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energy. The discretization in terms of pressure nodal finite elements gives rise to a rational
eigenvalue problem. Numerical evidence shows that there are no spurious eigenmodes for
such discretization and also confirms that the discretization based on nodal pressures is
much more efficient than that based on Raviart-Thomas finite elements for the displace-
ment field. The trimmed linearization method is used to linearize the associated rational
Finite elements eigenvalue problem into a generalized eigenvalue problem (GEP) of the form .Ax = iBx.
Rational eigenvalue problem For solving the GEP we apply Arnoldi algorithm to two different types of single matrices
Trimmed linearization B! Aand AB~'. Numerical accuracy shows that the application of Arnoldi on .48~ is better
Arnoldi algorithm than that on B! A.
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1. Introduction

Efficient and correct computation of the damped vibration modes generated by an inviscid, compressible, barotropic fluid
in a cavity with absorbing walls is an important issue when for example one is interested in decreasing the level of noise in
aircraft or cars. In general, one needs first a mathematical model consisted of partial differential equations with proper
boundary and initial conditions. After this first phase of mathematical formulation, the next phase is to find efficient meth-
ods to compute the modes. This phase involves correct discretization of the mathematical formulation and computation of
large scale nonlinear eigenvalue problems, be it quadratic, cubic, or even rational. Choosing correct discretization schemes to
avoid spurious modes and finding efficient methods to locate eigenvalues that lie in the interior of the spectrum are among
important issues to deal with. In the mathematical formulation phase, we have interaction between the fluid and structure
(cavity walls), and the displacement variable natural for the solid could be chosen for the fluid as well so that compatibility
and equilibrium (cf. (2.3) and (2.7) below) through the fluid-solid interface can be satisfied automatically. A drawback lurk-
ing behind the displacement formulation is the possible presence of nonphysical zero-frequency spurious circulation modes,
if one is not careful in choosing the discretization scheme associated with the underlying partial differential system. For
example discretization by standard finite elements or finite differences often exhibit such a phenomenon. Approaches cir-
cumventing this drawback can be found in [2,8,11,12,29], among others.
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One of the discretizations we will be using in this paper is the edge-based or Raviart-Thomas finite elements for the dis-
placement field, following [3,5]. The main concerns in [3,19] are pure mathematical issues of proving that their numerical
approximation is free of spurious modes and has second order convergence rate. Efficient computation of the modes is
not a concern, as they solved the associated quadratic eigenvalue problem by the standard eigensolver eigs from Matlab that
employs Arnoldi iterations.

In this paper our primary concern is to develop and study efficient eigensolvers for the spectral approximation of the
damped vibration modes. Two approximations are investigated, one constructed from the edge-based displacement space
(cf. Eq. (2.11) below), which results in quadratic eigenvalue problems (QEPs) and one from the node-based pressure space
(cf. Eq. (2.12)), which results in rational eigenvalues problems (REPs). Our first approximation is identical to that in [3,5],
but we further develop efficient methods for solving the associated QEP. However, we show in Section 2 that this problem
has a large zero-frequency or null space and this fact may influence the efficiency of Arnoldi-type algorithms. Motivated by
this, we extensively explore the second approximation of using the pressure space, which has a much smaller eigenvalue
system to solve and which has a one dimensional null space. Instead of a QEP, the associated eigenvalue problem is a rational
one having the form R(1)p = 0, where R(}) := 2*M + a;ﬁ/A + K is the rational 2-matrix with coefficient matrices M, A and K.
While there is an extensive literature on QEPs problems [26], REPs are much less studied [25,27,28]. Although on the surface
the rational R(1)p = 0 could be turned into a cubic one by multiplying out the denominator, we will preserve its rational
structure and design efficient methods to numerically solve it in Section 3.

The organization of this paper is as follows. We describe the underlying model fluid-solid problem of this paper in Section
2, where the edge-based displacement approximation and the node-based pressure approximation are derived. We pay par-
ticular attention to identifying the dimension of the associated null space, which may influence performance of the numer-
ical method introduced later. In Section 3, we use the general strategy of turning a nonlinear eigenvalue problem into a
standard one by some sort of linearization techniques. We then apply the Arnoldi type algorithms to solve it. For the two
nonlinear eigenvalue problems, the QEP is as usual turned into a generalized eigenvalue problem (GEP), from which two
types of standard eigenvalue problems (SEP) (3.7.1) and (3.7.2) are derived. The REP is trimmed-linearized into two types
of three by three block SEPs (3.19.1) and (3.19.2). The important issue of residual error bound analysis is addressed here.
We then apply Arnoldi method with Schur-restarting described in Section 4 to the resulting SEPs. The important issues of
stopping criteria and computational costs for applying Arnoldi method to the QEP and REP are also derived in this section.
In Section 5, we present numerical results and evaluate the merits of the schemes involved where we also demonstrate the
role of normwise scaling in preprocessing the eigenvalue problems. Conclusions are included in Section 6.

2. Model problem

Let us consider a simple model of a rigid container filled with an inviscid compressible barotropic fluid and its acoustic
energy is absorbed through a thin layer of a viscoelastic material applied to some or all of its walls. For simplicity we assume
the fluid domain © c R" (n =2 or 3) to be polyhedral, and the boundary 0Q = I'4 U I'g, where the absorbing boundary I, is
the union of all the different faces of Q and is covered by damping material. The rigid boundary Ik is the remaining part of I".
An example of the setup is in Fig. 1(i) on Section 5, where the top boundary is absorbing and the remaining boundary is rigid.

The dynamic variables of our model problem are the fluid pressure P and the displacement field U, which satisfy ([6,15])

pa;—:—&-VP 0 in Q, (2.1)
P=—-pc?divU in Q, (2.2)
a=1 0() m
absorbing wall I,
b=0.75m Q
77
n
FR
rigid walls
(i) Fluid in a cavity with one absorbing wall. (ii) Initial mesh.

Fig. 1. Fluid in a cavity with one absorbing wall and initial mesh.
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P:<OCU'H+[))%-“> on Iy, (2.3)

U.-n=0 on % (2.4)

Here p is the fluid density, c, the acoustic speed, and n, the unit outer normal vector along 9Q. At the absorbing boundary
(2.3) indicates that the pressure is balanced by the effects of the viscous damping (the g term) and the elastic behavior (the o
term). We assume the coefficients o« and f are given positive constants.

