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Abstract 
Address translations from virtual addresses to physical addresses are widely considered as one of the most 

important issue for memory system performance. In order to improve the performance, the Translation Lookaside 

Buffer (TLB) is used. If any misses occur, the performance of the processor will seriously degrade [7]. To reduce such 

misses, lots of methodologies are proposed. However, only a few works focus on reducing the miss rates in context 

switching under multiprogramming environment. This paper presents a novel mechanism for the TLB to reduce the 

miss rate in context switching with 32K page size. All simulations were done with modified SimpleScalar 3.0d tool 

suite and SPEC95 benchmarks. The results show that this design can be very useful for multiprogramming 

environment under specific conditions. 

INTRODUCTION 
    In order to support larger memory requirements for modern applications, it’s important for modern 

operating systems (OS) to provide the virtual memory mechanism. However, a lot of time is needed to 

fetch the translations from main memory. To reduce the cost of address translations, the translation 

lookaside buffers (TLBs) are widely implemented inside the processor [3].  

    In order to reduce the TLB miss rate, most processors increase the size (total entries) of TLBs with 

fully or set associative. For example, Intel  puts a 512-entry 4KB-page TLB inside the Intel  Pentium  !!! 

Processor [4]. Furthermore, some processors even try to provide multi-level TLBs, such as 2-level 

ITLB/DTLB design on the highest-end Intel  Itanium  2 Processor [5]. In addition, some processors 

begin to provide larger page sizes to increase the TLB span, such as 2MB or even 4MB page size on all 

new Intel  x86 Processors after the Pentium  Pro Processor [6]. However, to provide several page sizes, 

most commercial designs put several TLBs inside the processor for each individual size. Recently, several 

interesting mechanisms are proposed to support multi-page size processor. Lee et al. propose a novel 

banked-promotion TLB structure to support two page sizes dynamically. Four 4KB pages can be 

promoted to a 16KB superpage dynamically. To support such mechanism, an interesting two-bank TLB is 

designed. The heuristic promotion algorithm can promote four consecutive entries from small-page TLB 

bank to large-page TLB bank [2,9]. In addition, Swanson et al. present a novel memory controller which 

can aggressively create superpages even from non-contiguous and unaligned regions of physical memory 

space [13]. Channon et al. presents the re-configurable partitioned TLBs to improve the TLB performance 

[1].  



    Though lots of these new mechanisms are proposed, just only a few studies are focused on the TLB 

entries prefetching/preloading. Saulsbury et al. introduces a interesting mechanism, called the 

Recency-based TLB Preloading (RP), to prefetch the TLB entry according to the ‘Recency’ of the 

referenced pages [10]. The mechanism maintains the ‘Recency Stack’ via augmented translation table 

entry in memory and the TLB inside the processor according to the recently referenced pages. Thus the 

next possible referenced page number can be prefetched. However, the mechanism may increase the 

memory traffic and the TTE should do some changes to store the stack pointers for the link-list. To solve 

these possible problems, Kandiraju et al. propose a new prefetching technique, called the Distance 

Prefetching (DP), according to the recently referenced pages ‘distance (stride)’ [8]. The mechanism 

maintains a table to keep the track of differences between successive address references and do 

prefetching according to the predicted distance. The paper also compares other possible prefetching 

techniques borrowing ideas from the cache prefetching techniques, such as Sequential Prefetching (SP), 

Arbitrary Stride Prefetching (ASP) and the Markov Prefetching (MP). Because of the implementation 

costs, we’ll focus on the studying of the SP and DP in this paper.  

    However, it is widely known that the frequent context switching under the multiprogramming 

environment also impact the overall performance very seriously. Though it may be one of the most 

serious ‘performance killer’ for the TLB performance, few studies really consider this issue very seriously. 

That may be because it’s very hard to model and estimate the context switching activities caused by the 

OS and it’s also hard to consider this issue without considering the OS issue first. In this paper, we 

propose a novel and easy implement TLB mechanism to reduce the miss rate caused by the context 

switching. To support this new novel mechanism, the OS part should be modified a little. The new 

mechanism can be easily implemented on future high performance systems. 

     All the simulations will be done by the modified SimpleScalar Version 3.0d tool suite [11] 

provided by the SimpleScalar LLC with SPEC95.  

    The rest of the paper is organized as follows. Section 2 demonstrates the architecture of the new 

novel TLB. Section 3 gives the simulation results. Finally, the conclusions and future work discussion are 

summarized in the Section 4. 

