NSC92-2213-E-009-067-
92 08 01 93 07 31

¢)

93 12 16

N I R B A

Vv
NSC9 2
92

2213
8

[

EOO09 067
1 93
) V

O O

93

31

12

The Study and Design of An Advanced Translation Lookaside

Buffer

Principal investigator: Chang-Jiu Chen, Department of Computer Science and Information Engineering, National

Chiao Tung University

Abstract

Address trandations from virtual addresses to physical addresses are widely considered as one of the most
important issue for memory system performance. In order to improve the performance, the Trandation Lookaside
Buffer (TLB) is used. If any misses occur, the performance of the processor will seriously degrade [7]. To reduce such
misses, lots of methodologies are proposed. However, only a few works focus on reducing the miss rates in context
switching under multiprogramming environment. This paper presents a novel mechanism for the TLB to reduce the
miss rate in context switching with 32K page size. All simulations were done with modified SimpleScalar 3.0d tool
suite and SPEC95 benchmarks. The results show that this design can be very useful for multiprogramming

environment under specific conditions.

INTRODUCTION
In order to support larger memory requirements for modern applications, it's important for modern
operating systems (OS) to provide the virtual memory mechanism. However, a lot of time is needed to
fetch the trandations from main memory. To reduce the cost of address translations, the trandation

lookaside buffers (TLBS) are widely implemented inside the processor [3].

In order to reduce the TLB miss rate, most processors increase the size (total entries) of TLBs with
fully or set associative. For example, Intel” puts a 512-entry 4K B-page TLB inside the Intel” Pentium™ !1!
Processor [4]. Furthermore, some processors even try to provide multi-level TLBs, such as 2-level
ITLB/DTLB design on the highest-end Intel” Itanium” 2 Processor [5]. In addition, some processors
begin to provide larger page sizes to increase the TLB span, such as 2MB or even 4MB page size on al
new Intel” x86 Processors after the Pentium” Pro Processor [6]. However, to provide several page sizes,
most commercial designs put several TLBs inside the processor for each individual size. Recently, several
interesting mechanisms are proposed to support multi-page size processor. Lee et al. propose a novel
banked-promotion TLB structure to support two page sizes dynamically. Four 4KB pages can be
promoted to a 16KB superpage dynamically. To support such mechanism, an interesting two-bank TLB is
designed. The heuristic promotion algorithm can promote four consecutive entries from small-page TLB
bank to large-page TLB bank [2,9]. In addition, Swanson et al. present a novel memory controller which
can aggressively create superpages even from non-contiguous and unaligned regions of physical memory

space [13]. Channon et al. presents the re-configurable partitioned TLBs to improve the TLB performance
(1].

Though lots of these new mechanisms are proposed, just only a few studies are focused on the TLB
entries prefetching/preloading. Saulsbury et al. introduces a interesting mechanism, caled the
Recency-based TLB Preloading (RP), to prefetch the TLB entry according to the ‘Recency’ of the
referenced pages [10]. The mechanism maintains the ‘Recency Stack’ via augmented trandation table
entry in memory and the TLB inside the processor according to the recently referenced pages. Thus the
next possible referenced page number can be prefetched. However, the mechanism may increase the
memory traffic and the TTE should do some changes to store the stack pointers for the link-list. To solve
these possible problems, Kandirgju et al. propose a new prefetching technique, called the Distance
Prefetching (DP), according to the recently referenced pages ‘distance (stride)’ [8]. The mechanism
maintains a table to keep the track of differences between successive address references and do
prefetching according to the predicted distance. The paper also compares other possible prefetching
techniques borrowing ideas from the cache prefetching techniques, such as Sequential Prefetching (SP),
Arbitrary Strride Prefetching (ASP) and the Markov Prefetching (MP). Because of the implementation
costs, we'll focus on the studying of the SP and DP in this paper.

However, it is widely known that the frequent context switching under the multiprogramming
environment also impact the overall performance very seriously. Though it may be one of the most
serious ‘performancekiller’ for the TLB performance, few studies really consider thisissue very serioudly.
That may be because it's very hard to model and estimate the context switching activities caused by the
OS and it's also hard to consider this issue without considering the OS issue first. In this paper, we
propose a novel and easy implement TLB mechanism to reduce the miss rate caused by the context
switching. To support this new novel mechanism, the OS part should be modified a little. The new

mechanism can be easily implemented on future high performance systems.

All the simulations will be done by the modified SimpleScalar Version 3.0d tool suite [11]
provided by the SimpleScalar LL C with SPEC95.