To look for the damped vibration modes we assume (2.1)-(2.4) has complex solution of the form U(x,t) = e*u(x) and
P(x,t) = e*p(x). This leads to a problem of finding . € C,u: Q — C"and p: Q — C, (u,p) # (0,0) such that

p2u+Vp=0 inQ,

p=(x+ip)u-n on I,

(
p=—-pctdivu in Q, (
(
u-n=0 on [} (

NN NN
0 N Y U

)
)
)
)

The boundary condition (2.7) makes this eigenvalue problem nonlinear. For each damped vibration mode, @ :=ImJ/ is the
vibration angular frequency and Re/ the decay rate. In practice, we select a range of w values and are interested in the least
decaying modes in this range. We next describe the natural variational formulation of the above problem on which the
numerical approximation will be based.

Let

V:={veH(div,Q) :v-nel?HQ) and v-n=0on Ik}
Here we employ standard Sobolev spaces notation. For example, H( div,€2) stands for the space of all L? vector functions v on
Q with L? integrable divergence.
Testing (2.5) by v € V and integrating by parts, we obtain a variational formulation of problem (2.5)-(2.8) involving only
the displacement variable: Find . € C and wu € V,u# 0, such that

/pc2 divudivv+/ ou-nv-n+ 2 /fu~m7~n+iz/pu~\":0 Vvev. (2.9)
Q I'a Q

I'a
(We use the symbol V to mean ‘for all’ throughout the paper.) This is a quadratic eigenvalue problem. Note that =0 is an
eigenvalue and the dimension of its eigenspace

K:={ueV:divu=0inQ and u-n=0ondQ}

is infinity. All nonzero eigenvalues have finite multiplicity (the dimension of the eigenspace is finite) [4]. It is shown in [4]
that all the other solutions of (2.9), the decay rate is strictly negative. That is, if an eigenpair0 # A€ C and 0#ucVisa
solution of problem (2.9) then Re/ < 0.
Alternatively we can derive a variational formulation in terms of the pressure: Find 4 € C and p € H'() such that
22
A

_ _ R ;
. z =0 HY(Q). 2.10
/QVP Vq+a+w./mppq+cz/gpq VqeH (Q) (2.10)

However, in this case the eigenvalue problem is rational, which is rarely studied compared with linear and quadratic eigen-
value problems. Note that in contrast to the displacement formulation, the eigenspace corresponding to 2 =0 is now one
dimensional. Thus this formulation has a much smaller null space or kernel, which may be more stable and efficient when
used in conjunction with projection-like spectral approximation methods.

2.1. Spectral approximation

We now turn to the finite element methods for approximating the solutions of the quadratic eigenvalue problem (2.9)
and the rational eigenvalue problem (2.10). Spurious modes are usually present when standard finite elements are used
in a displacement formulation. However Bermidez et al. [4] successfully demonstrated that the spurious modes can be
avoided by using the lowest order Raviart-Thomas elements in R",n = 2,3 (see, for instance, [7,18]). For simplicity we will
consider only the two dimensional case. Let {7} be a regular family of triangulations of Q2 indexed by h, the maximum
diameter of the elements. Let

Vi ={vy, € Hdiv,Q) : V4| e Ppg@PoX VTeT, and v,-n=0o0nTIR}CV
where n=2 and P, denotes the set of polynomials of degree at most k. Thus locally v, takes the form (a+sx,b+sy)" (T

denotes transpose and x = (x,y)"). The discrete problem associated with (2.9) is: Find . € C and u;, € V},,u;, # 0, such that

/pc2 div uy divvh+/ oy NV, M+ A /Suh-m'rh-n+},2/puh-\7,,:07 YV Vi € Vp. (2.11)
Q I's Q

I’y
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Theorem 1. The dimension of the zero eigenspace &y associated with (2.11) equals the number of interior nodes in the
triangulation.

Proof. Setting v, =u;, and 2=0 in (2.11), we see that
divu,=00on Q and u,-n=0on oQ.

Since up = (a+sx,b+sy)" on T e T}, the divergence free condition implies that uy, is a constant vector (a,b)" on T. By direct
computation, we see that there exists a linear polynomial /7 such that

a.

Ny Oy _
= b and y

Let n= (ny,n,)" be a unit normal to an edge e of T, so t= (—n,,n;)" is a unit tangent vector to e. We see that

Ny
u, -n=Vyr - t=——1—¢.
h Yr ot
So if an edge e is common to T; and T, then in general y;, and yr, differ by a constant only by the continuity of u,, - n across e.
At an interior node N;, we can assign a common value for all /7 at that node. Here T are all triangles sharing N; as the common
node. We then spread this defining process outward to all Q using the induced values on other nodes. Consequently, ¥ is

continuous piecewise linear over Q. Let V* := (—%,%)T and define

V'S, = {V'¥,: ¥, is continuous piecewise linear and vanishes on the boundary}.
Thus we have just shown the zero eigenspace & is contained VS, and the opposite inclusion is also easily checked. Hence
&= V'S
We now find the dimension of V*S. Let N be the number of interior nodes and let ¥, j = 1,...,N, be the nodal basis functions
such that ¥j(Ny) = 6. The linear independence of ¥)’s is preserved by the perp-gradient operation. In fact, suppose
Zj'\’:]cjvL ¥; = 0. Then this implies Zj’\’:lcj ¥; = ¢ for some constant c. Hence ¢; = ¢ by the condition ¥j(Ni) = d;;. Consequently,
c(35%; — 1) = 0. But we know ZjN:l ¥; # 1 due to the vanishing boundary condition. Thus ¢; = c = 0 and we conclude that the
dimension of the zero eigenspace dim&, = dimV"S, equals the number of interior nodes in the mesh. O

Define the conforming P, finite element space
Hy:={p, e H(Q):pplreP1 Y TeT}.

This is the subspace of H'(£2) consisted of continuous piecewise linears. The alternative discrete problem in terms of the
approximate pressure field is: Find 4 € C and pj, € H, such that

_ 22 2 _
/QVph-th +m/“pphqn +C—2/Qphqh:0 V g, € Hp. (2.12)

Letting gi, = p, and A =0 in (2.12) we can easily see that the dimension of the zero eigenspace in this case is one, which is the
same as the original problem (2.10).

Again we see that the pressure formulation has a much smaller null space than the displacement formulation. Also the
number of unknowns is much smaller. Thus the pressure formulation turns out to be a very good alternative, once in addi-
tion we show in the remaining sections that its associated eigenvalue problem can be efficiently solved. A minor remark is in
order here.

Remark 2.1. Suppose an eigenpair (4,pn),4 # 0 has been computed, what if, in addition, one wants to know a corresponding
displacement approximation u,? One must not find u, by solving an additional system linear equations again so as to
maintain the advantage of the pressure formulation. It should be given by a simple formula. A naive way is to use the relation
(2.5) to evaluate a uy, but this would be ill conceived since the computed displacement would be piecewise constant.
Consequently, V - u;, =0, which certainly does not approximate (2.6). Fortunately, a general principle for such a problem
(recovery of uy, from the pressure approximation py) has been provided in [9] where one can obtain an accurate u; in the
Raviart-Thomas space by a simple evaluation formula which is a modification of the above naive formula.

