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8 Abstract

9 An energy transport model coupled with the density gradient method as quantum mechanical corrections is pro-

10 posed and numerically investigated. This new model is comprehensive in both physical and mathematical aspects. It

11 is capable of describing hot electron transport as well as significant quantum mechanical effects for advanced devices

12 with dimensions comparable to the de Broglie wave-length. The model is completely self-adjoint for all state variables

13 and hence provides many appealing mathematical features such as global convergence, fast iterative solution, and

14 highly parallelizable. Numerical simulations on diode and MOSFET with the gate length down to 34 nm using this

15 model have been performed and compared with that using the classical transport model. It is shown that the I–V char-

16 acteristics of this short-channel device is significantly corrected by the density-gradient equations with current drive

17 reduced by up to 60% comparing with that of the classical model along. Moreover, a 2D quantum layer, which is only

18 a fraction of the length scale of inversion layer, is also effectively captured by this new model with very fine mesh near

19 the interface produced by an adaptive finite element method.

20 � 2004 Published by Elsevier Inc.

21

22 1. Introduction

23 Numerical simulation of charge transport in device structures is widely used for analysis of physical

24 processes in the semiconductor devices and estimation of their electrical parameters. The major part of

25 the activities in this field is based on drift-diffusion (DD) equations. However, there is a growing realization
26 that technologist cannot ignore quantum effects much longer. The combination of thin gate oxides and hea-

27 vy doping in the conventional MOSFETs, and the thin silicon body of the double-gate structures, will result

28 in substantial quantum mechanical (QM) threshold voltage shift and transconductance degradation [21].

0021-9991/$ - see front matter � 2004 Published by Elsevier Inc.
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29 Computationally efficient methods to include QM effects are required for the purpose of practical Compu-

30 ter Aided Design of this generation of devices.

31 Some numerical methods employing full quantum models such as non-equilibrium Green�s function [23]

32 and Wigner�s function [9] suffer from unsolved robustness problems and are still much too costly for device

33 or circuit simulations. Another approach for including QM effects is to add quantum corrections to clas-
34 sical models [4,3,15–20,22,28,30,32,33]. In particular, the density gradient (DG) model developed by Anc-

35 ona et al. is a more rigorous macroscopic transport model which avoids ad hoc assumption to the material

36 parameters or imposing an artificial shape function [34]. It is demonstrated in [1,7,8,29] that this model is

37 feasible and efficient to accurately and generally simulate multi-dimensional devices with gate lengths rang-

38 ing from 30 nm down to 6 nm when combined with the DD model.

39 In this paper, we further extend the DG model to combine with the energy transport (ET) model pro-

40 posed in our previous work [11] and show that this new combination (DGET) is capable of describing hot

41 electron transport as well as significant QM effects for advanced devices. Our model is able to explain that
42 electron temperature essentially differs from the lattice temperature. It is clear that this effect cannot be de-

43 scribed by the DG model along. Quantum hydrodynamic (QHD) models give accurate simulation results,

44 but the numerical methods to solve this system are too costly and time consuming to model real problems in

45 semiconductor production mode where simulation results are needed in hours or minutes. The DGET mod-

46 el is of parabolic type so that its numerical solution needs less effort than QHD models which contain

47 hyperbolic modes.

48 Moreover, our model is completely self-adjoint for all state variables and hence provides many appealing

49 mathematical features such as global convergence, fast iterative solution, and highly parallelizable as dem-
50 onstrated in our previous papers [11,12,24]. The global convergence is a consequence of monotone iterative

51 methods used in solving the discrete systems of nonlinear algebraic equations resulting from adaptive finite

52 element approximation of the model. It is shown here that the convergence analysis of these methods given

53 in [11,12] can be straightforwardly carried over to the present model. Our numerical experiments on various

54 device structures with high drain bias have shown that the monotone iteration do not suffer from the con-

55 vergence difficulties as frequently encountered by the commonly used Newton�s iteration since the Jacobian

56 is either close to singular or poorly conditioned [29]. This is a fundamental issue constantly faced by the

57 practitioner in device and circuit modeling. Numerical simulations on diode and MOSFET with the gate
58 length down to 34 nm using the DGET model have been performed and compared with that using the

59 ET model. It is shown that the I–V characteristics of this short-channel device is significantly corrected

60 by the density-gradient equations with current drive reduced by up to 60% compared with that of the clas-

61 sical model along. Moreover, a 2D quantum layer, which is only a fraction of the length scale of inversion

62 layer, is also effectively captured by this new model with very fine mesh near the interface produced by the

63 adaptive finite element method.