ARCHITECTURE OF THE NOVEL TLB 
     This section describes in detail of the new novel TLB structure and mechanism we proposed for 

processors with 32KB-page size. The new novel design can be implemented not only in contemporary 

processors but future high performance processors comprised with billion of transistors. Furthermore, the 

mechanism is especially suitable to be implemented on processors with larger addressing space than 

current processors with just 32-bit addressing ability. 

Overview 

Figure 1 shows in detail our proposed novel TLB structure to reduce the miss rate in context switching 
with 32-KB page size. We select 32 KB as our default page size because we expect that processors tend 



to provide larger page sizes with larger addressing space in the future. Furthermore, we’ll have other new 
study for TLB to provide superpages with page promotion mechanism.  

 
Figure 1. The Novel TLB Structure 

The proposed structure consists of the following parts – 32 TLB banks with group tags to store the 

address translations, a multiplexer to select specific TLB banks, a prefetch buffer to store the prefetching 

entries, and the prefetch logic to activate the prefetching mechanism. Each TLB bank has 32 entries and it 

can be implemented with CAM (content addressable memory) which is commonly used in the traditional 

TLB. Furthermore, each TLB bank is implemented with fully associativity with the LRU entry 

replacement policy. That means each bank can be easily implemented the same as traditional design. Thus 

there are totally 1024 entries in this new design. However, we can easily find that other new processors 

also try to increase the total entries of their TLB (TLB size) to reduce the possibilities of the TLB misses, 

such as 512-entry TLB with 4KB page size support on Intel  Pentium  !!! Processor [4]. Furthermore, 

with larger page sizes, the cost is decreased. Except the 32 TLB banks, there are also 32 extra registers to 

store the bank tag for each bank as shown in Figure 1. The register contains task tag to identify each task, 

the current bit to identify the current task, the valid bit to validate a bank, and the LRU bits to replace the 

victim bank. It should be noted that the task tag can be PID (Process ID) or the PPN (Physical Page 

Number) of the executing instruction when the context switch occurs. The PID is selected as task tag on 

systems that the PID would be available. Otherwise, the PPN of the executing instruction when the 

context switching occurs from the PPN field (or last translation) is used. Considering more generic cases, 

the PPN is selected; however, the PID can be more easily implemented. The discussion will be ignored in 

this paper. However, we still have to point out that we treat ITLB and DTLB as a couple, and they share 

the same bank tag. That means they stores translations for the same task in the same related bank. Except 

previous discussed parts, the remainder parts are designed for the entry prefetching mechanism. The 

prefetched logic initiates only when the TLB misses occurs. When the lookup misses in the current TLB 

bank but hits in the prefetch buffer, the address translation is generated from that hit entry and it will be 

inserted into the current TLB bank that is the same as traditional TLB entry replacement. Then, the 

prefetch logic tries to prefetch other entries into the prefetch buffer. If the lookup are missed in both 



current TLB bank and the prefetch buffer, the traditional address translation mechanism is initiated to 

generate the correct address translation and then the prefetch logic prefetches new entries into the prefetch 

buffer according to current address. The ‘Prefetch Logic’ can be SP or DP described in[8].  

Modifications needed for OS 

In order to implement the new mechanism, the OS is needed to do a little modification. Except the 

page size issue, the OS is required to send ‘the clear TLB signal’ to the processor only when page 

swapping with disks occurs or page frames release. Fortunately, it’s very easy to realize. Most modern 

processors provide some ways to flush TLB entries, such as STA instruction with alternative addresses on 

Sparc architecture [12]. 

Mechanisms of the design 

The proposed TLB structure is divided into 32 banks and once the virtual address is generated from the 

CPU, the virtual page number (VPN, from the most significant bit to the previous bit of the offset, for 

example [31:15] in 32-bit addressing environment or [35:15] in 36-bit addressing environment) is sent to 

the 32 banks and the prefetch buffer in parallel. Each bank and the prefetch buffer work as the 

conventional TLB, and the PPN of the hit entries of each bank and prefetch buffer are sent to a 

multiplexer. In addition, the select signals are obtained from ‘AND’ of the current bit of group tags and hit 

signal of each TLB bank, and also the hit signal from the prefetch buffer, to select the correct translation. 

If it’s a hit in current TLB bank, the current TLB bank works as conventional TLB. The physical address 

can be simply generated by combining the output PPN and the offset from the virtual address. If it’s a 

miss in current TLB bank but a hit in prefetch buffer, the operations are the same as what mentioned in 

the previous section. However, except the simplest situation, all other conditions should be carefully 

handled by the MMU (Memory Management Unit). The Following describes them in details. 