3. Linearization of nonlinear eigenvalue problems

In this section we start to address the computational issues related to the displacement approximation (2.11) and the
pressure approximation (2.12).
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3.1. Linearization of quadratic eigenvalue problem

Suppose the total number of interior and absorbing edges is n;. Let {qu}” denote the cardinal basis of V;, so that on the
edge ej, ¢; has the unit normal flux and zero normal flux on the remaining n; — 1 edges. That is, / ¢; -mido = ;. Foru, € Vy,
we write u, = Z ", u;¢; and denote u = [uy, - } Note that the unknown vector u contains normal fluxes in its compo-
nents. Then, the discrete problem (2.11) can be expressed as the following QEP:

Q(A)u = 22Myu + (o0 + 2f)Au + Ku = 0, (3.1)

where M, = [Mj] and K, = [Kj) are mass and stiffness matrices, respectively, and A, = [Aj] is used to describe the effect of the
absorbing wall. Here

Mj = / poi- ¢y, Kij= /PCZ div ¢; div ¢, A= / ¢;-ng; -, (3.2)
Ja Ja Jry

fori,j=1,...,n;. For this problem, we are only interested in eigenvalues that are located in the interior of the spectrum. Sup-
pose that the eigenvalues near ¢ are of interest. Accordingly, the QEP (3.1) is shifted into

(;BML, + Dy + Ru>u =0 (3.3)
with =7 — ¢ and

M, = My, Dy = 206M, + pAs, Ku= 0*My + (¢ + 6B)Ay + Ky (3.4)

On the one hand, one can numerically solve (3.3) without transforming it further. Among such direct methods we mention
the SOAR (second-order Arnoldi) algorithm [1] and the Jacobi-Davidson algorithm applied to polynomial eigenvalue prob-
lems [21]. On the other hand, it is more common to transform or linearize (3.3) into a SEP [26]. In this paper, we let

|0 ~M, _[r o
Ay = L b, } By = [0 R, (3.5)
and linearize (3.3) into the GEP
AX = lBux with x = | “HMas | _ {v} . (3.6)
n u u

The matrix K, in (3.5) is nonsingular because the shift value ¢ is not an eigenvalue of (3.1). Furthermore, the GEP (3.6) can
then be transformed into two types of SEPs of the forms B;'A,x = p~'x and A,B,'y = u'y, respectively, where y = B,X.
Therefore, from (3.5) and (3.6) we have

wsmm wall]-[8 24l

and

_M.K-1 -
(Q — SEP2) AuBgl{v}: 0 ~M.K, {v}:l{v} w=Ku. (3.7.2)
wl |1 bkt |lw] rlw

Note that the SEPs of (3.7.1) and (3.7.2) derived by the QEP in (3.3), are called Q-SEP1 and Q-SEP2, respectively. The standard
Arnoldi method can then be applied to solve Q-SEPs, and the details will be given in Section 4.

3.2. Trimmed linearization method for rational eigenvalue problem

Let {l//j};zl be a nodal basis of Hy. For p, € Hj, we write p, = Z}lejn,bj and denote p = [p,,--- ,an}T. Then, the discrete
problem (2.12) can be written as the following REP:

22 22
R()p = ( My +Kp +——— i )p 0, (3.8)

where M, = [M}] and K, = [K}}] are mass and stiffness matrices, respectively, and A, = [Af] describes the effect of the absorb-
ing wall. Here,

M = /Q Vi, K= / Vi Vi, Aj= /r ) P (3.9)

fori,j=1,...,n
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To solve REP (3.8), one approach is to multiply equation (3.8) by the scalar A + o and expand it into a cubic polynomial
eigenvalue problem, and then solve it by Jacobi-Davidson method [14]. An alternative approach is to treat (3.8) as nonlinear
eigenvalue problem and solve it by a nonlinear eigensolver, such as Newton’s method, nonlinear Arnoldi method, or nonlin-
ear Jacobi-Davidson method [20,27,28]. Recently, a trimmed linearization is proposed in [25] which linearizes (3.8) into a
GEP so that the standard Arnoldi method can be applied. We introduce the trimmed linearization below.

Given a shift value ¢. With y= 1 — g, the rational A-matrix R(1) in (3.8) can be rewritten as

(i—0+0)
(A—oc+o)fp+a ’
(h—0)* +2(i—0)0 + 02

= 5 M, + K, +

- 2
R() = %Mp +K, +
(i—0)* +2(i—0)0 + 02

(A—0)B+0B+a b
1 20 a? W+ 2uo + a?
_2(L <0 9 TepoT O
=U (cZM”>+'u(c2 Mp>+(czM,,+I<p>+ B+ afto Ay

() (2w < L (2 1420/ s 0?4
_M{<C2Mp>+H<C2Mp>+'uz Csz+I<p + 1B+ (G +2) Ayl (3.10)

Setting v = 1/y, the rational term in (3.10) can be simplified into the following form by applying the long division

V2 +20v+1  o? P 02/3+20av+ 2 ((ep+a) (0'/)’+oc)4v -
B/v+(cf+a) of+o (0 + )’ (6B +a) o2 o2 ’

This implies that

1 0?2 0? 20 02f+ 20 1 2
R() =— v2<—2Mp+1<p+—Ap>+v 200, TET20%, ) (e %4,
v c of+o c (Gf + o) c (f + o)

- ((aﬁ; ), (Gﬁajﬁ“)4 v) ]Ap] = {2, + Dy + Ky — 12 (9 — o) 'LRY, (3.11)
where
1\71p—cl—2 p—i—ﬁf\p, (3.12)
D, =20 M, %Apv (3.13)
K, :f—jMp +K, +%Ap, (3.14)
9 =002 D - _7((;;;;;)4 (3.15)

and LpRpT = A, is the full-rank decomposition of A, with L,,R, € R™*™, Introducing an auxiliary vector

a=(9-ou") R}p, (3.16)
the REP in (3.8) can be reformulated as

(12Mp + Dy + K, )P — 2L,q = 0. (3.17)
Using (3.16) and (3.17), we get the GEP

0 -M, L, ) I, 0 0O :
Ax= I, -D, 0 [x==|0 K, 0 |[x=—Bx, (3.18)
0 —R, Uln 0 0 ol

where X = [((M”IN(p + f)p)p)T,pT,qT]T. As before, the matrix kp in (3.14) is nonsingular because the shift value ¢ is not an
eigenvalue of (3.8). As in (3.7.1) and (3.7.2), the GEP (3.18) can then be, respectively, transformed into the following two
types of the SEPs of the forms B,;‘A,,x = u'x and ApBljly = 1~ 'y where y = B,x. Consequently, we have
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. o 1
(R—SEP1) B,'Ax=|K,' -K,'D, 0 x:ﬁx, (3.19.1)
and

(R—SEP2) A,B,'y=[I,, —D,K;' 0 y:%y, Y = Byx. (3.19.2)
0 -RK,' o'y

Note that the SEPs of (3.19.1) and (3.19.2) derived by the REP in (3.17) are called R-SEP1 and R-SEP2, respectively.
3.3. Error analysis

In this subsection, we will discuss residuals of QEP (3.1) and REP (3.8) by using linearizations (3.7.1) and (3.19.1),
respectively.