64 The paper is divided into the following sections: Section 2 briefly recalls the ET model considered in [11]

65 and the DG model. A full self-adjoint formulation of both models is then given in Section 3. For the sake of
66 clearness, we also extend our previous adaptive finite-element algorithm [11] to the present model in Section

67 4. In Section 5, numerical results of simulation on various diodes to compare with the results in the liter-

68 ature and on MOSFET device structures to demonstrate the effectiveness of the proposed model. A short

69 concluding remark is given in Section 6.

70 2. The energy transport and density gradient models

71 As in [11], we consider the following ET model

D/ ¼ q
es
ðn� p þ N�

A � Nþ
DÞ; ð1Þ
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1

q
r � Jn ¼ R; ð2Þ

1

q
r � Jp ¼ �R; ð3Þ

r � Sn ¼ Jn � E� n
xn � x0

snx

� �
; ð4Þ

r � Sp ¼ Jp � E� p
xp � x0

spx

� �
; ð5Þ

87 where / is the electrostatic potential, n and p are the electron and hole concentrations, q is the elemen-

88 tary charge, es is the permittivity constant of semiconductor, N�
A and Nþ

D are the densities of ionized

89 impurities, Jn and Jp are the current densities, R is the function describing the balance of generation

90 and recombination of electrons and holes, Sn and Sp are the energy fluxes for carriers, E is the electric

91 field, snx and spx are the carrier energy relaxation times, x0 is the thermal energy, and xn and xp are

92 the carrier average energies. These physical variables are tightly coupled together with the following aux-
93 iliary relationships

E ¼ �r/; ð6Þ

Jn ¼ �qlnnr/þ qDnrn ¼ �qnvn; ð7Þ

Jp ¼ �qlppr/� qDprp ¼ qpvp; ð8Þ

Sn ¼
Jn

�q
xn þ

Jn

�q
kBT n þQn; ð9Þ

Sp ¼
Jp

þq
xp þ

Jp

þq
kBT p þQp; ð10Þ

x0 ¼
3

2
kBT L; ð11Þ

xn ¼
3

2
kBT n þ

1

2
m�

njvnj
2
; ð12Þ

xp ¼
3

2
kBT p þ

1

2
m�

pjvpj
2
; ð13Þ

Qn ¼ �jnrT n; ð14Þ

Qp ¼ �jprT p; ð15Þ

jn ¼ 2
kB
q

� �2

nqlnT L; ð16Þ

jp ¼ 2
kB
q

� �2

pqlpT L; ð17Þ
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R ¼ np � n2i
s0nðp þ pTÞ þ s0pðnþ nTÞ

; ð18Þ

126 where Qn and Qp are the heat fluxes for carries, kB is Boltzmann�s constant, Tn, Tp, and TL are the electron,

127 hole and lattice temperatures, ln and lp are the field-dependent electron and hole mobilities, Dn and Dp are

128 the electron and hole diffusion coefficients expressed by the Einstein relation with the mobilities, m�
n and m�

p

129 are the electron and hole effective masses, vn and vp are the electron and hole velocities, jn and jp are the

130 electron and hole heat conductivities, and (18) is the Shockley–Read–Hall (SHR) generation-recombination
131 model with ni being the intrinsic carrier concentration, s0n and s0p the electron and hole lifetimes, and pT and

132 nT the electron and hole densities associated with energy levels of the traps. In the above equations, vectors

133 are denoted by bold letters.