The rest of the paper is organized as follows. Section 2 demonstrates the architecture of the new
novel TLB. Section 3 gives the simulation results. Finally, the conclusions and future work discussion are

summarized in the Section 4.

ARCHITECTURE OF THENOVEL TLB
This section describes in detail of the new novel TLB structure and mechanism we proposed for
processors with 32KB-page size. The new novel design can be implemented not only in contemporary
processors but future high performance processors comprised with billion of transistors. Furthermore, the
mechanism is especialy suitable to be implemented on processors with larger addressing space than

current processors with just 32-hit addressing ability.

Overview

Figure 1 shows in detail our proposed novel TLB structure to reduce the miss rate in context switching
with 32-KB page size. We select 32 KB as our default page size because we expect that processors tend

to provide larger page sizes with larger addressing space in the future. Furthermore, we'll have other new
study for TLB to provide superpages with page promotion mechanism.

Frafwics [aift

Freteich Logs

Figure 1. The Novel TLB Structure

The proposed structure consists of the following parts — 32 TLB banks with group tags to store the
address trandations, a multiplexer to select specific TLB banks, a prefetch buffer to store the prefetching
entries, and the prefetch logic to activate the prefetching mechanism. Each TLB bank has 32 entries and it
can be implemented with CAM (content addressable memory) which is commonly used in the traditional
TLB. Furthermore, each TLB bank is implemented with fully associativity with the LRU entry
replacement policy. That means each bank can be easily implemented the same as traditional design. Thus
there are totally 1024 entries in this new design. However, we can easily find that other new processors
also try to increase the total entries of their TLB (TLB size) to reduce the possibilities of the TLB misses,
such as 512-entry TLB with 4KB page size support on Intel” Pentium™ !!! Processor [4]. Furthermore,
with larger page sizes, the cost is decreased. Except the 32 TLB banks, there are also 32 extra registers to
store the bank tag for each bank as shown in Figure 1. The register contains task tag to identify each task,
the current bit to identify the current task, the valid bit to validate a bank, and the LRU bits to replace the
victim bank. It should be noted that the task tag can be PID (Process ID) or the PPN (Physical Page
Number) of the executing instruction when the context switch occurs. The PID is selected as task tag on
systems that the PID would be available. Otherwise, the PPN of the executing instruction when the
context switching occurs from the PPN field (or last translation) is used. Considering more generic cases,
the PPN is selected; however, the PID can be more easily implemented. The discussion will be ignored in
this paper. However, we till have to point out that we treat ITLB and DTLB as a couple, and they share
the same bank tag. That means they stores translations for the same task in the same related bank. Except
previous discussed parts, the remainder parts are designed for the entry prefetching mechanism. The
prefetched logic initiates only when the TLB misses occurs. When the lookup misses in the current TLB
bank but hits in the prefetch buffer, the address translation is generated from that hit entry and it will be
inserted into the current TLB bank that is the same as traditional TLB entry replacement. Then, the
prefetch logic tries to prefetch other entries into the prefetch buffer. If the lookup are missed in both

current TLB bank and the prefetch buffer, the traditional address translation mechanism is initiated to
generate the correct address trand ation and then the prefetch logic prefetches new entries into the prefetch
buffer according to current address. The ‘ Prefetch Logic' can be SP or DP described in[8].

Modifications needed for OS

In order to implement the new mechanism, the OS is needed to do a little modification. Except the
page size issue, the OS is required to send ‘the clear TLB signal’ to the processor only when page
swapping with disks occurs or page frames release. Fortunately, it's very easy to realize. Most modern
processors provide some ways to flush TLB entries, such as STA instruction with alternative addresses on
Sparc architecture [12].

Mechanisms of the design

The proposed TLB structure is divided into 32 banks and once the virtual address is generated from the
CPU, the virtual page number (VPN, from the most significant bit to the previous bit of the offset, for
example [31:15] in 32-bit addressing environment or [35:15] in 36-bit addressing environment) is sent to
the 32 banks and the prefetch buffer in parallel. Each bank and the prefetch buffer work as the
conventional TLB, and the PPN of the hit entries of each bank and prefetch buffer are sent to a
multiplexer. In addition, the select signals are obtained from ‘AND’ of the current bit of group tags and hit
signal of each TLB bank, and also the hit signal from the prefetch buffer, to select the correct trandation.
If it'sahitin current TLB bank, the current TLB bank works as conventional TLB. The physical address
can be simply generated by combining the output PPN and the offset from the virtual address. If it's a
miss in current TLB bank but a hit in prefetch buffer, the operations are the same as what mentioned in
the previous section. However, except the simplest situation, all other conditions should be carefully

handled by the MMU (Memory Management Unit). The Following describes them in details.