We first derive residual bounds of approximate eigenpairs for QEP (3.1) by by using linearizations Q-SEP1 and Q-SEP2,
respectively. Let (17!, [v],u{]") be an approximate eigenpair of (3.7.1) and [f],,f;,]" be the associated residual vector. That

1S,
|:f1]:| | 0 —1\7Iu
fi, R;l *kf,lbu

It follows that

|:V1:| _l|:V1:| _l *VlfﬂlMuul
wl W lw] o | K (v — g Dyuy — Kawy) |

M%Muul + ,lllﬁulll + Ky = W (=vi — i fin) + v — ,u]kule =~ - ,u]kufll

Therefore, with /; = y; + o and from (3.1) we have

1QU)w | _ ([t Mutty + pty Doty + Kuwi|| _ gty P[] + 1 [ Kol
] ] ]

(3.20)

On the other hand, let (13", [v],w;]") be an approximate eigenpair of (3.7.2) and [f;,,f,,]" be the associated residual vector.
That is,

{fm} |0 ~M,K;! {vz} 1 {Vz} - —M,K;'w, AL
f22 [ *EURJ] Wyl KW Vo — 5uRJIWZ *uizwz .
It follows that

FEMUK, W) + 1 Dul W) + W = (=¥ = [f01) + V2 — o2 = — 3o — (1.

Letting u, = K;'w,, with 4, = i, + ¢ and from (3.1) we have,

1QU) s | _ [[#3Muttz + 1y Dutty + Kutty|| _ |11 [[f21]] + o122
2] 2] Juz]

Now, we derive residual bounds of approximate eigenpairs for REP (3.8) by using linearizations R-SEP1 and R-SEP2, respec-
tively. Let (17", [s7,P;,q]]") be an approximate eigenpair of (3.19.1) and [g],,8],,87;] " be the associated residual vector. That
is,

(3.21)

g1 0 _Mp L, S1 1 S1

8| = Kl?l _K;]Dp 0 P _,lT P
1

813 0 —Q’lR; 0 Wl | Lt q,

This implies that

S1 = — 4 Mppy + p L0y — 1811, (3.22)
. o= 1
g = K,'si —K,'Dyp, “ P (3.23)
1
- -1 _
q = (o' -1) (g13 +0 1RpTP1)- (3.24)

Substituting (3.24) into (3.22), s; can be represented by
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~ ~ B ~
1=~ Mppy + 1 (10710~ 1) (Lpr +0 1LpR;P1> — 18- (3.25)
Substituting (3.25) into (3.23), from (3.11) and (3.15) we get

3 4
(op+0a)y (of+a) LpR;p1

o? o2 By

R(o + py)py = IM%MPPI + Uy 510131 + kppl -1

~ 1\ !
= — 158 — 1 Kp8i — 14 (Gﬁ[:- " + /71> Lyg:3

which implies that

IR(g + )P |l <
[Ip1]] Pyl

2(_F 1 B L 3.26
My al}Hﬁ#1 Lol NIl ¢ (3.26)

On the other hand, let (1,1, [s;,t;,q;]") be an approximate eigenpair of (3.19.2) and [g;,,81,,85;] " be the associated residual
vector. That is,

{ul Pligall + 111Kl lIgiall +

g1 0 —MyK,' oL, |rs, L [®
8n| = Inz 7DPK1;] 0 L|—|t
Tr-1 1 ta
823 0 —RK," o'Wy 9z 9,
This implies that
o 1
g1 = -M,K,'"t; +07'L,q, — H—sz, (3.27)
2
- 1
2= DK, 't +—t, + g5, (3.28)
Ky
1\ s
-1, T -1
Q= <Q ’9_L72) (Rp K,'t, +g23). (3.29)

Substituting (3.28) and (3.29) into (3.27), we have
~ = =~ 5 1,1 ol _1y\—1
IEMpK, 6 + (DKt + 6 — 15 (9 — 0pty") LR Kt = —5851 — 18 + 15 (0 — 015") Lpos.
Letting p, = IN(;ltz, from (3.11) we get

3 4
(op+0a)y (of+a) LpR;PZ

o o2 B,

R(O + [1,)P; = [EMyP, + 1, DyPy + Kby — 13

e 2 % B 1\
= —H282 ﬂzg22+ﬂz(o_ﬁ+a)4 <Jﬁ+oc+,u2> Ly8,s.

Hence,

[R(0 + 1), |l < 1 2
T . X + +
P, |l Y 121711821 1 + 112111822

2 P ( B l)q
B st af \ap o

||L,,||g23|}. (3.30)

Remark 3.1. In order to check the tightness of upper bounds in (3.20) and (3.21), as well as, (3.26) and (3.30) for residuals,
respectively, we refer to the coefficient matrices generated in Example 1 of Section 5. For (2.9) we adopt the data as in [4] by
setting p =1 kg/m>, c=340m/s, « =5 x 10* N/m?, and § =200 Ns/m>. In addition, we choose ¢ = —25 + 60071(1 = v/—1) as
the shift value. Then

(i) from (3.2), the element mass and stiffness matrices are

R 2 -10 2 2 2V2
sP|-1 2 0] pct| 2 2 2V2 .
0 0 2 2V2 2V2 4

respectively. Hence, by (3.4) the infinity norm of K, can be estimated by ||K,||.. = [|K.|. = O(pc?) = O(10°). From(3.20) and
(3.21), we conclude that the upper bound for the residual of the approximate eigenpair (4, + ¢,u;) of (3.1) by solving Q-SEP1
is larger than that of the approximate eigenpair (u, + g,u;) of (3.1) by solving Q-SEP2.
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Fig. 2. The distribution of the ten desired eigenvalues Z1,...,410.
(ii) From (3.9), the element mass and stiffness matrices are
12 2 11 1 -1/2 -1/2
>4 1 2 1], -1/2 1/2 0o |,
11 2 -1/2 0 1/2

respectively. Hence, by (3.14) we have that Hkaoc ~ ||Kpll = O(1). If the eigenvalue 2 is one of the desired eigenvalues in
Fig. 2, then with u =1 — o we have

of B T\
“<0ﬂ+a+u>

2 9B (ﬁ 1)*
“(aﬁw)“ 6/)’+fx+u

Clearly, from (3.26) and (3.30) we conclude that the upper bound for the residual of the approximate eigenpair (¢ + p1,p1) of
REP (3.8) by solving R-SEP1 is larger than that of (¢ + p,,p,) of (3.8) by solving R-SEP2.