134 The DG theory was developed by observing that the electron gas is energetically sensitive not only to its

135 density but also to the gradient of the density. It captures the nonlocality of quantum mechanics to the low-

136 est-order of �h2 where �h is the reduced Planck constant and can be rigorously derived from quantum

137 mechanics [4,3]. Specifically, a third order derivative term of quantum correction is added to the carrier cur-

138 rent density as

Jn ¼ �qlnnr/þ qDnrn� 2qlnbnnr
D
ffiffiffi
n

pffiffiffi
n

p
� �

; ð19Þ

Jp ¼ �qlppr/� qDprp þ 2qlpbppr
D
ffiffiffi
p

pffiffiffi
p

p
� �

; ð20Þ
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Fig. 1. The numerical results of the 600 nm silicon diode.
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145 where the coefficients bn ¼ �h2

12m�
nq

and bp ¼ �h2

12m�
pq

are the material parameters measuring the strength of the

146 gradient effects in the gas. To alleviate the difficulty in discretization caused by this higher order term, addi-

147 tional variables called the quantum potentials

/qn � 2bn
D
ffiffiffi
n

pffiffiffi
n

p
� �

; ð21Þ

/qp � �2bp
D
ffiffiffi
p

pffiffiffi
p

p
� �

ð22Þ

154 have been introduced in [29] and thus can be lumped with the classical drift term to obtain

Jn ¼ �qlnnrð/þ /qnÞ þ qDnrn; ð23Þ

Jp ¼ �qlpprð/þ /qpÞ � qDprp: ð24Þ

160 We thus have a complete set of seven PDEs (1)–(5) and (21) and (22) describing both ET and DG models

161 with the seven state variables /, n, p, /qn, /qp, Tn, and Tp.
162 Note that the coefficients in (21) and (22) result in a boundary layer near the silicon/silicon-oxide interface

163 for short-channel devices. The layer is only a fraction of the length scale of the inversion layer, in which the

164 electron density typically drops from its peak value of order 1018 at about 0.5–1.5 nm away from the interface

165 to zero at the interface [1,7]. Numerical treatments for this boundary layer problem are evidently subtle and

166 challenging. A more detailed description of our approach to this problem will be given in Section 5.
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Fig. 2. The numerical results of the 120 nm silicon diode.
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167 Remark 2.1. Taking first three moments of the Boltzmann transport equation (BTE) with conservation of

168 particles, momentum, and energy, the classical hydrodynamic (CHD) model can be expressed as (for

169 simplicity, we list the equations of electrons only) [6,17]:

on
ot

þr � ðnvnÞ ¼
on
ot

� �
c

;

opn
ot

þ vnr � pn þ pn � rvn ¼ �qnE�rðnkBT Þ þ
opn
ot

� �
c

;

oxn

ot
þr � ðvnxnÞ ¼ �qnvn � E�r � ðvnnkBT Þ � r �Qn þ

oxn

ot

� �
c

;

172 where pn ¼ m�
nnvn is the momentum density. Considering the steady state and employing the collision terms

opn
ot

� �
c

¼ � pn
spn

;

oxn

ot

� �
c

¼ �xn � x0

snx
;

175 we have [11]

Jn ¼ qln

kBT n

q
rnþ nr kBT n

q
� /

� �� �
178 and Eq. (4). Similarly the three conservation equations of the QHD model are [16,18]
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Fig. 3. The numerical results of the 30 nm silicon diode.

6 R.-C. Chen, J.-L. Liu / Journal of Computational Physics xxx (2004) xxx–xxx

YJCPH 668 No. of Pages 26, DTD=5.0.1

23 October 2004; Disk Used
ARTICLE IN PRESS



UN
CO

RR
EC

TE
D P

RO
OF

on
ot

þr � ðnvnÞ ¼
on
ot

� �
c

;

opn
ot

þ vnr � pn þ pn � rvn þ
n
3
rQ ¼ �qnE�rðnkBT Þ þ

opn
ot

� �
c

;

oxn

ot
þr � ðvnxnÞ ¼ �qnvn � E�r � ðvnnkBT Þ � r �Qn þ

oxn

ot

� �
c

:

181 The quantum correction to the momentum equation is related to the quantum potential of Bohm [27]

Q ¼ � �h2

2m�
n

D
ffiffiffi
n

pffiffiffi
n

p ;

184 and to the energy density given by

xn ¼
3

2
kBT n þ

1

2
m�

njvnj
2 � �h2n

24m�
n

D logðnÞ:

187 Following the previous deductive procedure the quantum correction current density equation is

Jn ¼ qln

kBT n

q
rnþ nr kBT n

q
� /

� �
� �h2

6m�
nq

r D
ffiffiffi
n

pffiffiffi
n

p
� �� �

¼ �qlnnrð/þ /qnÞ þ qDnrnþ lnkBnrT n:

–0.01

–0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

X–Axis

E
le

ct
ro

n 
Q

ua
nt

um
 P

ot
en

tia
l φ

qn
 (

V
)

 30nm

120nm

600nm

JunctionJunction

Fig. 4. The tendency of the quantum potential variation.
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190 Compared to the DG model, there is a mechanism that can cause an increase in diffusion, i.e., particle

191 diffusion is enhanced when Tn is significantly greater than TL. Once we obtain the information of Tn from

192 the DGET model, we will use this formulation to estimate the drain current and to sketch the I–V curves.

