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a b s t r a c t

We develop and analyze efficient methods for computing damped vibration modes of an
acoustic fluid confined in a cavity with absorbing walls capable of dissipating acoustic
energy. The discretization in terms of pressure nodal finite elements gives rise to a rational
eigenvalue problem. Numerical evidence shows that there are no spurious eigenmodes for
such discretization and also confirms that the discretization based on nodal pressures is
much more efficient than that based on Raviart–Thomas finite elements for the displace-
ment field. The trimmed linearization method is used to linearize the associated rational
eigenvalue problem into a generalized eigenvalue problem (GEP) of the form Ax ¼ kBx.
For solving the GEP we apply Arnoldi algorithm to two different types of single matrices
B�1A andAB�1. Numerical accuracy shows that the application of Arnoldi onAB�1 is better
than that on B�1A.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Efficient and correct computation of the damped vibration modes generated by an inviscid, compressible, barotropic fluid
in a cavity with absorbing walls is an important issue when for example one is interested in decreasing the level of noise in
aircraft or cars. In general, one needs first a mathematical model consisted of partial differential equations with proper
boundary and initial conditions. After this first phase of mathematical formulation, the next phase is to find efficient meth-
ods to compute the modes. This phase involves correct discretization of the mathematical formulation and computation of
large scale nonlinear eigenvalue problems, be it quadratic, cubic, or even rational. Choosing correct discretization schemes to
avoid spurious modes and finding efficient methods to locate eigenvalues that lie in the interior of the spectrum are among
important issues to deal with. In the mathematical formulation phase, we have interaction between the fluid and structure
(cavity walls), and the displacement variable natural for the solid could be chosen for the fluid as well so that compatibility
and equilibrium (cf. (2.3) and (2.7) below) through the fluid–solid interface can be satisfied automatically. A drawback lurk-
ing behind the displacement formulation is the possible presence of nonphysical zero-frequency spurious circulation modes,
if one is not careful in choosing the discretization scheme associated with the underlying partial differential system. For
example discretization by standard finite elements or finite differences often exhibit such a phenomenon. Approaches cir-
cumventing this drawback can be found in [2,8,11,12,29], among others.
. All rights reserved.
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One of the discretizations we will be using in this paper is the edge-based or Raviart–Thomas finite elements for the dis-
placement field, following [3,5]. The main concerns in [3,19] are pure mathematical issues of proving that their numerical
approximation is free of spurious modes and has second order convergence rate. Efficient computation of the modes is
not a concern, as they solved the associated quadratic eigenvalue problem by the standard eigensolver eigs from Matlab that
employs Arnoldi iterations.

In this paper our primary concern is to develop and study efficient eigensolvers for the spectral approximation of the
damped vibration modes. Two approximations are investigated, one constructed from the edge-based displacement space
(cf. Eq. (2.11) below), which results in quadratic eigenvalue problems (QEPs) and one from the node-based pressure space
(cf. Eq. (2.12)), which results in rational eigenvalues problems (REPs). Our first approximation is identical to that in [3,5],
but we further develop efficient methods for solving the associated QEP. However, we show in Section 2 that this problem
has a large zero-frequency or null space and this fact may influence the efficiency of Arnoldi-type algorithms. Motivated by
this, we extensively explore the second approximation of using the pressure space, which has a much smaller eigenvalue
system to solve and which has a one dimensional null space. Instead of a QEP, the associated eigenvalue problem is a rational
one having the form R(k)p = 0, where RðkÞ :¼ k2M þ k2

aþbk Aþ K is the rational k-matrix with coefficient matrices M, A and K.
While there is an extensive literature on QEPs problems [26], REPs are much less studied [25,27,28]. Although on the surface
the rational R(k)p = 0 could be turned into a cubic one by multiplying out the denominator, we will preserve its rational
structure and design efficient methods to numerically solve it in Section 3.

The organization of this paper is as follows. We describe the underlying model fluid–solid problem of this paper in Section
2, where the edge-based displacement approximation and the node-based pressure approximation are derived. We pay par-
ticular attention to identifying the dimension of the associated null space, which may influence performance of the numer-
ical method introduced later. In Section 3, we use the general strategy of turning a nonlinear eigenvalue problem into a
standard one by some sort of linearization techniques. We then apply the Arnoldi type algorithms to solve it. For the two
nonlinear eigenvalue problems, the QEP is as usual turned into a generalized eigenvalue problem (GEP), from which two
types of standard eigenvalue problems (SEP) (3.7.1) and (3.7.2) are derived. The REP is trimmed-linearized into two types
of three by three block SEPs (3.19.1) and (3.19.2). The important issue of residual error bound analysis is addressed here.
We then apply Arnoldi method with Schur-restarting described in Section 4 to the resulting SEPs. The important issues of
stopping criteria and computational costs for applying Arnoldi method to the QEP and REP are also derived in this section.
In Section 5, we present numerical results and evaluate the merits of the schemes involved where we also demonstrate the
role of normwise scaling in preprocessing the eigenvalue problems. Conclusions are included in Section 6.

2. Model problem

Let us consider a simple model of a rigid container filled with an inviscid compressible barotropic fluid and its acoustic
energy is absorbed through a thin layer of a viscoelastic material applied to some or all of its walls. For simplicity we assume
the fluid domain X � Rn (n = 2 or 3) to be polyhedral, and the boundary oX = CA [ CR, where the absorbing boundary CA is
the union of all the different faces of X and is covered by damping material. The rigid boundary CR is the remaining part of C.
An example of the setup is in Fig. 1(i) on Section 5, where the top boundary is absorbing and the remaining boundary is rigid.

The dynamic variables of our model problem are the fluid pressure P and the displacement field U, which satisfy ([6,15])
q
@2U
@t2 þrP ¼ 0 in X; ð2:1Þ
P ¼ �qc2 div U in X; ð2:2Þ
Fig. 1. Fluid in a cavity with one absorbing wall and initial mesh.
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P ¼ aU � nþ b
@U
@t
� n

� �
on CA; ð2:3Þ
U � n ¼ 0 on CR: ð2:4Þ
Here q is the fluid density, c, the acoustic speed, and n, the unit outer normal vector along oX. At the absorbing boundary
(2.3) indicates that the pressure is balanced by the effects of the viscous damping (the b term) and the elastic behavior (the a
term). We assume the coefficients a and b are given positive constants.

To look for the damped vibration modes we assume (2.1)–(2.4) has complex solution of the form U(x, t) = ektu(x) and
P(x, t) = ektp(x). This leads to a problem of finding k 2 C;u : X! Cn and p : X! C; ðu; pÞ– ð0;0Þ such that
qk2uþrp ¼ 0 in X; ð2:5Þ
p ¼ �qc2 div u in X; ð2:6Þ
p ¼ ðaþ kbÞu � n on CA; ð2:7Þ
u � n ¼ 0 on CR: ð2:8Þ
The boundary condition (2.7) makes this eigenvalue problem nonlinear. For each damped vibration mode, x :¼ Imk is the
vibration angular frequency and Rek the decay rate. In practice, we select a range of x values and are interested in the least
decaying modes in this range. We next describe the natural variational formulation of the above problem on which the
numerical approximation will be based.

Let
V :¼ fv 2 Hðdiv;XÞ : v � n 2 L2ð@XÞ and v � n ¼ 0 on CRg:
Here we employ standard Sobolev spaces notation. For example, H( div,X) stands for the space of all L2 vector functions v on
X with L2 integrable divergence.

