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中文摘要

    本研究題出一個一致性共旋轉全拉格
蘭日有限元素法及數值程序，以分析不對
稱薄壁開口梁的非線性挫屈及挫屈後的行
為，並以數值例題說明本方法的正確性及
有效性。

關鍵詞：共旋轉法、薄壁梁

Abstract

A consistent co-rotational total 
Lagrangian finite element formulation and 
numerical procedure for the geometric 
nonlinear buckling and postbuckling analysis 
of generic thin-walled beams with open 
section is presented.  Numerical examples 
are presented to demonstrate the accuracy 
and efficiency of the proposed method.
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1 Introduction

    The buckling and postbuckling analysis 
of thin-walled beams with open section have 
been the subject of considerable research 
[1-5].  The object of this paper is to present 
a co-rotational total Lagrangian finite 
element formulation for the geometric 

nonlinear buckling and postbuckling analysis 
of generic thin-walled beams with open 
section.
The formulation of beam element proposed 
in [6~8] is modified and employed here.  
Here, the third order terms of twist rate of 
the beam axis is also considered.
An incremental-iterative method based on the 
Newton-Raphson method combined with 
constant arc length of incremental 
displacement vector is employed for the 
solution of nonlinear equilibrium equations.  
Numerical examples are presented to 
demonstrate the accuracy and efficiency of 
the proposed method 

2 Finite element formulation
2.1 Basic assumptions

(1) The beam is prismatic and slender, and 
   the Euler-Bernoulli hypothesis is valid.
(2) When the longitudinal normal strain at 

the centroidal axis relevant to the twist 
about the shear center axis is excluded, 
the unit extension of the centroid axis of 
the beam element corresponding to the 
rest of longitudinal normal strain is 
uniform.

(3) The cross section of the beam element 
does not deform in its own plane and 
strains within this cross section can be 
neglected. 

2.2 Coordinate systems
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    In this paper, a co-rotational total 
Lagrangian formulation is adopted.  In order 
to describe the system, we define four sets of 
right handed rectangular Cartesian coordinate 
systems:
(1) A fixed global set of coordinates, Xi

G

(i = 1, 2, 3) (see Fig. 1).
(2) Element cross section coordinates, xi

S

(i = 1, 2, 3) (see Fig. 1).
(3) Element coordinates; xi  (i = 1, 2, 3) 

(see Fig. 1).

(4) Load base coordinates, P
iX  (i = 1, 2, 

3).
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   Fig. 1. Coordinate systems.

2.3 Kinematics of beam element
     
    Let Q (Fig. 1) be an arbitrary point in 
the beam element, and P be the point
corresponding to Q on the shear center axis.  
The position vector of point Q in the 
undeformed and deformed configurations 
may be expressed as
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where yp  and zp , and y and z are the xS
2

and xS
3 coordinates of point P and Q referred 

to the element cross section coordinates, 
respectively, x xc ( ) , v x( ) ,and w x( )  are 
the x1, x2  and x3  coordinates of point P, 
respectively, in the deformed configuration, 
ω ω= ( , )y z  is the Saint Venant warping 
function for a prismatic beam of the same 
cross section, and ei  and ei

S  (i = 1, 2, 3)
denote the unit vectors associated with the 
xi  and xi

S  axes, respectively.  Note that 

ei  and ei
S are coincident in the 

undeformed state.
The relation between the vectors ei  and 

ei
S  (i = 1, 2, 3) in the element coordinate 

system may be obtained as [6]
e Rei

S
i= (3)

Here, the lateral deflections of the shear 
center axis, v x( )  and w x( ) , and the 
rotation about the shear center axis, θ1( )x , 
are assumed to be the Hermitian polynomials 
of x.

2.4  Element nodal force vector

    The element nodal force corresponding 
to the implicit nodal parameters is obtained 
from the virtual work principle in the current 
element coordinates.  

2.5  Element tangent stiffness matr ices

    The element tangent stiffness matrix 
corresponding to the explicit nodal
parameters (referred to as explicit tangent 
stiffness matrix) may be obtained by 
differentiating the element nodal force vector 
with respect to explicit nodal parameters. 
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2.6 Load stiffness matr ix

    Here, the conservative moments 
generated by conservative force or forces 
(with fixed directions) are considered, and 
the ways for generating conservative moment 
and the corresponding load stiffness matrix 
proposed in [7] are employed and not 
repeated here.

2.7 Equilibr ium equations
    
    The nonlinear equilibrium equations 
may be expressed by

Ψ = − =F P 0λ (4)
where Ψ  is the unbalanced force between 
the internal nodal force F  and the external 
nodal force λP , where λ  is the loading 
parameter, and P is a reference loading.

2.8 Criter ion of the buckling state

    Here, the zero value of the tangent 
stiffness matrix determinant is used as the 
criterion of the buckling state.  The tangent 
stiffness matrix of the structure is assembled 
from the element stiffness matrix and load 
stiffness matrix.

3 Numerical studies

    An incremental-iterative method based 
on the Newton-Raphson method combined 
with constant arc length of incremental 
displacement vector [6] is employed for the 
solution of nonlinear equilibrium equations.    
The bisection method of the arc length is 
proposed in [8] is used here to find the 
buckling load.  In order to initiate the 
secondary path, at the bifurcation point a 
perturbation displacement proportional to the 
first buckling mode is added [9].

The example considered here is a 
cantilever beam of monosymmetric angle 
section with a vertical force P applied at the 
apex of the centerline of the end cross section 
as shown in Fig. 2.  The clamped end of the 
beam is warping free.
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Fig. 2. Cantilever beam subjected 
to end force.

The geometry and material (Aluminum) 
properties are as follows: L in= 4175. , 
b in= 1 , t in= 0 032. , Young's modulus 

E ksi= 104 , the shear modulus 

G ksi= ×3 750 103. , the specific weight 

γ = 169 3lb ft/ .  The self-weight of the 
beam is 0.2613 lb. Three angle cross sections 
having included angles of α = 455. o , 71o , 
and 91o  are considered.

The present results are obtained using 
40 elements.  The load-deflection curves of 
of the present study together with the 
experimental results given in [1] are shown 
in Fig. 3. The initial deflections caused by 
the self-weight are excluded in Fig. 3.  
Discrepancies between the present solutions 
and the experimental results may be 
attributed to initial imperfections, and/or 
distortion of the root section, and/or yielding 
at the root of the beam due to excessive 
torsional twisting, which occur in 
experiments.
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Fig. 3. Load-tip displacements for cantilever 
     beam subjected to end force .

4 Conclusions

    This paper has proposed a consistent 
co-rotational total Lagrangian finite element 
formulation and numerical procedure for the 
geometric nonlinear buckling and 
postbuckling analysis of generic thin-walled 
beams with open section.  The third order 
term of twist rate in the element nodal forces 
is also considered.  An incremental-iterative 
method based on the Newton-Raphson 
method combined with constant arc length of 
incremental displacement vector is employed 
for the solution of nonlinear equilibrium 
equations.  The zero value of the tangent 
stiffness matrix determinant of the structure 
is used as the criterion of the buckling state.  
From the numerical examples studied, it is 
found that the agreement between the 
prebuckling displacements and buckling 
loads of the present study and those given in 
the literature is very good.
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