193 On the other hand, since we do not add the quantum correction to the energy density, the difference of the

194 temperature distribution between the ET and DGET models is not very significant.

195 Remark 2.2. A quantum energy balance model appears to be first proposed by Grubin and Kreskovsky in

196 [18] for 1D mesoscopic structures. In their model, quantum correction terms are explicitly included in the

197 carrier average energies (11) and (12). As a result, third order derivative terms of correction are associated

198 not only with the carrier densities (see (19) and (20)) but also with the carrier energies. Putting these cor-

199 rection terms into our model, i.e. into (9) and (10), we will obtain a product of the correction terms in (9)

200 and (10) which obviously makes computations more formidable for 2D simulation. Instead, the correction

201 terms in our model are only explicitly added to the carrier density. The energy balance equations are implic-
202 itly and thus less corrected by the quantum effects via the carrier current densities.

203 3. A self-adjoint formulation of the DGET model

204 PDEs in self-adjoint form are analytically as well as numerically appealing. In [11,12], we give a rather

205 thorough study of the self-adjoint DD and ET models in terms of mathematical analysis and numerical jus-

206 tification. We now consider the self-adjoint formulation of the above DGET model and, for this purpose,

207 introduce the following new variables

Fig. 5. Doping concentration.

8 R.-C. Chen, J.-L. Liu / Journal of Computational Physics xxx (2004) xxx–xxx

YJCPH 668 No. of Pages 26, DTD=5.0.1

23 October 2004; Disk Used
ARTICLE IN PRESS



UN
CO

RR
EC

TE
D P

RO
OF

u ¼ exp
�un

V T

� �
; ð25Þ

v ¼ exp
up

V T

� �
; ð26Þ

fn ¼
ffiffiffi
n

p
; ð27Þ

fp ¼
ffiffiffi
p

p
; ð28Þ

gn ¼ T n= exp
5un

4V T

� �
; ð29Þ

gp ¼ T p= exp �
5up

4V T

� �
; ð30Þ

221 where VT = (kBTL)/q is the thermal voltage and un and up are the generalized quasi-Fermi potentials that

222 include the QM effects as shown below. Assuming a Maxwell–Boltzmann energy distribution of carriers, we
223 have the quantum correction expressions of the carriers
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n ¼ ni exp
/� un þ /qn

V T

� �
¼ ni exp

/þ /qn

V T

� �
u ¼ f2n; ð31Þ

p ¼ ni exp
up � /� /qp

V T

� �
¼ ni exp

�/� /qp

V T

� �
v ¼ f2p; ð32Þ

229 and rewrite the quantum potentials as

/qn ¼ V T ln
f2n
uni

� �
� /; ð33Þ

/qp ¼ �V T ln
f2p
vni

 !
� /: ð34Þ

234 For Eq. (1) we have

D/ ¼ F ð/; u; v; fn; fpÞ; ð35Þ

237 where

F ð/; u; v; fn; fpÞ ¼
qni
es

u exp
/þ /qn

V T

� �
� v exp

�/� /qp

V T

� �� �
þ qðN�

A � Nþ
DÞ

es
: ð36Þ

240 Substituting (31) into the electron current equation (23), we obtain

Fig. 7. Electrostatic potential.
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Jn ¼ �qlnnrð/þ /qnÞ þ qDnr ni exp
/þ /qn

V T

� �
u

� �
ð37Þ

¼ �qlnnrð/þ /qnÞ þ q
Dn

V T

ni exp
/þ /qn

V T

� �
u

� �
rð/þ /qnÞ þ qDn ni exp

/þ /qn

V T

� �� �
ru

¼ qDnni exp
/þ /qn

V T

� �
ru; ð38Þ

243 which defines the generalized quasi-Fermi potential as in

Jn ¼ �qlnnrun; ð39Þ
247 with the quantum correction in electron concentration. Boundary conditions for this potential can be easily

248 specified. Similar expressions also exist for hole.