Testing (2.5) by �v 2 V and integrating by parts, we obtain a variational formulation of problem (2.5)–(2.8) involving only
the displacement variable: Find k 2 C and u 2 V;u – 0, such that
Z

X
qc2 div u div �v þ

Z
CA

au � n�v � nþ k
Z

CA

bu � n�v � nþ k2
Z

X
qu � �v ¼ 0 8 v 2 V: ð2:9Þ
(We use the symbol " to mean ‘for all’ throughout the paper.) This is a quadratic eigenvalue problem. Note that k = 0 is an
eigenvalue and the dimension of its eigenspace
K :¼ fu 2 V : div u ¼ 0 in X and u � n ¼ 0 on @Xg
is infinity. All nonzero eigenvalues have finite multiplicity (the dimension of the eigenspace is finite) [4]. It is shown in [4]
that all the other solutions of (2.9), the decay rate is strictly negative. That is, if an eigenpair 0 – k 2 C and 0 – u 2 V is a
solution of problem (2.9) then Rek < 0.

Alternatively we can derive a variational formulation in terms of the pressure: Find k 2 C and p 2 H1(X) such that
Z
X
rp � r�qþ k2

aþ kb

Z
CA

qp�qþ k2

c2

Z
X

p�q ¼ 0 8 q 2 H1ðXÞ: ð2:10Þ
However, in this case the eigenvalue problem is rational, which is rarely studied compared with linear and quadratic eigen-
value problems. Note that in contrast to the displacement formulation, the eigenspace corresponding to k = 0 is now one
dimensional. Thus this formulation has a much smaller null space or kernel, which may be more stable and efficient when
used in conjunction with projection-like spectral approximation methods.

2.1. Spectral approximation

We now turn to the finite element methods for approximating the solutions of the quadratic eigenvalue problem (2.9)
and the rational eigenvalue problem (2.10). Spurious modes are usually present when standard finite elements are used
in a displacement formulation. However Bermúdez et al. [4] successfully demonstrated that the spurious modes can be
avoided by using the lowest order Raviart–Thomas elements in Rn;n ¼ 2;3 (see, for instance, [7,18]). For simplicity we will
consider only the two dimensional case. Let fT hg be a regular family of triangulations of X indexed by h, the maximum
diameter of the elements. Let
Vh :¼ fvh 2 Hðdiv;XÞ : vhjT 2 Pn
0 � P0x 8 T 2 T h and vh � n ¼ 0 on CRg � V
where n = 2 and Pk denotes the set of polynomials of degree at most k. Thus locally vh takes the form (a + sx,b + sy)> (>
denotes transpose and x = (x,y)>). The discrete problem associated with (2.9) is: Find k 2 C and uh 2 Vh;uh – 0, such that
Z

X
qc2 div uh div �vh þ

Z
CA

auh � n�vh � nþ k
Z

CA

buh � n�vh � nþ k2
Z

X
quh � �vh ¼ 0; 8 vh 2 Vh: ð2:11Þ



2192 S.-H. Chou et al. / Journal of Computational Physics 230 (2011) 2189–2206
Theorem 1. The dimension of the zero eigenspace E0 associated with (2.11) equals the number of interior nodes in the
triangulation.
Proof. Setting vh = uh and k = 0 in (2.11), we see that
divuh ¼ 0 on X and uh � n ¼ 0 on @X:
Since uh = (a + sx,b + sy)> on T 2 T h, the divergence free condition implies that uh is a constant vector (a,b)> on T. By direct
computation, we see that there exists a linear polynomial wT such that
@wT

@x
¼ �b and

@wT

@y
¼ a:
Let n = (n1,n2)> be a unit normal to an edge e of T, so t = (�n2,n1)> is a unit tangent vector to e. We see that
uh � n ¼ rwT � t ¼
@wT

@t
:

So if an edge e is common to T1 and T2 then in general wT1
and wT2

differ by a constant only by the continuity of uh � n across e.
At an interior node Nj, we can assign a common value for all wT at that node. Here T are all triangles sharing Nj as the common
node. We then spread this defining process outward to all X using the induced values on other nodes. Consequently, W is
continuous piecewise linear over X. Let r? :¼ ð� @

@y ;
@
@x Þ
> and define
r?Sh :¼ fr?Wh : Wh is continuous piecewise linear and vanishes on the boundaryg:
Thus we have just shown the zero eigenspace E0 is contained r\Sh and the opposite inclusion is also easily checked. Hence
E0 ¼ r?Sh:
We now find the dimension ofr\Sh. Let N be the number of interior nodes and let Wj, j = 1, . . . ,N, be the nodal basis functions
such that Wj(Nk) = dkj. The linear independence of Wj’s is preserved by the perp-gradient operation. In fact, supposePN

j¼1cjr?Wj ¼ 0. Then this implies
PN

j¼1cjWj ¼ c for some constant c. Hence cj = c by the condition Wj(Nk) = dkj. Consequently,

cð
P

jWj � 1Þ ¼ 0. But we know
PN

j¼1Wj – 1 due to the vanishing boundary condition. Thus cj = c = 0 and we conclude that the

dimension of the zero eigenspace dimE0 ¼ dimr?Sh equals the number of interior nodes in the mesh. h

Define the conforming P1 finite element space
Hh :¼ fph 2 H1ðXÞ : phjT 2 P1 8 T 2 T hg:
This is the subspace of H1(X) consisted of continuous piecewise linears. The alternative discrete problem in terms of the
approximate pressure field is: Find k 2 C and ph 2 Hh such that
Z

X
rph � r�qh þ

k2

aþ kb

Z
CA

qph�qh þ
k2

c2

Z
X

ph�qh ¼ 0 8 qh 2 Hh: ð2:12Þ
Letting qh = ph and k = 0 in (2.12) we can easily see that the dimension of the zero eigenspace in this case is one, which is the
same as the original problem (2.10).

Again we see that the pressure formulation has a much smaller null space than the displacement formulation. Also the
number of unknowns is much smaller. Thus the pressure formulation turns out to be a very good alternative, once in addi-
tion we show in the remaining sections that its associated eigenvalue problem can be efficiently solved. A minor remark is in
order here.

Remark 2.1. Suppose an eigenpair (k,ph),k – 0 has been computed, what if, in addition, one wants to know a corresponding
displacement approximation uh? One must not find uh by solving an additional system linear equations again so as to
maintain the advantage of the pressure formulation. It should be given by a simple formula. A naive way is to use the relation
(2.5) to evaluate a uh, but this would be ill conceived since the computed displacement would be piecewise constant.
Consequently, r � uh = 0, which certainly does not approximate (2.6). Fortunately, a general principle for such a problem
(recovery of uh from the pressure approximation ph) has been provided in [9] where one can obtain an accurate uh in the
Raviart–Thomas space by a simple evaluation formula which is a modification of the above naive formula.
3. Linearization of nonlinear eigenvalue problems

In this section we start to address the computational issues related to the displacement approximation (2.11) and the
pressure approximation (2.12).
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3.1. Linearization of quadratic eigenvalue problem

Suppose the total number of interior and absorbing edges is n1. Let f/jg
n1
j¼1 denote the cardinal basis of Vh, so that on the

edge ej, /j has the unit normal flux and zero normal flux on the remaining n1 � 1 edges. That is,
R

ei
/j � nidr ¼ dij. For uh 2 Vh,

we write uh ¼
Pn1

j¼1uj/j and denote u ¼ ½u>1 ; � � � ;u>n1
�>. Note that the unknown vector u contains normal fluxes in its compo-

nents. Then, the discrete problem (2.11) can be expressed as the following QEP:
QðkÞu � k2Muuþ ðaþ kbÞAuuþ Kuu ¼ 0; ð3:1Þ
where Mu � ½Mu
ij� and Ku � ½Ku

ij� are mass and stiffness matrices, respectively, and Au � ½Au
ij� is used to describe the effect of the

absorbing wall. Here
Mu
ij ¼

Z
X
q/i � �/j; Ku

ij ¼
Z

X
qc2 div /i div �/j; Au

ij ¼
Z

CA

/i � n �/j � n; ð3:2Þ
for i, j = 1, . . . ,n1. For this problem, we are only interested in eigenvalues that are located in the interior of the spectrum. Sup-
pose that the eigenvalues near r are of interest. Accordingly, the QEP (3.1) is shifted into
l2 eMu þ leDu þ eK u