4x10" < <3.1x 10,

0.001 < <0.8.

4. Arnoldi method with schur-restarting

The Arnoldi method is the most popular method for solving large sparse SEPs:£x = /x. In Arnoldi process, an orthonormal
matrix Vi.q is generated to satisfy

LV = ViHi + M1 xVia g, 4.1)

where H, € R¥ is upper Hessenberg. If the dimension of the Krylov subspace span {V,} is larger than a certain value, then
the process of Arnoldi decomposition will be restarted.

For the restarting process, we can use an implicit restart scheme [17,22]. The package ARPACK[16] includes a very suc-
cessful implementation of the implicitly restarted Arnoldi algorithm. It has been used by many engineering fields and re-
mains a popular choice for solving eigenvalue problems. However, these implicitly restart type schemes may suffer from
numerical instability due to rounding errors. Stewart proposed the Krylov-Schur method [13,23,24] that relaxes the need
to preserve the structure of the Arnoldi decomposition and therefore ease the complications of the purging and deflating.

We state the Schur-restarting scheme as follows. Let

o wl 3[4

be a Schur decomposition of H, where T,,, and T, are upper triangular, and the eigenvalues of T,, are of interest. Here and
hereafter U* denotes the conjugate transpose of the matrix U. Substituting (4.2) into (4.1), we see that
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Tn Ty

EOAUn U =WalUn UD[ g

} heavier (€] [Un UL),

which implies that

LV = VT + Vi €, (4.3)
where \7,,, = ViUnm, Vi1 = Ve and t;, = hy,q k@) Un. Let Q; be a Householder matrix with

tQ, =te,.
Then (4.3) can be rewritten as

L(VinQ1) = (VmQ1)(QiTnQ1) + TVm.rey. (4.4)

The matrix Q;T»Q, can be reduced to a new Hessenberg matrix H,. by using Householder matrices Q; fori= 2,...,m — 1 with
Q1 Q5(QTwQ1)Qz - Quy = Hm, €/ Q- Qg =y,

Multiplying (4.4) by Q;, i=2,...,m — 1, a new Arnoldi decomposition of order m
LV =VpHp + tViae]

is obtained where V,, := V,Q; - - - Q,,_; and the Arnoldi process can be applied to generate it to order k in (4.1). One repeats
the above process until the desired eigenvalues are convergent. The process is summarized in Algorithm 1.

Algorithm 1. Arnoldi method with Schur-restarting for solving £x = /x

Input: £: coefficient matrix, tol,: tolerance for convergence, ry.x: maximum number of Schur-restartings.
Output: The desired m eigenpairs.
1: Build an initial Arnoldi decomposition of order m as in (4.1) and set r= 0.

2: restart
3: Extend Arnoldi decomposition of order m to order k= m+/¢ and set r=r+1.
4 Compute all Ritz pairs (u;!,z;) with Hyz; = y;'z;,i=1,...,k and sorting Ritz values so that{(y1, z1),...,(ttm.Zm)}
are wanted.
5: fori=1,...,m
6: Check convergence by |hy, 1 lle;z]| < tol..
7: end for
8: if (Not all m desired eigenvalues are convergent andr < ) then
9: Compute the Schur decomposition of Hy as in (4.2), where the eigenvalues of T;, are of interest.
10: Set Vi := ViU, Vine1 := Vieq and t, == hy,q k@) U
11: Compute Householder transformation Q; such that t;,Q; = te/.
12: Reduce QT Q; to a new Hessenberg matrix H,,, by using Householder transformations Q; fori=2,...,m — 1.
13: Set Vi := VinQ1- - -Qm_1 and hpe1;m = T to get the new Arnoldi decomposition with order m:
LV =VaHy + hm+1‘mvm+1e;- (4.5)
14: end if

15: until (desired m eigenpairs are convergent or r > T'max)

Now, we will apply the Algorithm 1 to solve QEP (3.1) and REP (3.8), respectively, by setting £ to be the coefficient matri-
ces in (3.7.1) and (3.19.1), respectively.

4.1. Stopping criteria for QEPs and REPs

Let (1 !,z) be a Ritz pair and satisfy Hiz = 'z From (4.1) and Q-SEP1 in (3.7.1) we have
0 ~M, {Vm } 1 {Vm } I:Vk+1,1 } .
- % zZ=— z+h ez, 4.6
[Kul —KulDu} Vie Vi R Ry e “8)

where V), = {g’“ } and vy, = {:’;*” } are partitioned with compatible sizes. Using the first equation of (4.6), we can elim-
k2 +1.2

inate Vi4z in the second equation and get

QU (@M + i + Kowr | [illheerllefzlc
- - =q,(1), 47
T ] | @) 47)
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where w; =Vjpz, A1=pu+o0 and {; = |[4vii11 + IN(ukaQZH. Without ambiguity by using the same notations as above in Algo-
rithm 1, from (4.1) and Q-SEP2 in (3.7.2) we also have

0 —MK [V 1% v
M.K, [ /1} z:l{ kl}Z—i-th,k{ l<+1,1}e;z
I -D,K,' | Vi K Vi Vii12

IQ(Aua||  [(12My + uDy + K)o || |11 ilefz|Cr _
_ - = q, (), 48
Tl o] Tl % () (48)

and

where u, = I?;,lvkzz, J=p+0o and {; = ||4Vki11 + Vie12]- Therefore, q;(p) in(4.7) and g»(u) in (4.8), respectively, can be
used as stopping criteria for residuals while Algorithm 1 is applied to solved QEPs(3.1).