249 For the energy fluxes, we rewrite (9) more precisely as

Sn ¼
5Jn

�2q
kBT n � jnrT n þ

Jn

�q
1

2
m�

njvnj
2

� �
: ð40Þ

252 Substituting (16), (29), and (39) into this equation, we have

Sn ¼
5Jn

�2q
kBgn exp

5un

4V T

� �
� jn exp

5un

4V T

� �
rgn þ

5

4V T

gn exp
5un

4V T

� �
run

� �
þ Jn

�q
1

2
m�

njvnj
2

� �
¼ �jn exp

5un

4V T

� �
rgn þ

Jn

�q
1

2
m�

njvnj
2

� �
: ð41Þ

Fig. 8. Electron concentration.
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255 Hence, we obtain the following self-adjoint form

r � jn exp
5un

4V T

� �
rgn

� �
¼ RnðgnÞ; ð42Þ

258 where

RnðgnÞ ¼ n
xn � x0

snx

� �
� Jn � E� 1

q
r � 1

2
m�

n

jJnj2

q2n2
Jn

 !
: ð43Þ

261 We also have a similar equation for hole.

262 Our new model for both DG and ET equations with the seven state variables /, u, v, fn, fp, gn, and gp
263 and their associated boundary conditions (BCs) is re-organized as follows:

D/ ¼ F ð/; u; v; fn; fpÞ; ð44Þ

1

q
r � Jn ¼ Rð/; u; v; fn; fpÞ; ð45Þ

1

q
r � Jp ¼ �Rð/; u; v; fn; fpÞ; ð46Þ

Dfn ¼ Znð/; u; v; fn; fpÞ; ð47Þ
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Fig. 9. Hole concentration.
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Dfp ¼ Zpð/; u; v; fn; fpÞ; ð48Þ

r �Gn ¼ RnðgnÞ; ð49Þ

r �Gp ¼ RpðgpÞ; ð50Þ

285 where

F ð/; u; v; fn; fpÞ ¼
qni
es

u exp
/þ /qn

V T

� �
� v exp

�/� /qp

V T

� �� �
þ qðN�

A � Nþ
DÞ

es
; ð51Þ

Jn ¼ þqDnni exp
/þ /qn

V T

� �
ru; ð52Þ

Jp ¼ �qDpni exp
�/� /qp

V T

� �
rv; ð53Þ

Rð/; u; v; fn; fpÞ ¼
n2i uv exp

/qn�/qp

V T

� �
� 1

h i
s0n niv exp

�/�/qp

V T

� �
þ pT

h i
þ s0p niu exp

/þ/qn

V T

� �
þ nT

h i ; ð54Þ

Znð/; u; v; fn; fpÞ ¼
fn
2bn

V T lnðf2nÞ � V T lnðuniÞ � /
� 	

; ð55Þ
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Fig. 10. Electron temperature.
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Zpð/; u; v; fn; fpÞ ¼ � fp
2bp

�V T lnðf2pÞ þ V T lnðvniÞ � /
h i

; ð56Þ

/qn ¼ V T lnðf2nÞ � V T lnðuniÞ � /; ð57Þ

/qp ¼ �V T lnðf2pÞ þ V T lnðvniÞ � /; ð58Þ

Gn ¼ jn exp
5un

4V T

� �
rgn; ð59Þ

Gp ¼ jp exp �
5up

4V T

� �
rgp; ð60Þ

RnðgnÞ ¼ n
xn � x0

snx

� �
� Jn � E� 1

q
r � 1

2
m�

n

jJnj2

q2n2
Jn

 !
; ð61Þ

RpðgpÞ ¼ p
xp � x0

spx

� �
� Jp � Eþ 1

q
r � 1

2
m�

p

jJpj2

q2p2
Jp

 !
: ð62Þ

315 The boundary conditions are changed accordingly to
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Fig. 11. Hole temperature.
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/ ¼ V O þ V b;

u ¼ exp
�V O

V T

� �
;

v ¼ exp
V O

V T

� �
;

f2n ¼
1

2
ðNþ

D � N�
AÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ

D � N�
AÞ

2 þ 4n2i

q� �
;

fp ¼ ni=fn;

gn ¼
300

exp 5V O

4V T

� � ;
gp ¼

300

exp � 5V O

4V T

� � on oXD

318 and

o/
on

¼ ou
on

¼ ov
on

¼ ofn
on

¼ ofp
on

¼ ogn
on

¼
ogp
on

¼ 0 on oXN;

