行政院國家科學委員會專題研究計畫 期中進度報告

強關聯系統中的相分離、電荷有序與 Kondo 效應(1/3)

<u>計畫類別:</u>整合型計畫 <u>計畫編號:</u>NSC92-2112-M-009-032-<u>執行期間:</u>92年08月01日至93年07月31日 執行單位:國立交通大學物理研究所

計畫主持人: 林俊源

計畫參與人員: 張維仁, 劉俐君, 黃家莞

報告類型: 精簡報告

<u>報告附件</u>:出席國際會議研究心得報告及發表論文 處理方式:本計畫可公開查詢

中 華 民 國 93 年 5 月 31 日

【中文摘要】:

過去十個月,我們用X光吸收光譜的方法,研究了強關聯系統中的相分離現象。我們也發現了La_{0.7}Ca_{0.3}MnO₃電子掺雜的強烈證據, 也對其電子結構有更進一步的了解。我們也發現CMR系統中的表面 與整體電子結構的差異。在La_{2-x}Sr_xCuO₄系統中,我們觀察到 stripe phase 形成引起的電子結構變化,在硬體方面,我們正在進行He3 低 溫系統的架設。

[Abstract]:

In the past ten months, we have deployed x-ray absorption spectroscopy to investigate the phase separation in the strongly correlated systems. Our results provide strong evidence of electron doping in La_{0.7}Ce_{0.3}MnO₃, and show that La_{0.7}Ce_{0.3}MnO₃ is a majority-spin ferromagnetic metal. We have also observed the differences in the surface and bulk electronic structures in CMR manganites. In La_{2-x}Sr_xCuO₄ cuprates, we observed the electronic structure changes due to the stripe phase. As for the instrumentation, we are now setting up the He3 system.

一、 研究工作進度

在本多年計劃的前十個月,我們已努力的進行了在強關聯系系統 中相分離與 stripe phase 的研究。主要的研究對象是錳氧化物磁性系 統與銅氧化物超導系統。這些研究的初步成果已被國際知名期刊授受 〔1,2〕,更完整的結果將於近期送往國際期刊發表。

茲將目前最新結果略述如下:

(一) La_{0.7}Ca_{0.3}MnO₃,電子 CMR 系統

相對於電洞CMR材料如 La_{0.7}Ca_{0.3}MnO₃,我們已經成功的製備 較罕見的電子 CMR La_{0.7}Ca_{0.3}MnO₃薄膜。詳細的X光繞射分析顯示其 為高品質的磊晶薄膜。我們發現與 La_{0.7}Ca_{0.3}MnO₃相近,此電子系統 在居里溫度以下也有相分離的現象,如圖一、二。

圖一 (a) La_{0.7}Ca_{0.3}MnO₃ 薄膜表面影像。(b) La_{0.7}Ca_{0.3}MnO₃ 薄膜表面(與 a 同一區 域)電導率(dI/dV)影像。在居禮溫度(Tc~260K)以下, 觀察到金屬態(暗區)與絕緣 態(亮區)在空間上明顯的分離。

圖二 a-1, a-2, a-3 為 La_{0.7}Ce_{0.3}MnO₃在不同溫度下的薄膜表面影像。b-1, b-2, b-3 為 La_{0.7}Ce_{0.3}MnO₃在不同溫度下的薄膜表面(分別與a-1, a-2, a-3 同一區域)電導率 (dI/dV)影像。在居禮溫度(Tc~250K)以下,觀察到金屬態(暗區)與絕緣態(亮區)在 空間上明顯的分離。

X光吸收光譜提供了充分的證據顯示(如圖三)在 La_{0.7}Ce_{0.3}MnO₃ 中的確有電子摻雜的現象發生,且放進的電子是處於 e_g²↑的能帶中。

圖三 O *K*-edge 光譜顯示在 $La_{0.7}Ce_{0.3}MnO_3$ 中確實有 hole filling 的現象發生。光譜的結果也符合能帶理論計算。

相分離的現象在許多強關系統中,均被觀察到。因此相分離是否 一種在強關聯的系統中,普遍存在的現象?這是一個正被熱烈討論的 問題。然而,有許多相分離的證據皆來自探討表面性質的實驗,如掃 描穿隧顯微鏡。然而在此頪系統中,表面的性質真的可以代表整體的 性質嗎?

我們也用了兩種不同的吸收光譜技術研究 CMR 錳氧化物的表面與整 體電子結構,發現了其中的差異性。見圖四、五。

Fig. 2 Liu et al.

圖四 LCMO的OK-edgeX光吸收光譜。細線為Total Electron光譜而 粗線為Fluorescence光譜。

Fig. 3 Liu et al.

圖五 LSMO 的 O K-edge X 光吸收光譜。細線為 Total Electron 光譜而粗線為 Fluorescence 光譜。

(三) 銅氧化物中因 Stripe phase 引起的電子結構改變

一般認為,當La_{2-x}Sr_xCuO₄(LSCO)中的電洞濃度在 x=1/8 時,會 有 stripe phase 的 charge ordering 發生。LSCO 的電性與超導將有極大 的變化,如從二維的電子傳輸行為轉變到一維系統。

我們也用了X光吸收光譜探討La_{2-x}Sr_xCuO₄與La_{1.4-x}Nd_{0.6}Sr_xCuO₄的電子結構,發現在 x=1/8 時,電子結構發生了變化,如圖六。這些觀察到的變化符合理論上的預測。

圖六 在 530eV 到 531eV 之間的光譜差異來自於 stripe phase 的電子結構。

二、 儀器架設

我們已完成 He3 低溫系統的採購, 近期將可在實驗室組裝完

成。希望能在暑假期間完成系統測試,並開始從事 0.5K 以下的 實驗。

三、 明年展望

除了繼續進行上述的相分離研究外,並將利用 He3 系統,探討相分離的 ground state。我們也將研究新的超導體 Na_xCoO₂•yH₂O,這是另一個有趣的強關聯系統。

References

- [1] J.-Y. Lin, C. W. Huang, P. H. Lin, C. P. Sun, J. M. Lee, J. M. Chen, and H. D.
- Yang, "the electronic structure change induced by stripe phase formation in cuprates", Physica C, in press.
- [2] J.-Y. Lin, W. J. Chang, J. Y. Juang, T. M. Wen, K. H. Wu, Y. S. Gou, J. M. Lee, J.
- M. Chen, "Spectroscopic evidence of electron doping in La0.7Ce0.3MnO3", Journal of Magnetism and Magnetic Materials, in press.