Similarly, we can apply Algorithm 1 to solve REPs(3.8). As above, we let (u~!,z) be a Ritz pair and satisfy H,z = u~'z. From
(4.1), and R-SEP1, R-SEP2 in (3.19.1) we have

[0 -M, L, Via 1 Via V1,1
K,' -K,'D, 0 Vig |2= m Via |Z+ hiari | Vie2 | €2 (4.9)
L0 0 'Ry @ 'In | Vs Vis Vir13
and
[0 MK 0Ly Ty 1 Via Vier1,1
I, —DyK,! 0 Vie |2= T Vig |Z+ hiii | Vier2 | €2, (4.10)
L0 -RIK," 0 'ln Vis Vig Vi:13

where Vi, = [V, Vi, Vis]™ and Vieq = [V, 11, V{12, Vi, 5] are partitioned with compatible sizes. Using the first and the
third equations of (4.9) and (4.10), we can eliminate V;z and V5z in the second equation of (4.9) and (4.10), respectively,
and get

IRl _ [[11#2Mp + 1Dy + Ky — 12200 — o) Aplp || _ |11l €[

X o W @10
where p; =Vipz, 2= p+ 0 and & = [|[(tVii1 1 + KpViy12 — %vakﬂs\\v and
RG)psll | [FMp + 1Dy + Ky — 1200 = o) Ao Pall szl
ol ol = el W (412
where p, = K;lvkzz, A=pu+0oand & = ||UVii1 + Vigi2 — W‘ﬁngvm_g,H. Therefore, r1(u) in(4.11) and rp(x) in (4.12) can be

used as stopping criteria for residuals while Algorithm 1 is applied to solve REPs (3.8).
Applying Algorithm 1 to solve QEPs (3.1) and REPs (3.8) are summarized in Algorithms 2 and 3, respectively.

Algorithm 2. Arnoldi method with Schur-restarting for solving QEP in (3.1)

Input: Coefficient matrices M,, D,, and K, parameters c, « and g, o: shift value, toly: tolerance for convergence, rmax:
maximum number of Schur-restartings.
Output: The desired eigenpairs (4, w;) fori=1,...,m.

1: Construct matrices My, D, and K, defined in (3.4) and set r = 0.

2: Compute initial Arnoldi decomposition in Line 1 of Algorithm 1 with £ in Q-SEP1 or Q-SEP2.
3: restart

4: Do the steps in Lines 3 and 4 of Algorithm 1.

5. fori=1,....mdo

6: Compute () = (|0 + ' PIIMull + |t + (& + 14 DBl Aull + [ Kul))-

7: Check convergence of QEP by q,(u;)/ (1) < tolg with q,(u;) in (4.7) or (4.8),¢=1,2.
8: end for

9: if (Not all m desired eigenvalues are convergent and r < rpy.x) then

10: Do the Schur-restarting in Lines 9-13 of Algorithm 1.

11: end if

12: until (desire m eigenpairs are convergent or r > r'yax)

13: Set i =0+ u;! and u; =V, z; fori=1,...,m.

14: if Q-SEP2 is solved then

15: u,-(—I~<;1u,-,i:1,...,m.

16: end if
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Algorithm 3. Arnoldi method with Schur-restarting for solving REP in (3.8)

Input: Coefficient matrices M, K, and A, parameters ¢, « and f, o: shift value, tolg: tolerance for convergence, rmax:
maximum number of Schur-restartings.
Output: The desired eigenpairs (/;p;) for i = ,m.

1: Construct matrices Mp Dp and Kp deﬁned in (3 12), (3.13) and (3.14), respectively, and set r= 0.
2: Compute the full-rank decomposition of A,:L,R, = A,.

3: Compute initial Arnoldi decomposition in Line 1 of Algorithm 1 with £ in R-SEP1 or R-SEP2.

4: restart

5: Do the steps in Lines 3 and 4 of Algorithm 1.

6: fori=1,...,mdo

7: Compute y(t;) = | “4 " (|IMp| + K| + \%”\HAPH

8: Check convergence by rd w) () < tolg with r(y;) in (4.11) or(4.12),6 = 1,2.

9: end for

10: if (Not all m desired eigenvalues are convergent and r < rp.x) then
11: Do the Schur-restarting in Lines 9-13 of Algorithm 1.

12: end if

13: until (desire m eigenpairs are convergent oOr r > I'max)

14: Set =0+ ' and pi=Vip zi fori=1,...,m.

15: if R-SEP2 is solved then

16: p—K,'pii=1,...,m

17: end if

4.2. Computational costs

In this subsection, we compare the computational costs of the jth Arnoldi step of Algorithm 1 for solving Q-SEPs (3.7.1)
and R-SEPs (3.19.1), respectively. This is of general interest, because a comparison of the CPU times is sensible only if the
number of outer iterations of Algorithm 2 or Algorithm 3 is the same for each algorithm. From (4.5), the unit vector vj.;
is generated by

J
LVj = hyivi+ hja Vi
i-1
where hj; =viLv; fori=1,...,j and hj,1; = |£v; — S hj;vill,. For convenience, we let v; = [vfl,vfz} withv; e C",i=1,2.
The matrix-vector product £v; in Algorithm 2 for solvmg QEP (3.1) by Q-SEP1 (3.7.1) and Q-SEP2 (3.7.2) can be, respectively,
represented by

—M,V;
B A, = {N o
Ky (vt = Duvja)

-M
AHB;,le = |: 'igu :|
vjl - Dugu

with g, = K 71vj,. This implies that Algorithm 2 for Q-SEP1 and Q-SEP2 needs the same computational costs for generating
the unit vector vj,; for each j.

On the other hand, by letting v; = [v}}, v}, v};]" with v; € C",i=1,2 and vj3 € C", the matrix-vector product £v; in Algo-
rithm 3 for solving REPs by R-SEP1 (3.19.1) and R-SEP2 (3.19.2) can be, respectively, represented by

Lij3 — Mpvj'z QileV]g - Mpgp
B'Avi= | K,'(vji —Dypvp) |, AB,'Vi=| v -Dpg,
Q7179Vj3 — QilR;ij Q7119Vj3 — R;gp

with g, = K ‘v,z Consequently the computational cost of ApB v; needs an extra cost for the computation of ¢~( Lyvj3)
compared to that B, ! A,v;. The cost for generating the unit vector vj.; by R-SEP1 is slightly cheaper than that by R-SEP2.
We summarize the computatlonal costs of generating vj,; for by Q-SEP2 and R-SEP2 in Table 1.
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Table 1

Computational costs of the jth Arnoldi step of Algorithm 1 for Q-SEP2 and R-SEP2, where
My, Dy, Ky € R™™M, Mp, Dy, K, € R™*™ and L,, R, € R™*™ with m < n,. The length of the
vectors in the inner products for Q-SEP2 and R-SEP2 are 2n; and 2n, + m, respectively.