321 where VO denotes the applied voltage and Vb represents the built-in potential. Here, X � R2 denotes the

322 bounded domain of the silicon. The boundary oX = oXD[oXN is piecewise smooth consisting of Dirichlet

323 oXD and Neumann oXN parts. The Dirichlet part corresponds to the ohmic contacts on the device. Note

Fig. 12. Electron quantum potential.
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324 that the above Neumann BCs for fn and fp do not hold on the entire oXN excluding the oxide interface at

325 which a zero Dirichlet BC is imposed. As mentioned in [8], the quantum potentials would have to be infinite

326 at the interface to force the carrier densities to exactly zero there. Thus, a suitable constraint on the values

327 of the quantum potentials at the interface is also not available. A small but non-zero value of the carrier

328 densities is instead used in that paper. Our implementation of such non-exact zero Dirichlet BC at the inter-
329 face will be specified in Section 5.

330 It should be noted that effective approximation of the gradient of current densities in formulas (61) and

331 (62) is in general very difficult to acquire. Simplified models for these formulas based on physical consid-

332 eration are possible. For example, by assuming that the drift energy is only a small part of the total kinetic

333 energy [10], (61) and (62) can be reduced to

RnðgnÞ ¼ n
xn � x0

snx

� �
� Jn � E;

RpðgpÞ ¼ p
xp � x0

spx

� �
� Jp � E;

336 which will be used in our numerical simulations.

337 Remark 3.1. As observed in [5], the SRH generation-recombination model (18) should be modified for the
338 DG model since this standard expression will produce spurious generation and recombination near the

339 oxide barrier. We thus consider here the modified SRH (MSRH) proposed in [5] and extend it into the self-

340 adjoint context as follows:

Fig. 13. Hole quantum potential.
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np � neqpeq

s0n p þ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq
p

exp et�ei
kBT

� �� �
þ s0p nþ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq

p
exp et�ei

kBT

� �� �
¼

n2i uv exp
/qn�/qp

V T

� �
� neqpeq

s0n niv exp
�/�/qp

V T

� �
þ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq
p

exp et�ei
kBTL

� �h i
þ s0p niu exp

/þ/qn

V T

� �
þ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq
p

exp et�ei
kBTL

� �h i :
343 Note that the term n2i in (18) is replaced by neqpeq in this MSRH model where et and ei are the trapped and

344 intrinsic energies. The quantities neq and peq are the spatially dependent equilibrium densities obtained from

345 a separate numerical solution of the same DG problem, but with all voltages and R set to zero. Following
346 that paper, we choose s0n ¼ s0p ¼ 10�8 s with et = ei in our simulation. A comparison of numerical results

347 based on both SRH and MSRH models will be given in Section 5.

348 Remark 3.2. For simplicity, we use fixed mobilities of ln = 1500 cm2/Vs and lp = 500 cm2/Vs which are

349 roughly equal to the intrinsic values at room temperature for silicon as considered in [8]. In our numerical

350 experiences in [11,12], the field-dependent mobility model of the Caughey–Thomas expression still can be

351 used in the DGET simulation.

352 Remark 3.3. The above self-adjoint formulation is based on Maxwell–Boltzmann statistics. However, it is

353 unclear to us whether the self-adjointness can also be derived for the case of Fermi–Dirac statistics which is

354 more exact but more complicated to implement. Evidently, this issue deserves further investigation in the

355 future.
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Fig. 14. Electron density profile perpendicular to the inverted channel.
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356 4. An adaptive finite element algorithm for the DGET model

357 The main ingredients of the algorithm solving the DGET model are adaptive finite element approxima-

358 tion of the model, node-by-node and monotone iterative solution of the resulting nonlinear algebraic sys-

359 tems, and Gummel�s iteration consecutively on the PDEs as described in [11] for the ET model. For the sake
360 of clearness, we briefly illustrate the algorithm and refer to [11,12] for more details on the adaptive finite

361 element formulation, monotone convergence analysis, and practical implementation issues.

362 Here, we use the notation l as Gummel�s (outer) iteration index and m as the monotone (inner) iteration

363 index.