� �
u ¼ 0 ð3:3Þ
with l = k � r and
eMu ¼ Mu; eDu ¼ 2rMu þ bAu; eK u ¼ r2Mu þ ðaþ rbÞAu þ Ku: ð3:4Þ
On the one hand, one can numerically solve (3.3) without transforming it further. Among such direct methods we mention
the SOAR (second-order Arnoldi) algorithm [1] and the Jacobi–Davidson algorithm applied to polynomial eigenvalue prob-
lems [21]. On the other hand, it is more common to transform or linearize (3.3) into a SEP [26]. In this paper, we let
Au ¼
0 � eMu

I �eDu

" #
; Bu ¼

I 0
0 eK u

� �
ð3:5Þ
and linearize (3.3) into the GEP
Aux ¼ 1
l
Bux with x � �l eMuu

u

" #
�

v
u

� �
: ð3:6Þ
The matrix eK u in (3.5) is nonsingular because the shift value r is not an eigenvalue of (3.1). Furthermore, the GEP (3.6) can
then be transformed into two types of SEPs of the forms B�1

u Aux ¼ l�1x and AuB�1
u y ¼ l�1y, respectively, where y ¼ Bux.

Therefore, from (3.5) and (3.6) we have
ðQ � SEP1Þ B�1
u Au

v
u

� �
¼ 0 � eMueK�1

u �eK�1
u
eDu

" #
v
u

� �
¼ 1

l
v
u

� �
ð3:7:1Þ
and
ðQ � SEP2Þ AuB�1
u

v
w

� �
¼

0 � eMu
eK�1

u

I �eDu
eK�1

u

" #
v
w

� �
¼ 1

l
v
w

� �
; w ¼ eK uu: ð3:7:2Þ
Note that the SEPs of (3.7.1) and (3.7.2) derived by the QEP in (3.3), are called Q-SEP1 and Q-SEP2, respectively. The standard
Arnoldi method can then be applied to solve Q-SEPs, and the details will be given in Section 4.

3.2. Trimmed linearization method for rational eigenvalue problem

Let fwjg
n2
j¼1 be a nodal basis of Hh. For ph 2 Hh, we write ph ¼

Pn2
j¼1pjwj and denote p ¼ ½p1; � � � ; pn2

�>. Then, the discrete
problem (2.12) can be written as the following REP:
RðkÞp � k2

c2 Mp þ Kp þ
k2

kbþ a
Ap

 !
p ¼ 0; ð3:8Þ
where Mp � ½Mp
ij� and Kp � ½Kp

ij� are mass and stiffness matrices, respectively, and Ap � ½Ap
ij� describes the effect of the absorb-

ing wall. Here,
Mp
ij ¼

Z
X

wi
�wj; Kp

ij ¼
Z

X
rwi � r �wj; Ap

ij ¼
Z

CA

qwi
�wj ð3:9Þ
for i, j = 1, . . . ,n2.
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To solve REP (3.8), one approach is to multiply equation (3.8) by the scalar kb + a and expand it into a cubic polynomial
eigenvalue problem, and then solve it by Jacobi–Davidson method [14]. An alternative approach is to treat (3.8) as nonlinear
eigenvalue problem and solve it by a nonlinear eigensolver, such as Newton’s method, nonlinear Arnoldi method, or nonlin-
ear Jacobi–Davidson method [20,27,28]. Recently, a trimmed linearization is proposed in [25] which linearizes (3.8) into a
GEP so that the standard Arnoldi method can be applied. We introduce the trimmed linearization below.

Given a shift value r. With l = k � r, the rational k-matrix R(k) in (3.8) can be rewritten as
RðkÞ ¼ ðk� rþ rÞ2

c2 Mp þ Kp þ
ðk� rþ rÞ2

ðk� rþ rÞbþ a
Ap

¼ ðk� rÞ2 þ 2ðk� rÞrþ r2

c2 Mp þ Kp þ
ðk� rÞ2 þ 2ðk� rÞrþ r2

ðk� rÞbþ rbþ a
Ap

¼ l2 1
c2 Mp

� �
þ l 2r

c2 Mp

� �
þ r2

c2 Mp þ Kp

� �
þ l2 þ 2lrþ r2

lbþ rbþ a
Ap

¼ l2 1
c2 Mp

� �
þ 1

l
2r
c2 Mp

� �
þ 1

l2

r2

c2 Mp þ Kp

� �
þ 1þ 2r=lþ r2=l2

lbþ ðrbþ aÞ Ap

� �
: ð3:10Þ
Setting m = 1/l, the rational term in (3.10) can be simplified into the following form by applying the long division
r2m2 þ 2rmþ 1
b=mþ ðrbþ aÞ ¼

r2

rbþ a
m2 þ r2bþ 2ra

ðrbþ aÞ2
mþ a2

ðrbþ aÞ3
� ðrbþ aÞ3

a2 þ ðrbþ aÞ4

a2b
m

 !�1

:

This implies that
RðkÞ ¼ 1
m2 m2 r2

c2 Mp þ Kp þ
r2

rbþ a
Ap

� �
þ m

2r
c2 Mp þ

r2bþ 2ra
ðrbþ aÞ2

Ap

 !
þ 1

c2 Mp þ
a2

ðrbþ aÞ3
Ap

 !"

� ðrbþ aÞ3

a2 þ ðrbþ aÞ4

a2b
m

 !�1

Ap

35 ¼ l2 eMp þ leDp þ eK p � l2 #� .l�1
� 	�1

LpR>p ; ð3:11Þ
where
eMp ¼
1
c2 Mp þ

a2

ðrbþ aÞ3
Ap; ð3:12Þ

eDp ¼
2r
c2 Mp þ

r2bþ 2ra
ðrbþ aÞ2

Ap; ð3:13Þ

eK p ¼
r2

c2 Mp þ Kp þ
r2

rbþ a
Ap; ð3:14Þ

# ¼ ðrbþ aÞ3

a2 ; . ¼ �ðrbþ aÞ4

a2b
ð3:15Þ
and LpR>p ¼ Ap is the full-rank decomposition of Ap with Lp;Rp 2 Rn2�m. Introducing an auxiliary vector
q ¼ #� .l�1� 	�1
R>p p; ð3:16Þ
the REP in (3.8) can be reformulated as
l2 eMp þ leDp þ eK p

� �
p� l2Lpq ¼ 0: ð3:17Þ
Using (3.16) and (3.17), we get the GEP
Apx �
0 � eMp Lp

In2 �eDp 0
0 �R>p #Im

2664
3775x ¼ 1

l

In2 0 0

0 eK p 0
0 0 .Im

264
375x � 1

l
Bpx; ð3:18Þ
where x ¼ ½ððl�1 eK p þ eDpÞpÞ>;p>;q>�>. As before, the matrix eK p in (3.14) is nonsingular because the shift value r is not an
eigenvalue of (3.8). As in (3.7.1) and (3.7.2), the GEP (3.18) can then be, respectively, transformed into the following two
types of the SEPs of the forms B�1

p Apx ¼ l�1x and ApB�1
p y ¼ l�1y where y ¼ Bpx. Consequently, we have
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ðR � SEP1Þ B�1
p Apx ¼

0 � eMp LpeK�1
p �eK�1

p
eDp 0

0 �.�1R>p .�1#Im

2664
3775x ¼ 1

l
x; ð3:19:1Þ
and
ðR � SEP2Þ ApB�1
p y ¼

0 � eMp
eK�1

p .�1Lp

In2 �eDp
eK�1

p 0

0 �R>p eK�1
p .�1#Im

2664
3775y ¼ 1

l
y; y ¼ Bpx: ð3:19:2Þ
Note that the SEPs of (3.19.1) and (3.19.2) derived by the REP in (3.17) are called R-SEP1 and R-SEP2, respectively.

