNM. (b) The (100,100,110)
SRAM cell (SiO2) shows the largest μRSNM/σRSNM.

Fig. 11. (a) (110) PD devices show larger time-dependent Vread,0 variability
degradation and Vread,0 increase. (b) (110) PD devices show larger time-
dependent Vread,0 variability degradation and Vread,0 increase. BTI stress
time is 1 × 108 s at 125 ◦C.

Fig. 12. μRSNM/σRSNM comparison considering short-term (fin LER) and
long-term (fin LER + NBTI/PBTI) variations.

variation; thus, SRAM cells with (110) PU devices show larger
decrease in μRSNM (see Fig. 8 inset) and larger σRSNM [see
Fig. 10(b)]. Therefore, SRAM cells (SiO2 dielectric) with (110)
PU devices show larger decrease in μRSNM/σRSNM than
SRAM cells with (100) PU devices. Fig. 12 demonstrates that
NBTI/PBTI-induced temporal variability in SRAM will change
the optimal choice of FinFET SRAM cells with different gate
stacks in terms of μRSNM/σRSNM.

The fin LER-induced time-zero variability of FinFET SRAM
cell is related to the fin width. FinFET SRAM cells with
smaller fin width and larger quantum confinement will show
larger difference in the time-zero variability among cells with

Fig. 13. (a) Cell leakage components of a 6T SRAM cell. (b) Normalized
cell leakage comparisons of FinFET SRAM cells with high-k and oxide gate
dielectrics. The cell leakages of high-k FinFET SRAM cells show larger
orientation dependence than that of oxide FinFET SRAM cells.

different surface orientation combinations. On the other hand,
FinFET SRAM cells with different surface orientations may
show comparable time-zero variability if wider fin devices with
less quantum confinement are used. However, the NBTI/PBTI-
induced temporal variability still impacts the optimal choice
of FinFET SRAM cells with different surface orientation
combinations.

Fig. 13(a) shows the leakage components of the 6T SRAM
cell. The standby leakage current of the 6T SRAM cell can
be estimated by the sum of all the subthreshold and gate
leakage currents. Fig. 13(b) shows the normalized cell leakage
comparisons of FinFET SRAM cells with oxide and high-k
gate dielectrics. The subthreshold leakage current exponentially
increases with decreasing threshold voltage. Therefore, the
(110) NFET [(100) PFET] with stronger quantum confinement
and larger threshold voltage shows lower subthreshold leakage
current than the (100) NFET [(110) PFET]. Yang et al. [24]
showed that the gate leakage currents are comparable between
the (110) and (100) devices. In other words, the difference in
cell leakages among these FinFET SRAM cells [see Fig. 13(b)]
is mainly due to the difference in the subthreshold leakage
currents. FinFET SRAM cells with high-k gate dielectric show
two orders of magnitude lower gate leakage than that with oxide
gate dielectric. Therefore, the cell leakage currents of high-k
FinFET SRAM cells are mainly from the subthreshold leakage
currents, thus exhibiting larger orientation dependence than that
of oxide FinFET SRAMs. Compared with the (110,110,110)
cell, the (110,100,110) cell with high-k gate dielectric shows
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58% higher cell leakage, whereas the (110,100,110) cell with
oxide gate dielectric shows 25% higher cell leakage.

IV. CONCLUSION

We have investigated the impacts of fin LER and NBTI/PBTI
on the stability and variability of the 6T FinFET SRAM cells
with high-k and oxide gate dielectrics, respectively. The 3-D
mixed-mode simulations together with atomistic Monte Carlo
simulations were used to investigate the variability due to
fin LER and NBTI/PBTI-induced random discrete traps. The
time-dependent Vth drift and variation due to NBTI/PBTI de-
graded the stability and variability of RSNM (significantly) and
WSNM (slightly). Our paper has indicated that the optimum
FinFET SRAM design had to consider the combined effects of
the intrinsic process variability, surface orientation, the specific
gate dielectric used, and the temporal variability introduced by
NBTI/PBTI.
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