364 Step 1. Initial mesh: create a coarse and structured mesh for which the number of nodes can be chosen as

365 small as possible.

366 Step 2. Preprocessing: see [11].
367 Step 3. Gummel and Monotone iterations on (44)–(48).

368 Step 3.0. Set l: = 0

369 Step 3.1. Solve the potential equation in (44).

370 Step 3.1.1. Set m: = 0 and set the initial guess

/ðmÞ
j ¼

f/j or
c/j if l ¼ 0;

/ðlÞ
j otherwise;

(
for all ðxj; yjÞ 2 X

h
;

373 where f/j and
c/j are constant values that can be easily verified to be an upper and lower solution of /,

374 respectively, and X
h
denotes the set of mesh points on the closure of the domain.

375 Step 3.1.2 If l = 0, set u(l) and v(l) by the charge neutrality condition.

Fig. 15. Electron current density (ET).
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376 Step 3.1.3. Compute /ðmþ1Þ
j by solving the discrete potential system of (44)

nj/
ðmþ1Þ
j þ cjð/Þ/ðmþ1Þ

j ¼
P

k2V ðjÞnk/
ðmÞ
k � F ð/ mð Þ

j ; uðlÞj ; vðlÞj ; fðlÞn ; fðlÞp Þ þ cjð/Þ/ðmÞ
j ; 8ðxj; yjÞ 2 Xh;

/ðmþ1Þ
j ¼ V O þ V b; 8ðxj; yjÞ 2 oXh

D;

o/ðmþ1Þ
j

on ¼ 0; 8ðxj; yjÞ 2 oXh
N;

8>>><>>>:
ð63Þ

380 where

cjð/Þ ¼ max
oF ð/jÞ
o/

; /̂j 6 /j 6
~/j


 �
; ð64Þ

384 nk are the matrix elements of the discretization, and Xh, oXh
D, and oXh

N represent the sets of mesh points in

385 the interior, Dirichlet part, and Neumann part of the domain, respectively.

Step 3.1.4. Set /ðmÞ
j :¼ /ðmþ1Þ

j 8j and m: = m + 1. Go to Step 3.1.3 until the stopping criteria of the

inner iteration are satisfied.

Step 3.1.5. Set /ðlþ1Þ
j :¼ /ðmþ1Þ

j 8j.389
Step 3.2. Solve the electron continuity equation (45).

Step 3.2.1. Set m: = 0 and set the initial guess

uðmÞj ¼
euj or buj if l ¼ 0;

uðlÞj otherwise;

(
for all ðxj; yjÞ 2 X

h
;

Fig. 16. Electron current density (DG).
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394 where euj and buj are constant values for all ðxj; yjÞ 2 X
h
that can be easily verified to be an upper and lower

395 solution of u, respectively.

Step 3.2.2. Compute uðmþ1Þ
j by solving the discrete electron system of (45).

Step 3.2.3. Set uðmÞj :¼ uðmþ1Þ
j 8j and m: = m + 1. Go to Step 3.2.2 until the stopping criteria of the inner

iteration are satisfied.
Step 3.2.4. Set uðlþ1Þ

j :¼ uðmþ1Þ
j 8j.400

401 Step 3.3. Solve the hole continuity equation (46) similarly to that in Step 3.2.

402 Step 3.4. Solve the DG equation (47).

Step 3.4.1. Set m: = 0 and set the initial guess

½fn�ðmÞj ¼
g½fn�j or d½fn�j if l ¼ 0;

½fn�ðlÞj otherwise;

8<: for all ðxj; yjÞ 2 X
h
;

406 where [fn]j � fn(xj,yj) and g½fn�j and d½fn�j are constant values for all ðxj; yjÞ 2 X
h
that can be easily verified to

407 be an upper and lower solution of fn, respectively.
Step 3.4.2. Compute ½fn�ðmþ1Þ

j by solving the discrete system of (47).

Step 3.4.3. Set ½fn�ðmÞj :¼ ½fn�ðmþ1Þ
j 8j and m: = m + 1. Go to Step 3.4.2 until the stopping criteria of the

inner iteration are satisfied.

Step 3.4.4. Set ½fn�ðlþ1Þ
j :¼ ½fn�ðmþ1Þ

j 8j.412
413 Step 3.5. Solve the DG (48) similarly to that in Step 3.4.