3.3. Error analysis

In this subsection, we will discuss residuals of QEP (3.1) and REP (3.8) by using linearizations (3.7.1) and (3.19.1),
respectively.

We first derive residual bounds of approximate eigenpairs for QEP (3.1) by by using linearizations Q-SEP1 and Q-SEP2,
respectively. Let ðl�1

1 ; ½v>1 ;u>1 �
>Þ be an approximate eigenpair of (3.7.1) and ½f>11; f

>
12�
> be the associated residual vector. That

is,
f11

f12

� �
¼ 0 � eMueK�1

u �eK�1
u
eDu

" #
v1

u1

� �
� 1

l1

v1

u1

� �
¼ 1

l1

�v1 � l1
eMuu1eK�1

u ðl1v1 � l1
eDuu1 � eK uu1Þ

" #
:

It follows that
l2
1
eMuu1 þ l1

eDuu1 þ eK uu1 ¼ l1ð�v1 � l1f11Þ þ l1v1 � l1
eK uf12 ¼ �l2

1f11 � l1
eK uf12:
Therefore, with k1 = l1 + r and from (3.1) we have
kQðk1Þu1k
ku1k

¼ kl
2
1
eMuu1 þ l1

eDuu1 þ eK uu1k
ku1k

6
jl1j

2kf11k þ jl1jkeK ukkf12k
ku1k

: ð3:20Þ
On the other hand, let ðl�1
2 ; ½v>2 ;w>2 �

>Þ be an approximate eigenpair of (3.7.2) and ½f>21; f
>
22�
> be the associated residual vector.

That is,
f21

f22

� �
¼

0 � eMu
eK�1

u

I �eDu
eK�1

u

" #
v2

w2

� �
� 1

l2

v2

w2

� �
¼

� eMu
eK�1

u w2 � 1
l2

v2

v2 � eDu
eK�1

u w2 � 1
l2

w2

24 35:

It follows that
l2
2
eMu
eK�1

u w2 þ l2
eDu
eK�1

u w2 þw2 ¼ l2ð�v2 � l2f21Þ þ l2v2 � l2f22 ¼ �l2
2f21 � l2f22:
Letting u2 ¼ eK�1
u w2, with k2 = l2 + r and from (3.1) we have,
kQðk2Þu2k
ku2k

¼ kl
2
2
eMuu2 þ l2

eDuu2 þ eK uu2k
ku2k

6
jl2j

2kf21k þ jl2jkf22k
ku2k

: ð3:21Þ
Now, we derive residual bounds of approximate eigenpairs for REP (3.8) by using linearizations R-SEP1 and R-SEP2, respec-
tively. Let ðl�1

1 ; ½s>1 ;p>1 ;q>1 �
>Þ be an approximate eigenpair of (3.19.1) and ½g>11;g

>
12;g

>
13�
> be the associated residual vector. That

is,
g11

g12

g13

264
375 ¼ 0 � eMp LpeK�1

p �eK�1
p
eDp 0

0 �.�1R>p .�1#Im

2664
3775

s1

p1

q1

264
375� 1

l1

s1

p1

q1

264
375:
This implies that
s1 ¼ �l1
eMpp1 þ l1Lpq1 � l1g11; ð3:22Þ

g12 ¼ eK�1
p s1 � eK�1

p
eDpp1 �

1
l1

p1; ð3:23Þ

q1 ¼ l1.
�1#� 1

� 	�1l1 g13 þ .�1R>p p1

� �
: ð3:24Þ
Substituting (3.24) into (3.22), s1 can be represented by
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s1 ¼ �l1
eMpp1 þ l2

1 l1.
�1#� 1

� 	�1
Lpg13 þ .�1LpR>p p1

� �
� l1g11: ð3:25Þ
Substituting (3.25) into (3.23), from (3.11) and (3.15) we get
Rðrþ l1Þp1 ¼ l2
1
eMpp1 þ l1

eDpp1 þ eK pp1 � l2
1
ðrbþ aÞ3

a2 þ ðrbþ aÞ4

a2bl1

" #�1

LpR>p p1

¼ �l2
1g11 � l1

eK pg12 � l2
1

b
rbþ a

þ 1
l1

� ��1

Lpg13
which implies that
kRðrþ l1Þp1k
kp1k

6
1
kp1k

jl1j
2kg11k þ jl1jkeK pk kg12k þ l2

1
b

rbþ a
þ 1

l1

� ��1












kLpk kg13k
( )

: ð3:26Þ
On the other hand, let ðl�1
2 ; ½s>2 ; t>2 ;q>2 �

>Þ be an approximate eigenpair of (3.19.2) and ½g>21;g
>
22;g

>
23�
> be the associated residual

vector. That is,
g21

g22

g23

264
375 ¼ 0 � eMp

eK�1
p .�1Lp

In2 �eDp
eK�1

p 0

0 �R>p eK�1
p .�1#Im

2664
3775

s2

t2

q2

264
375� 1

l2

s2

t2

q2

264
375:
This implies that
g21 ¼ � eMp
eK�1

p t2 þ .�1Lpq2 �
1
l2

s2; ð3:27Þ

s2 ¼ eDp
eK�1

p t2 þ
1
l2

t2 þ g22; ð3:28Þ

q2 ¼ .�1#� 1
l2

� ��1

R>p eK�1
p t2 þ g23

� �
: ð3:29Þ
Substituting (3.28) and (3.29) into (3.27), we have
l2
2
eMp
eK�1

p t2 þ l2
eDp
eK�1

p t2 þ t2 � l2
2 #� .l�1

2

� 	�1
LpR>p eK�1

p t2 ¼ �l2
2g21 � l2g22 þ l2

2 #� .l�1
2

� 	�1
Lpg23:
Letting p2 ¼ eK�1
p t2, from (3.11) we get
Rðrþ l2Þp2 ¼ l2
2
eMpp2 þ l2

eDpp2 þ eK pp2 � l2
2
ðrbþ aÞ3

a2 þ ðrbþ aÞ4

a2bl2

" #�1

LpR>p p2

¼ �l2
2g21 � l2g22 þ l2

2
a2b

ðrbþ aÞ4
b

rbþ a
þ 1

l2

� ��1

Lpg23:
Hence,
kRðrþ l2Þp2k
kp2k

6
1
kp2k

jl2j
2kg21k þ jl2jkg22k þ l2

2
a2b

ðrbþ aÞ4
b

rbþ a
þ 1

l2

� ��1












kLpkkg23k
( )

: ð3:30Þ
Remark 3.1. In order to check the tightness of upper bounds in (3.20) and (3.21), as well as, (3.26) and (3.30) for residuals,
respectively, we refer to the coefficient matrices generated in Example 1 of Section 5. For (2.9) we adopt the data as in [4] by
setting q = 1 kg/m3, c = 340 m/s, a = 5 � 104 N/m3, and b = 200 Ns/m3. In addition, we choose r ¼ �25þ 600pıðı �

ffiffiffiffiffiffiffi
�1
p

Þ as
the shift value. Then
(i) from (3.2), the element mass and stiffness matrices are
h2

6
q

2 �1 0
�1 2 0
0 0 2

264
375; qc2

2 2 2
ffiffiffi
2
p

2 2 2
ffiffiffi
2
p

2
ffiffiffi
2
p

2
ffiffiffi
2
p

4

264
375;
respectively. Hence, by (3.4) the infinity norm of eK u can be estimated by keK uk1 	 kKuk1 ¼ Oðqc2Þ ¼ Oð105Þ. From(3.20) and
(3.21), we conclude that the upper bound for the residual of the approximate eigenpair (l1 + r,u1) of (3.1) by solving Q-SEP1
is larger than that of the approximate eigenpair (l2 + r,u2) of (3.1) by solving Q-SEP2.
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Fig. 2. The distribution of the ten desired eigenvalues k1, . . . ,k10.
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(ii) From (3.9), the element mass and stiffness matrices are
h2