Q-SEP2 (3.7.2) R-SEP2 (3.19.2)
Solving linear system KuXy = by Kpx, =b,
Matrix-vector products Myby, Duby M,b,, Dyby, Lycp, R;c;
Inner products j*1 j+1
Saxpy operators j+1 j+2
Scale-vector product 1 1

Remark 4.1. In the numerical implementation, the vectors g, = R;lvjz and g, = I~<I;1vjz forj=1,...,k can be saved in
Gy =[K;'Vvi2---K;'vip] and Gp = [K;‘vlz . ~~I<;1vk2], respectively, so that the vectors uy, p, in (4.8) and (4.12) can be
computed byu, = G,z and p, = Gz directly. Hence, it requires the same computational costs for computingu;, u, in (4.7) and
(4.8), as well as,py, p2 in (4.11) and (4.12), respectively. Consequently, the computational costs of Q-SEP1 for the convergence
test in Algorithm 2 need one extra matrix-vector product K, vy, 1> than those of Q-SEP2 in computing {; and{,. Similarly, the
computational costs of R-SEP1 for the convergence test in Algorithm 3 need one extra matrix-vector product K pViki12 than
those of R-SEP2 in computing ¢; and &,. Therefore, we conclude that Algorithm 2 for Q-SEP1 and Q-SEP2, as well as,
Algorithm 3 for R-SEP1 and R-SEP2, respectively, almost have the same computational costs provided that they have the
same outer iterations.

5. Numerical results

We conduct numerical experiments to evaluate performance and accuracy of the eigenvalue solvers described in Section
4, To distinguish between various eigenvalue problems, we use notations Q1, Q2, R1 and R2 defined as follows:

e Q1: Applying Algorithm 2 to solve the QEP (3.1) with Q-SEP1 in (3.7.1).
e Q2: Applying Algorithm 2 to solve the QEP (3.1) with Q-SEP2 in (3.7.2).
e R1: Applying Algorithm 3 to solve the REP (3.8) with R-SEP1 in (3.19.1).
e R2: Applying Algorithm 3 to solve the REP (3.8) with R-SEP2 in (3.19.2).

All computations are carried out in MATLAB 2009a on a HP workstation with an Intel Quad-Core Xeon X5570 2.93 GHz
and 72 GB main memory, using IEEE double-precision floating-point arithmetic. We apply Algorithms 2 and 3 to solve the
following examples arising in fluid-solid systems. The order k of Arnoldi decomposition in Line 3 of Algorithm 1 is set k = 40,
the maximum number r,,, of Schur-restartings is set r,.x = 15 and the number of desired eigenpairs is m = 10. The relative
residuals of approximate eigenpairs (Z;, ;) and (4; p;) computed by Q1 and Q2, as well as, R1 and R2 are, respectively, defined
by

[1Q (4| [R(Z)pil
= and -———
(i) |[will Y (i) lpil
where ¢(/;) and y(/;) are given in Algorithms 2 and 3, respectively. Tolerances for relative residuals of QEPs and REPs are

chosen by tolg = tolg = 5 x 10~ 1°. The linear systems in Algorithms 2 and 3 are solved by LU-factorization with the shift value
o =—25 +600m1. Fronbenius norm for matrices and2-norm for vectors are used.

Example 1 [4]. We take the geometrical data: the domain Q =[0m,1m] x [ — 0.75m,0m], I'4=[0m,1m] x {Om} given in
Fig. 1(i) and the following physical data: p =1 kg/m?, c=340m/s, =5 x 10* N/m>, and =200 Ns/m>.

Table 2
Dimension information and convergence rates of ;.
(M,N) Matrix size (QEP) Matrix size (REP) Conv. rate
BM-1)xN (M+1)x (N+1) o Q2 R2

(48,36) 5,148 1,813
(96,72) 20,664 7,081

(192,144) 82,800 27,985 ratep 1) 1.9979 2.0010
(384,288) 331,488 111,265 ratey 5) 1.9995 2.0003
(768,576) 1,326,528 443713 rate 3) 1.9999 2.0001
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The rectangular domain € is uniformly partitioned into M byN rectangles and each rectangle is further refined into two
triangles, see Fig. 1(ii). The dimensions of coefficient matrices in QEP(3.1) and REP(3.8) are (3M — 1) x N and (M + 1) x
(N +1), respectively. Fig. 2 plots the analytic solutions of the desired eigenvalues /,...,410 of (2.5)-(2.8) (see[4]) with the
lowest positive vibration frequencies satisfying 0 < % < 600 Hz.

Convergence test: We first demonstrate convergence rates of Q2 and R2 while computing the desired eigenvalues in
Fig. 2. To measure the convergence rate, we run the test over the five successively refined meshes (See the first column
of Table 2) and then calculate the rates by

rate;j = log, <M>7 fori=1,...,10, j=1,2,3,
i) = A2

where /) for j=1,...,5 denote the approximate eigenvalues computed by Q2 and R2 corresponding to4; obtained from the
meshes described in Table 2. The 5th and the 6th columns of Table 2 illustrate the quadratic convergence of ratep; j; {j = 1,2,3
for /4, of QEP (3.1) and REP (3.8), respectively. In our numerical experiment, the convergence rate are always close to 2 for all
desired eigenvalues, 4;, i=1,...,10, computed by Q2 and R2 as well as Q1 and R1.

Normwise scaling of QEP: Balancing norms of coefficient matrices is an important issue [26] before solving a QEP of the
form:

P(u)x = (1*Py + 1Py + Po)x = 0. (5.1)
In [10] authors give an elegant way to scale the norms of coefficient matrices of (5.1) as follows. Define
P(v)x = (V*P; + VP; + Pg)x = 0

with v = /¢, Py = (*4P,, Py = (nP; and Py = nP,, where ¢ and # are scaling factors. Taking ¢ and # as {, = VVo/7, and
1, =2/(Yo + 71¢,) with p, := ||P2]l5, 71 :== [IP1ll2, Yo := ||Poll,, it is proved in[10] that the problem

min max {|Pall, — 11, 1Pl — 11 [1Pol, 11}

achieves the optimum at {, and #.. In our implementation, the values of 7y; for i=0,1,2 are computed by
72 = [Mulle.71 = [ Dulle. 7o = [Kull and 9, = [ Mpllr. 71 = IDylle. 7o = K|l for QEP (3.3) and REP (3.17), respectively. We de-
note “#It” the number of Schur-restartings (outer iterations). In Table 3, we show # Its for computing 10 desired eigenvalues
of Example 1 with (M,N)= (768,576) by Q1, Q2, R1 and R2 with/without scaling. The tolerances tolg and tol for relative
residuals are chosen to be 5 x 10715, We see that the convergence rate of scaled Q-SEPs or R-SEPs is faster than that of un-
scaled Q-SEPs or R-SEPs. The performance of Q2 and R2 is also better than that of Q1 and R1, respectively. In the case of
unscaled REP, the norms of M,, D, and K, in (3.12)-(3.14) are ©(107'%),0(10~°) and O(1), respectively. Since the norms
of coefficient matrices vary too much, R1 can even fail to converge to 10 eigenpairs after 15 outer iterations.