1) No current bit set in all banks: The situation could be happened only when the first instruction
fetching after a context switching for ITLB, the system initialization, or swapping pages with
disks occurs. In this situation, no valid physical address can be provided via TLB trandation. The
address should be generated in conventional way by the OS and MMU. After the physical
address (or PID if it is available) is generated, it is compared with the task field of bank tags. If
any of it is hit with a valid bank tag, the current bit of that bank tag is set. Otherwise, the MMU
should try to select avictim bank with invalid bit and LRU bits from the bank tag and flush al its
32 entries (both related ITLB and DTLB). Then the current bit of this bank should be set and the
LRU bits of all bank tags should be updated. Then the correct trandation is stored into the
current ITLB bank entry, and the task tag of the current bank tag should be set. Moreover, it is
the generated PPN (or PID in the environment if it is available) that is stored into the task tag
field of the current bank tag. Finally, the prefetch logic initiates the prefetching mechanism that

is the same as what mentioned in previous section.

2)

3)

4)

One current bit found but no valid trandation in both current bank and prefetch buffer: If one
current bit is found but no valid tranglation can be generated, that means the TLB (ITLB or
DTLB) reference of the current task is available before but the missed page has not referenced
yet. The operation of the current TLB bank just simply acts as a conventional TLB, and no bank
tag modification is needed. Then the prefetch mechanism is worked as what mentioned in

previous section.

Context switching: Once the context switching occurs, the MMU just needs to clear the current

bit of the bank tags and flush the prefetch buffer. No more other actions are needed.

Page swapping with disk occurring or page frame releasing: If the page swapping with disks or
page frame releasing occurs, the modified OS that we already discussed sends the ‘clear TLB
signa’ to the MMU. Hence, the MMU can clear the valid bit of al bank tags and flush the
prefetch buffer.

SIMULATION RESULTS

All of the simulations were done with the modified SimpleScalar Version 3.0d tool suite. We
simulated all the SPEC95 benchmark to present the expected performance. We assumed that the
context switching would happen after executing one million instructions. We compared the miss rates
of 1024-entry TLB after context switching with the proposed TLB structure of 32 entries each bank
with SP and DP prefetching mechanism after correctly keeping entries. We assume the SP can prefetch
entries with VPN of +9 and -8. That meanstotal 17 entries are prefetched. Moreover, we also assumed
the DP can prefetch total 16 entries with 64-row distance table and each row has 2 predicted distance
dots. Though we assume the DP with only 16-entry prefetch buffer, the costs of DP is still higher than
SP. That's because the extra distance table are required in DP methodology. Figure 2 gives the
simulation results of all SPEC95 benchmark.

Miss Rate

Miss Rate of ITLB

00040 0003476 0003481
00035 F]]
00030 F
00025
00020 F
00015 F
00010

0.000260 0000410

00005 |- 0.000007 0.000000
0.0000

1024-m88ksim DP-m88ksim LP-m88ksim 1024-perl DP-perl LP-perl

m88ksim and perl with different TLB Configurations

Miss Rate

Miss Rate of ITLB

00014 0.0012
00012 F

00010

00008 [
00006

00004 F
0000157
00002

|—| 0.000002 0.000000 0.000004 0.000001
0.0000

1024-li DP-li LP-li 1024-go DP-go LP-go

li and go with different TLB Configurations

00050

00040

00030

Miss Rate

00020

00010

00000

Miss Rate of ITLB

1024-vortex DP-vortex LP-vortex 1024-gcc DP-gcc LP-gcc

vortex and gcc with different TLB Configurations

00300

00250

00200

00150

Miss Rate

00100

00050

00000

Miss Rate of ITLB

1024-ijpeg DP-ijpeg LP-ijpeg 1024-Compress DP-Compress LP-Compress

ijpeg and compress with different TLB Configurations

Figure 2(a). ITLB Miss Rates for all SPEC95 benchmark

Miss Rate of DTLB

00140 0012911 0012911
00120
00100
2
S 00080
2 00060
=
00040
00020
00000
1024-vortex DP-vortex LP-vortex 1024-gcc DP-gcc LP-gcc
vortex and gcc with different TLB Configurations
Miss Rate of DTLB
00070 0006577
00060
00050
@
£ 00040
2 00030
s