24

2 1 1
1 2 1
1 1 2

264
375; 1 �1=2 �1=2

�1=2 1=2 0
�1=2 0 1=2

264
375;
respectively. Hence, by (3.14) we have that keK pk1 	 kKpk1 ¼ Oð1Þ. If the eigenvalue k is one of the desired eigenvalues in
Fig. 2, then with l = k � r we have
4� 107 < l2 b
rbþ a

þ 1
l

� ��1












 < 3:1� 1010;

0:001 < l2 a2b

ðrbþ aÞ4
b

rbþ a
þ 1

l

� ��1












 < 0:8:
Clearly, from (3.26) and (3.30) we conclude that the upper bound for the residual of the approximate eigenpair (r + l1,p1) of
REP (3.8) by solving R-SEP1 is larger than that of (r + l2,p2) of (3.8) by solving R-SEP2.

4. Arnoldi method with schur-restarting

The Arnoldi method is the most popular method for solving large sparse SEPs:Lx ¼ kx. In Arnoldi process, an orthonormal
matrix Vk+1 is generated to satisfy
LVk ¼ VkHk þ hkþ1;kvkþ1e>k ; ð4:1Þ
where Hk 2 Rk�k is upper Hessenberg. If the dimension of the Krylov subspace span {Vk} is larger than a certain value, then
the process of Arnoldi decomposition will be restarted.

For the restarting process, we can use an implicit restart scheme [17,22]. The package ARPACK[16] includes a very suc-
cessful implementation of the implicitly restarted Arnoldi algorithm. It has been used by many engineering fields and re-
mains a popular choice for solving eigenvalue problems. However, these implicitly restart type schemes may suffer from
numerical instability due to rounding errors. Stewart proposed the Krylov–Schur method [13,23,24] that relaxes the need
to preserve the structure of the Arnoldi decomposition and therefore ease the complications of the purging and deflating.

We state the Schur-restarting scheme as follows. Let
Hk ¼ Um U‘½ �
Tm Tf

0 T‘

� �
U
m
U
‘

� �
ð4:2Þ
be a Schur decomposition of Hk where Tm and T‘ are upper triangular, and the eigenvalues of Tm are of interest. Here and
hereafter U⁄ denotes the conjugate transpose of the matrix U. Substituting (4.2) into (4.1), we see that
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L Vk Um U‘½ �ð Þ ¼ Vk Um U‘½ �ð Þ
Tm Tf

0 T‘

� �
þ hkþ1;kvkþ1 e>k Um U‘½ �

� 	
;

which implies that
LeV m ¼ eV mTm þ ~vmþ1t
m; ð4:3Þ
where eV m � VkUm; ~vmþ1 ¼ vkþ1 and t
m � hkþ1;ke>k Um. Let Q1 be a Householder matrix with
t
mQ 1 ¼ se>m:
Then (4.3) can be rewritten as
LðeV mQ 1Þ ¼ ðeV mQ 1ÞðQ 
1TmQ 1Þ þ s~vmþ1e>m: ð4:4Þ
The matrix Q 
1TmQ1 can be reduced to a new Hessenberg matrix eHm by using Householder matrices Qi for i = 2, . . . ,m � 1 with
Q 
m�1 � � �Q


2ðQ



1TmQ 1ÞQ 2 � � �Q m�1 ¼ eHm; e>j Q 2 � � �Q m�1 ¼ e>m:
Multiplying (4.4) by Qi, i = 2, . . . ,m � 1, a new Arnoldi decomposition of order m
LeV m ¼ eV m
eHm þ s~vmþ1e>m
is obtained where eV m :¼ eV mQ 1 � � �Q m�1 and the Arnoldi process can be applied to generate it to order k in (4.1). One repeats
the above process until the desired eigenvalues are convergent. The process is summarized in Algorithm 1.

Algorithm 1. Arnoldi method with Schur-restarting for solving Lx ¼ kx

Input: L: coefficient matrix, tolL: tolerance for convergence, rmax: maximum number of Schur-restartings.
Output: The desired m eigenpairs.
1: Build an initial Arnoldi decomposition of order m as in (4.1) and set r = 0.
2: restart
3: Extend Arnoldi decomposition of order m to order k = m + ‘ and set r = r + 1.
4: Compute all Ritz pairs ðl�1

i ; ziÞ with Hkzi ¼ l�1
i zi,i = 1, . . . ,k and sorting Ritz values so that{(l1, z1), . . . , (lm,zm)}

are wanted.
5: for i = 1, . . . ,m
6: Check convergence by jhkþ1;kjje>k zij < tolL.
7: end for
8: if (Not all m desired eigenvalues are convergent andr < rmax) then
9: Compute the Schur decomposition of Hk as in (4.2), where the eigenvalues of Tm are of interest.
10: Set Vm :¼ VkUm, vm+1 :¼ vk+1 and t
m :¼ hkþ1;ke>k Um.
11: Compute Householder transformation Q1 such that t
mQ1 ¼ se>m.
12: Reduce Q 
1TmQ1 to a new Hessenberg matrix Hm by using Householder transformations Qi for i = 2, . . . ,m � 1.
13: Set Vm :¼ VmQ1� � �Qm�1 and hm+1,m = s to get the new Arnoldi decomposition with order m:

>
LVm ¼ VmHm þ hmþ1;mvmþ1em: ð4:5Þ
14: end if
15: until (desired m eigenpairs are convergent or r P rmax)
Now, we will apply the Algorithm 1 to solve QEP (3.1) and REP (3.8), respectively, by setting L to be the coefficient matri-
ces in (3.7.1) and (3.19.1), respectively.

4.1. Stopping criteria for QEPs and REPs

Let (l�1,z) be a Ritz pair and satisfy Hkz = l�1z. From (4.1) and Q-SEP1 in (3.7.1) we have
0 � eMueK�1
u �eK�1

u
eDu

" #
Vk1

Vk2

� �
z ¼ 1

l
Vk1

Vk2

� �
zþ hkþ1;k

vkþ1;1

vkþ1;2

� �
e>k z; ð4:6Þ
where Vk ¼
Vk1

Vk2

� �
and vkþ1 ¼

vkþ1;1

vkþ1;2

� �
are partitioned with compatible sizes. Using the first equation of (4.6), we can elim-

inate Vk1z in the second equation and get
QðkÞu1k k
u1k k ¼ kðl

2 eMu þ leDu þ eK uÞu1k
u1k k ¼

jljjhkþ1;kj e>k z


 

f1

ku1k
� q1ðlÞ; ð4:7Þ
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where u1 = Vk2z, k = l + r and f1 ¼ klvkþ1;1 þ eK uvkþ1;2k. Without ambiguity by using the same notations as above in Algo-
rithm 1, from (4.1) and Q-SEP2 in (3.7.2) we also have
0 � eMu
eK�1

u

I �eDu
eK�1

u

" #
Vk1

Vk2

� �
z ¼ 1

l
Vk1

Vk2

� �
zþ hkþ1;k

vkþ1;1

vkþ1;2

� �
e>k z
and
QðkÞu2k k
ku2k

¼ kðl
2 eMu þ leDu þ eK uÞu2k

ku2k
¼
jljjhkþ1;kj e>k z



 

f2

ku2k
� q2ðlÞ; ð4:8Þ
where u2 ¼ eK�1
u Vk2z; k ¼ lþ r and f2 ¼ klvkþ1;1 þ vkþ1;2k. Therefore, q1(l) in(4.7) and q2(l) in (4.8), respectively, can be

used as stopping criteria for residuals while Algorithm 1 is applied to solved QEPs(3.1).
Similarly, we can apply Algorithm 1 to solve REPs(3.8). As above, we let (l�1,z) be a Ritz pair and satisfy Hkz = l�1z. From