No spurious eigenmodes: In [4], it has been proved that there are no spurious eigenmodes for the discretization based on
Raviart-Thomas finite elements. We compute twenty desired eigenvalues of QEP(3.1) and REP(3.8) by Q2 and R2, respec-
tively, with scaling and various mesh sizes as shown in Table 2 (we computed 20 instead of 10 eigenvalues to be better con-
firmed). The desired eigenvalues of REP are in one-to-one correspondence to those of QEP which match well with relative
error less than 1078, that is, no spurious eigenmodes ever appear. We numerically conclude that there are no spurious eigen-
modes for the discretization in terms of pressure nodal finite elements.

Null space considerations: Theorem 1 shows that the dimension of the null space of QEP (3.1) is equal to the number of
interior nodes, i.e., (M — 1)(N — 1). In order to observe the interference of such a large null space in the convergence of Q1
and Q2, we give six different shift values denoted by the “+” in Fig. 3 to observe variation in the #Its for Q1 and Q2. The inte-
ger pair (i,j) under each shift value “+” denotes the#Its for Q1 and Q2, respectively. The results in Fig. 3 shows that the #It
needed decreases, as the shift value ¢ is chosen relatively far away from zero.

Comparison of pressure and displacement formulations: In this paragraph, we shall discuss the advantages of using
the nodal pressure finite elements with various mesh sizes described in Table 2. The notations “Tg,” and “Tg,” denote the
total CPU times for Q2 and R2, respectively. We summarize the results as follows:

e Accuracy of eigenpairs: From Remark 3.1, the upper bound for relative residual of the approximate eigepairs of QEP (3.1)
(or REP (3.8)) by using Q-SEP2 (3.7.2) (or R-SEP2 (3.19.2)) is much smaller than that by using Q-SEP1 (3.7.1) (or R-SEP1
(3.19.1)). On applying Q1 and Q2 to solve QEP (3.1) with#lt = 2, in Fig. 4, we see that the relative residuals of eigenpairs

Table 3
#lts for 4q,...,710 of Q-SEPs and R-SEPs with/without scaling.
Q1 Q2 R1 R2
#It (scaled) 3 2 4 3

#It (unscaled) 4 3 15 3
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Fig. 3. The #Its of Q1 and Q2 with different shift values. “0” denotes desired eigenvalues 4,,.
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Fig. 4. The relative residuals of computed eigenpairs, obtained by Q1, Q2 for QEP (3.1) and R1, R2 for REP (3.8) with (M,N) = (768,576).

Table 4

Iteration numbers and CPU times for Q2 and R2.
(M,N) Q2 R2 Ty

To2
#It T2 #It Tro

(48,36) 2 1.316 2 0.471 0.36
(96,72) 2 7.717 2 2.387 0.31
(192,144) 2 55.27 2 14.95 0.27
(384,288) 2 567.8 2 134.0 0.24
(768,576) 2 8152 2 1645 0.20

2203

.., 210. “(i,j)" denotes the #Its for Q1 and Q2, respectively.
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corresponding to /4 and /5 computed by Q2 are improved by about 1 significant digit than those by Q1. The other eigen-
pairs almost have the same accuracy. On applying R1 and R2 to solve REP (3.8) with#It = 2, in Fig. 4, we see that the rel-
ative residuals of eigenpairs computed by R2 are improved by about 2 to 4 significant digits than those by R1.

e Comparison R2 with Q2: From Sub Section 4.2 we see that Q1 and Q2, as well as, R1 and R2 have the same computational
costs, respectively. From Fig. 4, we favor applying Q2 and R2 to solve QEP (3.1) and REP (3.8), respectively. From column
12 of Table 4, we see that the CPU times for solving the REP (3.8) by R2 is only 1/5 to 1/3 of that for solving the QEP (3.1)
by Q2. The accuracy of the computed eigenpairs for REP (3.8) is also better than that of QEP (3.1). These results tell us that
using R2 to solve nodal pressure finite elements for the discrete problem (2.12) is better than that using Q2 to solve Rav-
iart-Thomas displacement finite elements for the discrete problem (2.11).
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Fig. 5. The distribution of the ten desired eigenvalues Z,...,40 for Example 2.
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Fig. 6. Relative residuals of computed eigenpairs obtained by R1 and R2 for REP in Example 2 with (M,N) = (768,576).
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We now want to apply our methods to a more complicated configuration in which the absorbing walls are located on three
sides.

Example 2. We use the same geometric data and physical data in Example 1 except that the absorbing wall is extended to
one half of the rigid walls in the left and right boundaries, that is I" =[0,1] x {0} U {0} x [ — 0.375,0]u {1} x [ — 0.375,0].

In Example 1, we numerically show that there are no spurious eigenmodes for the discretization in terms of pressure
nodal finite elements. Moreover, the computational cost for solving the associated REP (3.8) is obviously less than that of
solving QEP (3.1) which is obtained from using Raviart-Thomas displacement finite elements to the discrete problem
(2.11). Therefore, in this example we only use nodal finite elements to discretize the model and compare the accuracy of
R1 and R2 for solving the associated REP. The computed eigenvalues A;,...,4;9 With lowest positive vibration frequencies
satisfying 0 < % < 600 Hz are shown in Fig. 5. The convergence rates for 44,...,4;0 obtained from various the mesh sizes
described in Table 2 are also close to 2. The relative residuals computed by R1 and R2 are presented in Fig. 6 which shows
that the accuracy of the eigenpairs produced by R2 is better than R1.

6. Conclusions

We propose efficient methods for computing damped vibration modes of an acoustic fluid confined in a cavity with
absorbing walls capable of dissipating acoustic energy. Two approximations are investigated, one constructed from the
edge-based displacement space, which results in QEPs (3.1) and one from the node-based pressure space, which results
in REPs (3.8). Our numerical results show that both nodal and edge-based finite elements have second-order convergence
rate. We theoretically prove that the nullity of the QEP (3.1) equals the number of the interior grid points. Numerical results
show that if the shift value is close to zero, then such a large null space interfere with the convergence of the eigensolver.
Furthermore, numerical evidence also shows that there are no spurious eigenmodes for the discretization in terms of pres-
sure nodal finite elements and the CPU times for solving the corresponding REP (3.8) are only 1/5 to 1/3 of the CPU times for
solving the QEP (3.1).

For solving the nonlinear eigenvalue problems, a linearization and a trimmed-linearization methods are used to linearize
QEP (3.1) and REP (3.8) into four different types of SEPs which can be solved by Q1 and Q2, as well as, R1 and R2. Numerical
accuracy shows that Q2 and R2 algorithms are better than Q1 and R1, respectively.
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