00020
0.0010
0.0000

1024-1i DP-li LP-li 1024-go DP-go LP-go

li and go with different TLB Configurations

Miss Rate of DTLB

0.004733 0004737

00050
00040 [0003446

00030 |
0002030

00020 F
0001220 0001037
00010 F |—|

0.0000

Miss Rate

1024-m88ksim DP-m88ksim LP-m88ksim 1024-perl DP-perl LP-perl

m88ksim and perl with different TLB Configurations

Miss Rate of DTLB

0.1000

0.0800

0.053495

0.0600

Miss Rate

00400

00200

0003004 0000165 0000079
00000

1024-ijpeg DP-ijpeg LP-ijpeg 1024-Compress DP-Compress LP-Compress

ijpeg and compress with different TLB Configurations

Figure 2(b). DTLB Miss Rates for all SPEC95 benchmark

Figure 2(a) and Figure 2(b) show the simulation results for ITLB and DTLB with 1024-entry
conventional TLB and new TLB structures with DP and SP prefetching mechanism respectively.
Observing the simulation results, we can find that our design can deliver better performance than
conventional TLB structure if correct TLB entries can be kept. Furthermore, we can also find that the SP
can provide better performance than DP prefetching mechanism under multiprogramming environment.
That's because after the context switching occurring the DP prefetching mechanism needs the learning
time to fill in the distance table. According to the simulation results, we strongly suggest to use the

simplest SP prefetching mechanism in our design.

CONCLUSIONS AND FUTURE WORK

The TLB misses cause serious performance degradation on modern processors. In addition, the
context switching under the multiprogramming OS may cause this problem even more serioudly.
However, few studies focus on the context switching issue. In this paper, we presented a new novel TLB
mechanism for 32-KB page size environment to reduce the miss rate in context switching. We also
discuss how OS should be modified to support this mechanism. Furthermore, we also discussed how to
implement TLB entry prefetching mechanism in this structure. Finally, according to the simulation results,
we suggested just simply to use the sequential prefetching (SP) mechanism in this design. Except the
proposed mechanism, we have already begun to find solution to integrate the proposed structure to
support multi-page size with bank promotion methodology. We believe that till lots of work should be
doneinthisfield.

(1

(2

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]
[12)
(13]

REFERENCES
David Channon and David Koch, “Performance Analysis of Re-configurable Partitioned TLBs” in
Proceedings of the 30" Hawaii Int’| Conf. on System Sciences, Vol. 5, pp.168-177, 1995.
Zhen Fang, Lixin Zhang, John B. Carter, Wilson C. Hsieh, and Sally A. Mckee, “Reevauating Online
Superpage Promotion with Hardware Support,” in Proceedings of the 7" Int'l Symp. on High-Performance
Computer Architecture, pp.63-72,2001.
Michael J. Flynn, Boston: Computer Architecture — Pipelined and Parallel Processor Design. Jones and Bartlett
Publishers, ch. 5.16, pp.323-325.
Intel Corp., I1A-32 Intel” Architecture — Software Developer’s Manual Vol. 3 — System Programming Guide,
2004.
Intel Corp., Intel” Itanium” 2 Processor Reference Manual — For Software Development and Optimization,
May 2004.
Intel Corp., Pentium” Pro Family Developer’'s Manual Vol. 3 — Operating System Writer's Guide, Dec.
1995.
B.L. Jacob et al., “Virtua Memory: Issues of Implementation,” |IEEE Computer, Vol. 31, NO. 6, pp.33-43,
June 1998.
Gokul B. Kandirgu and Anand Sivasubramaniam, “Going Distance for TLB Prefetching: An
Application-driven Study,” in Proceedings of the 29" Annual Int’| Symp. on Computer Architecture, 2002.
Jung-Hoon Lee, Jang-Soo Lee, She-Woong Jeong, and Shin-Dug Kim, “A Banked-Promotion TLB For
High Performance and Low Power,” in Proceedings of the 2001 Int’| Conf. on Computer Design, pp.118-123,
2001.
Ashley Saulsbury, Fredrik Dahlgren, Per Stenstrom, “Recency-Based TLB Preloading,” in Proceedings of the
27" Int’l Symp. on Computer Architecture, pp.117-127, 2000.

SimpleScalar LLC, http://www.simplescalar.com/

SPARC Internationa Inc. The SPARC Architecture Manua Version 8, pp.241-260, 1992.

Mark Swanson, Leigh Stoller, and John Carter, “Increasing TLB Reach Using Superpages Backed by Shadow
Memory,” in Proceedings of the 25" Annual Int’| Symp. On Computer Architecture, pp.204-213, 1998.