(4.1), and R-SEP1, R-SEP2 in (3.19.1) we have
0 � eMp LpeK�1
p �eK�1

p
eDp 0

0 �.�1R>p .�1#Im

2664
3775

Vk1

Vk2

Vk3

264
375z ¼ 1

l

Vk1

Vk2

Vk3

264
375zþ hkþ1;k

vkþ1;1

vkþ1;2

vkþ1;3

264
375e>k z ð4:9Þ
and
0 � eMp
eK�1

p .�1Lp

In2 �eDp
eK�1

p 0

0 �R>p eK�1
p .�1#Im

2664
3775

Vk1

Vk2

Vk3

264
375z ¼ 1

l

Vk1

Vk2

Vk3

264
375zþ hkþ1;k

vkþ1;1

vkþ1;2

vkþ1;3

264
375e>k z; ð4:10Þ
where Vk ¼ ½V>k1;V
>
k2;V

>
k3�
> and vkþ1 ¼ ½v>kþ1;1;v

>
kþ1;2;v

>
kþ1;3�

> are partitioned with compatible sizes. Using the first and the
third equations of (4.9) and (4.10), we can eliminate V1z and V3z in the second equation of (4.9) and (4.10), respectively,
and get
RðkÞp1k k
kp1k

¼ k½l
2 eMp þ leDp þ eK p � l2ð#� .l�1Þ�1Ap�p1k

kp1k
¼
jljjhkþ1;kj e>k z



 

n1

kp1k
� r1ðlÞ; ð4:11Þ
where p1 = Vk2z, k = l + r and n1 ¼ klvkþ1;1 þ eK pvkþ1;2 � .l2

#l�. Lpvkþ1;3k, and
kRðkÞp2k
kp2k

¼
k l2 eMp þ leDp þ eK p � l2ð#� .l�1Þ�1Ap

h i
p2k

kp2k
¼
jljjhkþ1;kj e>k z



 

n2

kp2k
� r2ðlÞ; ð4:12Þ
where p2 ¼ eK�1
p Vk2z; k ¼ lþ r and n2 ¼ klvkþ1;1 þ vkþ1;2 � l2

#l�. Lpvkþ1;3k. Therefore, r1(l) in(4.11) and r2(l) in (4.12) can be
used as stopping criteria for residuals while Algorithm 1 is applied to solve REPs (3.8).

Applying Algorithm 1 to solve QEPs (3.1) and REPs (3.8) are summarized in Algorithms 2 and 3, respectively.

Algorithm 2. Arnoldi method with Schur-restarting for solving QEP in (3.1)

Input: Coefficient matrices Mu, Du and Ku, parameters c, a and b, r: shift value, tolQ: tolerance for convergence, rmax:
maximum number of Schur-restartings.

Output: The desired eigenpairs (ki,ui) fori = 1, . . . ,m.

1: Construct matrices eMu; eDu and eK u defined in (3.4) and set r = 0.
2: Compute initial Arnoldi decomposition in Line 1 of Algorithm 1 with L in Q-SEP1 or Q-SEP2.
3: restart
4: Do the steps in Lines 3 and 4 of Algorithm 1.
5: for i = 1, . . . ,m do

6: Compute uðliÞ ¼ ðjrþ l�1
i j

2kMuk þ jaþ ðrþ l�1
i ÞbjkAuk þ kKukÞ.

7: Check convergence of QEP by q‘(li)/u(li) < tolQ with q‘(li) in (4.7) or (4.8),‘ = 1,2.
8: end for
9: if (Not all m desired eigenvalues are convergent and r < rmax) then
10: Do the Schur-restarting in Lines 9–13 of Algorithm 1.
11: end if
12: until (desire m eigenpairs are convergent or r P rmax)
13: Set ki ¼ rþ l�1

i and ui = Vk2 zi fori = 1, . . . ,m.
14: if Q-SEP2 is solved then

15: ui  eK�1
u ui; i ¼ 1; . . . ;m.

16: end if
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Algorithm 3. Arnoldi method with Schur-restarting for solving REP in (3.8)

Input: Coefficient matrices Mp, Kp and Ap, parameters c, a and b, r: shift value, tolR: tolerance for convergence, rmax:
maximum number of Schur-restartings.

Output: The desired eigenpairs (ki,pi) for i = 1, . . . ,m.

1: Construct matrices eMp; eDp and eK p defined in (3.12), (3.13) and (3.14), respectively, and set r = 0.
2: Compute the full-rank decomposition of Ap:LpR>p ¼ Ap.
3: Compute initial Arnoldi decomposition in Line 1 of Algorithm 1 with L in R-SEP1 or R-SEP2.
4: restart
5: Do the steps in Lines 3 and 4 of Algorithm 1.
6: for i = 1, . . . ,m do

7: Compute wðliÞ ¼ j
ðrþl�1

i Þ
2

c2 jkMpk þ kKpk þ j
ðrþl�1

i Þ
2

aþðrþl�1
i Þb
jkApk.

8: Check convergence by r‘(li)/w(li) < tolR with r‘(li) in (4.11) or(4.12),‘ = 1,2.
9: end for
10: if (Not all m desired eigenvalues are convergent and r < rmax) then
11: Do the Schur-restarting in Lines 9–13 of Algorithm 1.
12: end if
13: until (desire m eigenpairs are convergent or r P rmax)
14: Set ki ¼ rþ l�1

i and pi = Vk2 zi for i = 1, . . . ,m.
15: if R-SEP2 is solved then

16: pi  eK�1
p pi; i ¼ 1; . . . ;m.

17: end if
4.2. Computational costs

In this subsection, we compare the computational costs of the jth Arnoldi step of Algorithm 1 for solving Q-SEPs (3.7.1)
and R-SEPs (3.19.1), respectively. This is of general interest, because a comparison of the CPU times is sensible only if the
number of outer iterations of Algorithm 2 or Algorithm 3 is the same for each algorithm. From (4.5), the unit vector vj+1

is generated by
Lvj ¼
Xj

i¼1

hj;ivi þ hjþ1;jvjþ1
where hj;i ¼ v
iLvj for i = 1, . . . , j and hjþ1;j ¼ kLvj �
Pj

i¼1hj;ivik2. For convenience, we let vj ¼ ½v>j1;v>j2�
> with vji 2 Cn, i = 1,2.

The matrix–vector product Lvj in Algorithm 2 for solving QEP (3.1) by Q-SEP1 (3.7.1) and Q-SEP2 (3.7.2) can be, respectively,
represented by
B�1
u Auvj ¼

� eMuvj2eK�1
u ðvj1 � eDuvj2Þ

" #
; AuB�1

u vj ¼
� eMugu

vj1 � eDugu

" #
with gu ¼ eK�1
u vj2. This implies that Algorithm 2 for Q-SEP1 and Q-SEP2 needs the same computational costs for generating

the unit vector vj+1 for each j.
On the other hand, by letting vj ¼ ½v>j1;v>j2;v>j3�

> with vji 2 Cn; i ¼ 1;2 and vj3 2 Cm, the matrix–vector product Lvj in Algo-
rithm 3 for solving REPs by R-SEP1 (3.19.1) and R-SEP2 (3.19.2) can be, respectively, represented by
B�1
p Apvj ¼

Lpvj3 � eMpvj2eK�1
p ðvj1 � eDpvj2Þ

.�1#vj3 � .�1R>p vj2

2664
3775; ApB�1

p vj ¼
.�1Lpvj3 � eMpgp

vj1 � eDpgp

.�1#vj3 � R>p gp

2664
3775
with gp ¼ eK�1
p vj2. Consequently, the computational cost of ApB�1

p vj needs an extra cost for the computation of .�1(Lpvj3)
compared to that B�1

p Apvj. The cost for generating the unit vector vj+1 by R-SEP1 is slightly cheaper than that by R-SEP2.
We summarize the computational costs of generating vj+1 for by Q-SEP2 and R-SEP2 in Table 1.