1) No current bit set in all banks: The situation could be happened only when the first instruction 

fetching after a context switching for ITLB, the system initialization, or swapping pages with 

disks occurs. In this situation, no valid physical address can be provided via TLB translation. The 

address should be generated in conventional way by the OS and MMU. After the physical 

address (or PID if it is available) is generated, it is compared with the task field of bank tags. If 

any of it is hit with a valid bank tag, the current bit of that bank tag is set. Otherwise, the MMU 

should try to select a victim bank with invalid bit and LRU bits from the bank tag and flush all its 

32 entries (both related ITLB and DTLB). Then the current bit of this bank should be set and the 

LRU bits of all bank tags should be updated. Then the correct translation is stored into the 

current ITLB bank entry, and the task tag of the current bank tag should be set. Moreover, it is 

the generated PPN (or PID in the environment if it is available) that is stored into the task tag 

field of the current bank tag. Finally, the prefetch logic initiates the prefetching mechanism that 

is the same as what mentioned in previous section. 



2) One current bit found but no valid translation in both current bank and prefetch buffer: If one 

current bit is found but no valid translation can be generated, that means the TLB (ITLB or 

DTLB) reference of the current task is available before but the missed page has not referenced 

yet. The operation of the current TLB bank just simply acts as a conventional TLB, and no bank 

tag modification is needed. Then the prefetch mechanism is worked as what mentioned in 

previous section. 

3) Context switching: Once the context switching occurs, the MMU just needs to clear the current 

bit of the bank tags and flush the prefetch buffer. No more other actions are needed. 

4) Page swapping with disk occurring or page frame releasing: If the page swapping with disks or 

page frame releasing occurs, the modified OS that we already discussed sends the ‘clear TLB 

signal’ to the MMU. Hence, the MMU can clear the valid bit of all bank tags and flush the 

prefetch buffer. 

SIMULATION RESULTS 
All of the simulations were done with the modified SimpleScalar Version 3.0d tool suite. We 
simulated all the SPEC95 benchmark to present the expected performance. We assumed that the 
context switching would happen after executing one million instructions. We compared the miss rates 
of 1024-entry TLB after context switching with the proposed TLB structure of 32 entries each bank 
with SP and DP prefetching mechanism after correctly keeping entries. We assume the SP can prefetch 
entries with VPN of +9 and -8. That means total 17 entries are prefetched. Moreover, we also assumed 
the DP can prefetch total 16 entries with 64-row distance table and each row has 2 predicted distance 
slots. Though we assume the DP with only 16-entry prefetch buffer, the costs of DP is still higher than 
SP. That’s because the extra distance table are required in DP methodology. Figure 2 gives the 
simulation results of all SPEC95 benchmark. 
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Figure 2(a). ITLB Miss Rates for all SPEC95 benchmark 
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Figure 2(b). DTLB Miss Rates for all SPEC95 benchmark 

   Figure 2(a) and Figure 2(b) show the simulation results for ITLB and DTLB with 1024-entry 

conventional TLB and new TLB structures with DP and SP prefetching mechanism respectively. 

Observing the simulation results, we can find that our design can deliver better performance than 

conventional TLB structure if correct TLB entries can be kept. Furthermore, we can also find that the SP 

can provide better performance than DP prefetching mechanism under multiprogramming environment. 

That’s because after the context switching occurring the DP prefetching mechanism needs the learning 

time to fill in the distance table. According to the simulation results, we strongly suggest to use the 

simplest SP prefetching mechanism in our design.  

CONCLUSIONS AND FUTURE WORK 
    The TLB misses cause serious performance degradation on modern processors. In addition, the 

context switching under the multiprogramming OS may cause this problem even more seriously. 

However, few studies focus on the context switching issue. In this paper, we presented a new novel TLB 

mechanism for 32-KB page size environment to reduce the miss rate in context switching. We also 

discuss how OS should be modified to support this mechanism. Furthermore, we also discussed how to 

implement TLB entry prefetching mechanism in this structure. Finally, according to the simulation results, 

we suggested just simply to use the sequential prefetching (SP) mechanism in this design. Except the 

proposed mechanism, we have already begun to find solution to integrate the proposed structure to 

support multi-page size with bank promotion methodology. We believe that still lots of work should be 

done in this field. 
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