Table 1
Computational costs of the jth Arnoldi step of Algorithm 1 for Q-SEP2 and R-SEP2, whereeMu ; eDu ; eK u 2 Rn1�n1 , eMp; eDp; eK p 2 Rn2�n2 and Lp;Rp 2 Rn2�m with m� n2. The length of the
vectors in the inner products for Q-SEP2 and R-SEP2 are 2n1 and 2n2 + m, respectively.

Q-SEP2 (3.7.2) R-SEP2 (3.19.2)

Solving linear system eK uxu ¼ bu
eK pxp ¼ bp

Matrix–vector products eMubu; eDubu
eMpbp; eDpbp; Lpcp;R

>
p c>p

Inner products j + 1 j + 1
Saxpy operators j + 1 j + 2
Scale-vector product 1 1
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Remark 4.1. In the numerical implementation, the vectors gu ¼ eK�1
u vj2 and gp ¼ eK�1

p vj2 forj = 1, . . . ,k can be saved in
Gu � ½eK�1

u v12 � � � eK�1
u vk2� and Gp � ½eK�1

p v12 � � � eK�1
p vk2�, respectively, so that the vectors u2, p2 in (4.8) and (4.12) can be

computed byu2 = Guz and p2 = Gpz directly. Hence, it requires the same computational costs for computingu1, u2 in (4.7) and
(4.8), as well as,p1, p2 in (4.11) and (4.12), respectively. Consequently, the computational costs of Q-SEP1 for the convergence
test in Algorithm 2 need one extra matrix–vector product eK uvkþ1;2 than those of Q-SEP2 in computing f1 andf2. Similarly, the
computational costs of R-SEP1 for the convergence test in Algorithm 3 need one extra matrix–vector product eK pvkþ1;2 than
those of R-SEP2 in computing n1 and n2. Therefore, we conclude that Algorithm 2 for Q-SEP1 and Q-SEP2, as well as,
Algorithm 3 for R-SEP1 and R-SEP2, respectively, almost have the same computational costs provided that they have the
same outer iterations.
5. Numerical results

We conduct numerical experiments to evaluate performance and accuracy of the eigenvalue solvers described in Section
4. To distinguish between various eigenvalue problems, we use notations Q1, Q2, R1 and R2 defined as follows:

� Q1: Applying Algorithm 2 to solve the QEP (3.1) with Q-SEP1 in (3.7.1).
� Q2: Applying Algorithm 2 to solve the QEP (3.1) with Q-SEP2 in (3.7.2).
� R1: Applying Algorithm 3 to solve the REP (3.8) with R-SEP1 in (3.19.1).
� R2: Applying Algorithm 3 to solve the REP (3.8) with R-SEP2 in (3.19.2).

All computations are carried out in MATLAB 2009a on a HP workstation with an Intel Quad-Core Xeon X5570 2.93 GHz
and 72 GB main memory, using IEEE double-precision floating-point arithmetic. We apply Algorithms 2 and 3 to solve the
following examples arising in fluid–solid systems. The order k of Arnoldi decomposition in Line 3 of Algorithm 1 is set k = 40,
the maximum number rmax of Schur-restartings is set rmax = 15 and the number of desired eigenpairs is m = 10. The relative
residuals of approximate eigenpairs (ki,ui) and (ki,pi) computed by Q1 and Q2, as well as, R1 and R2 are, respectively, defined
by
Table 2
Dimens

(M,N

(48,3
(96,7
(192
(384
(768
kQðkiÞuik
uðkiÞkuik

and
kRðkiÞpik
wðkiÞkpik
where u(ki) and w(ki) are given in Algorithms 2 and 3, respectively. Tolerances for relative residuals of QEPs and REPs are
chosen by tolQ = tolR = 5 � 10�15. The linear systems in Algorithms 2 and 3 are solved by LU-factorization with the shift value
r =�25 + 600pı. Fronbenius norm for matrices and2-norm for vectors are used.

Example 1 [4]. We take the geometrical data: the domain X = [0m,1m] � [ � 0.75m,0m], CA = [0m,1m] � {0m} given in
Fig. 1(i) and the following physical data: q = 1 kg/m3, c = 340 m/s, a = 5 � 104 N/m3, and b = 200 Ns/m3.
ion information and convergence rates of k1.

) Matrix size (QEP) Matrix size (REP) Conv. rate

(3M � 1) � N (M + 1) � (N + 1) k1 Q2 R2

6) 5,148 1,813
2) 20,664 7,081

,144) 82,800 27,985 rate[1,1] 1.9979 2.0010
,288) 331,488 111,265 rate[1,2] 1.9995 2.0003
,576) 1,326,528 443,713 rate[1,3] 1.9999 2.0001
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The rectangular domain X is uniformly partitioned into M byN rectangles and each rectangle is further refined into two
triangles, see Fig. 1(ii). The dimensions of coefficient matrices in QEP(3.1) and REP(3.8) are (3M � 1) � N and (M + 1) �
(N + 1), respectively. Fig. 2 plots the analytic solutions of the desired eigenvalues k1, . . . ,k10 of (2.5)–(2.8) (see[4]) with the
lowest positive vibration frequencies satisfying 0 < ImðkiÞ

2p < 600 Hz.
Convergence test: We first demonstrate convergence rates of Q2 and R2 while computing the desired eigenvalues in

Fig. 2. To measure the convergence rate, we run the test over the five successively refined meshes (See the first column
of Table 2) and then calculate the rates by
rate½i;j� ¼ log2
jk½i;j� � k½i;jþ1�j
jk½i;jþ1� � k½i;jþ2�j

� �
; for i ¼ 1; . . . ;10; j ¼ 1;2;3;
where k[i,j] for j = 1, . . . ,5 denote the approximate eigenvalues computed by Q2 and R2 corresponding toki obtained from the
meshes described in Table 2. The 5th and the 6th columns of Table 2 illustrate the quadratic convergence of rate[1,j] {j = 1,2,3
for k1 of QEP (3.1) and REP (3.8), respectively. In our numerical experiment, the convergence rate are always close to 2 for all
desired eigenvalues, ki, i = 1,. . .,10, computed by Q2 and R2 as well as Q1 and R1.

Normwise scaling of QEP: Balancing norms of coefficient matrices is an important issue [26] before solving a QEP of the
form:
PðlÞx � ðl2P2 þ lP1 þ P0Þx ¼ 0: ð5:1Þ
In [10] authors give an elegant way to scale the norms of coefficient matrices of (5.1) as follows. Define
bPðmÞx � ðm2bP2 þ mbP1 þ bP0Þx ¼ 0
with m ¼ l=f; bP2 ¼ f2gP2; bP1 ¼ fgP1 and bP0 ¼ gP0, where f and g are scaling factors. Taking f and g as f
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c0=c2

p
and

g
 ¼ 2=ðc0 þ c1f
Þ with c2 :¼ kP2k2; c1 :¼ kP1k2; c0 :¼ kP0k2, it is proved in[10] that the problem
min
f;g

max jkbP2k2 � 1j; jkbP1k2 � 1j; jkbP0k2 � 1j
n o
achieves the optimum at f⁄ and g⁄. In our implementation, the values of ci, for i = 0,1,2 are computed by
c2 ¼ k eMukF ; c1 ¼ keDukF ; c0 ¼ keK ukF and c2 ¼ k eMpkF ; c1 ¼ keDpkF ; c0 ¼ keK pkF for QEP (3.3) and REP (3.17), respectively. We de-
note ‘‘#It’’ the number of Schur-restartings (outer iterations). In Table 3, we show # Its for computing 10 desired eigenvalues
of Example 1 with (M,N) = (768,576) by Q1, Q2, R1 and R2 with/without scaling. The tolerances tolQ and tolR for relative
residuals are chosen to be 5 � 10�15. We see that the convergence rate of scaled Q-SEPs or R-SEPs is faster than that of un-
scaled Q-SEPs or R-SEPs. The performance of Q2 and R2 is also better than that of Q1 and R1, respectively. In the case of
unscaled REP, the norms of eMp; eDp and eK p in (3.12)–(3.14) are Oð10�10Þ;Oð10�5Þ and Oð1Þ, respectively. Since the norms
of coefficient matrices vary too much, R1 can even fail to converge to 10 eigenpairs after 15 outer iterations.

No spurious eigenmodes: In [4], it has been proved that there are no spurious eigenmodes for the discretization based on
Raviart–Thomas finite elements. We compute twenty desired eigenvalues of QEP(3.1) and REP(3.8) by Q2 and R2, respec-
tively, with scaling and various mesh sizes as shown in Table 2 (we computed 20 instead of 10 eigenvalues to be better con-
firmed). The desired eigenvalues of REP are in one-to-one correspondence to those of QEP which match well with relative
error less than 10�6, that is, no spurious eigenmodes ever appear. We numerically conclude that there are no spurious eigen-
modes for the discretization in terms of pressure nodal finite elements.

Null space considerations: Theorem 1 shows that the dimension of the null space of QEP (3.1) is equal to the number of
interior nodes, i.e., (M � 1)(N � 1). In order to observe the interference of such a large null space in the convergence of Q1
and Q2, we give six different shift values denoted by the ‘‘+’’ in Fig. 3 to observe variation in the #Its for Q1 and Q2. The inte-
ger pair (i, j) under each shift value ‘‘+’’ denotes the#Its for Q1 and Q2, respectively. The results in Fig. 3 shows that the #It
needed decreases, as the shift value r is chosen relatively far away from zero.

Comparison of pressure and displacement formulations: In this paragraph, we shall discuss the advantages of using
the nodal pressure finite elements with various mesh sizes described in Table 2. The notations ‘‘TQ2’’ and ‘‘TR2’’ denote the
total CPU times for Q2 and R2, respectively. We summarize the results as follows:

� Accuracy of eigenpairs: From Remark 3.1, the upper bound for relative residual of the approximate eigepairs of QEP (3.1)
(or REP (3.8)) by using Q-SEP2 (3.7.2) (or R-SEP2 (3.19.2)) is much smaller than that by using Q-SEP1 (3.7.1) (or R-SEP1
(3.19.1)). On applying Q1 and Q2 to solve QEP (3.1) with#It = 2, in Fig. 4, we see that the relative residuals of eigenpairs
Table 3
#Its for k1, . . . ,k10 of Q-SEPs and R-SEPs with/without scaling.

Q1 Q2 R1 R2

#It (scaled) 3 2 4 3
#It (unscaled) 4 3 15 3



Fig. 4. The relative residuals of computed eigenpairs, obtained by Q1, Q2 for QEP (3.1) and R1, R2 for REP (3.8) with (M,N) = (768,576).
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Fig. 3. The #Its of Q1 and Q2 with different shift values. ‘‘o’’ denotes desired eigenvalues k1, . . . ,k10. ‘‘(i, j)’’ denotes the #Its for Q1 and Q2, respectively.

Table 4
Iteration numbers and CPU times for Q2 and R2.

(M,N) Q2 R2 TR2
TQ2

#It TQ2 #It TR2

(48,36) 2 1.316 2 0.471 0.36
( 96,72) 2 7.717 2 2.387 0.31
(192,144) 2 55.27 2 14.95 0.27
(384,288) 2 567.8 2 134.0 0.24
(768,576) 2 8152 2 1645 0.20
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corresponding to k4 and k5 computed by Q2 are improved by about 1 significant digit than those by Q1. The other eigen-
pairs almost have the same accuracy. On applying R1 and R2 to solve REP (3.8) with#It = 2, in Fig. 4, we see that the rel-
ative residuals of eigenpairs computed by R2 are improved by about 2 to 4 significant digits than those by R1.
� Comparison R2 with Q2: From Sub Section 4.2 we see that Q1 and Q2, as well as, R1 and R2 have the same computational

costs, respectively. From Fig. 4, we favor applying Q2 and R2 to solve QEP (3.1) and REP (3.8), respectively. From column
12 of Table 4, we see that the CPU times for solving the REP (3.8) by R2 is only 1/5 to 1/3 of that for solving the QEP (3.1)
by Q2. The accuracy of the computed eigenpairs for REP (3.8) is also better than that of QEP (3.1). These results tell us that
using R2 to solve nodal pressure finite elements for the discrete problem (2.12) is better than that using Q2 to solve Rav-
iart–Thomas displacement finite elements for the discrete problem (2.11).
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Fig. 5. The distribution of the ten desired eigenvalues k1, . . . ,k10 for Example 2.

Fig. 6. Relative residuals of computed eigenpairs obtained by R1 and R2 for REP in Example 2 with (M,N) = (768,576).
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We now want to apply our methods to a more complicated configuration in which the absorbing walls are located on three
sides.

Example 2. We use the same geometric data and physical data in Example 1 except that the absorbing wall is extended to
one half of the rigid walls in the left and right boundaries, that is C = [0,1] � {0} [ {0} � [ � 0.375,0] [ {1} � [ � 0.375,0].

In Example 1, we numerically show that there are no spurious eigenmodes for the discretization in terms of pressure
nodal finite elements. Moreover, the computational cost for solving the associated REP (3.8) is obviously less than that of
solving QEP (3.1) which is obtained from using Raviart–Thomas displacement finite elements to the discrete problem
(2.11). Therefore, in this example we only use nodal finite elements to discretize the model and compare the accuracy of
R1 and R2 for solving the associated REP. The computed eigenvalues k1, . . . ,k10 with lowest positive vibration frequencies
satisfying 0 < ImðkiÞ

2p < 600 Hz are shown in Fig. 5. The convergence rates for k1, . . . ,k10 obtained from various the mesh sizes
described in Table 2 are also close to 2. The relative residuals computed by R1 and R2 are presented in Fig. 6 which shows
that the accuracy of the eigenpairs produced by R2 is better than R1.
6. Conclusions

We propose efficient methods for computing damped vibration modes of an acoustic fluid confined in a cavity with
absorbing walls capable of dissipating acoustic energy. Two approximations are investigated, one constructed from the
edge-based displacement space, which results in QEPs (3.1) and one from the node-based pressure space, which results
in REPs (3.8). Our numerical results show that both nodal and edge-based finite elements have second-order convergence
rate. We theoretically prove that the nullity of the QEP (3.1) equals the number of the interior grid points. Numerical results
show that if the shift value is close to zero, then such a large null space interfere with the convergence of the eigensolver.
Furthermore, numerical evidence also shows that there are no spurious eigenmodes for the discretization in terms of pres-
sure nodal finite elements and the CPU times for solving the corresponding REP (3.8) are only 1/5 to 1/3 of the CPU times for
solving the QEP (3.1).

For solving the nonlinear eigenvalue problems, a linearization and a trimmed-linearization methods are used to linearize
QEP (3.1) and REP (3.8) into four different types of SEPs which can be solved by Q1 and Q2, as well as, R1 and R2. Numerical
accuracy shows that Q2 and R2 algorithms are better than Q1 and R1, respectively.
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