414 Step 3.6. Update ½/qn�
ðlþ1Þ
j and ½/qp�

ðlþ1Þ
j by the Eqs. (57) and (58).

415 Step 3.7. Set l: = l + 1 and go to Step 3.1 until the stopping criteria of the outer iteration are satisfied.416
417 Step 4. Monotone Iteration on (49) and (50).

Fig. 17. Electron current density (DGET).
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418 Step 4.1. Solve the energy equation (49) for gn similarly to that in Step 3.2.

419 Step 4.2. Solve the energy equation (50) for gp similarly to that in Step 3.2.420
421 Step 5. Error estimation: See [11].

422 Step 6. Refinement: See [11]

423 Step 7. Postprocessing: All computed solutions are then postprocessed for further analysis of physical
424 phenomena.

425
426 Note that, in each one of Steps 3.1–3.5, 4.1, and 4.2, a Jacobi (node-by-node) type of solution is per-

427 formed for the corresponding discrete system (63), for example, in which the monotone parameters (64)

428 can be easily obtained by means of lower and upper solutions. Two important factors that guarantee a glo-

429 bal convergence with this kind of simple solutions as initial guesses are the diagonally dominant property of

430 the matrices due to the self-adjoint formulation and the monotonicity of the parameters by the special non-

431 linearity of the formulation. The diagonally dominant property for (44)–(50) can proved in exactly the same
432 manner as that given in [11,12]. It can also be easily shown that each one of the nonlinear functionals in

433 (44)–(50) is monotone in its respective state variable. It is thus a straightforward generalization from our

434 previous theoretical analysis that all the nonlinear algebraic systems generated by this algorithm preserve

435 these two factors. We thus summarize these important results in the following theorem.

436 Theorem. For each one of the PDEs (44)–(50) with associated boundary conditions, the matrices resulting to

437 the adaptive finite element approximation are diagonally dominant. Moreover, starting with suitable lower and

438 upper solutions of the corresponding PDE, the Jacobi iteration in each of Steps 3.1–3.5, 4.1, and 4.2 generates

439 a pair of lower and upper sequences which converge monotonically to the exact solution of the nonlinear

440 algebraic system of equations of that PDE.
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Fig. 18. Hole temperature (with the standard SRH model (18)).
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441 5. Numerical examples

442 To demonstrate the effectiveness and accuracy of the DGET model, several numerical studies have been

443 made for sample diode and MOSFET device structures. A benchmark device, namely, an abrupt n+–n–n+

444 silicon diode is first used to verify our methods and formulation with the results reported in literature.
445 Numerical experiments are performed first on a 600 nm silicon diode at 300 K with n+ = 5.0 · 1017 cm�3

446 and n = 2.0 · 1015 cm�3. The length of the n-region is approximately 400 nm. The steady state results

447 for this problem are illustrated by the dotted and solid curves with respective to the DGET and ET models

448 in Figs. 1(a)–(d) where the applied voltage VO is taken as 2.0 V. The dotted curve coincides with the solid

449 curve. This represents that the new model can be applied to devices with larger size, i.e., where the QM

450 effects are negligible. These results agree also very well with that previously reported in the literature

451 [2,14,17,31].

452 To verify QM effects with our model, we then reduce the scale down to two cases. Case (1) is a 120 nm
453 silicon diode with n+ = 5.0 · 1018 cm�3 and n = 2.0 · 1015 cm�3. The length of the n-region is approximately

454 80 nm. The applied voltage VO is taken as 1.2 V. Case (2) is a 30 nm silicon diode with n+ = 5.0 · 1019 cm�3

455 and n = 2.0 · 1015 cm�3. The length of the n-region is approximately 20 nm. The applied voltage VO is ta-

456 ken as 0.8 V. Figs. 2 and 3 show the significant change of the electron density predicted by the new model

457 but for the electron temperature the change is not very significant. The maximal temperatures of ET and

458 DGET models are T = 3423 K and T = 3309 K, respectively. The corresponding thermal energies are

459 Eth ¼ 3
2
kBT ¼ 0:442 eV and Eth = 0.428 eV. Therefore, the temperature reduced by the QM corrections

460 of the DGET model is very similar to that by the nonparabolicity effects presented in [14]. Fig. 4 shows
461 a visible tendency of the quantum potential /qn toward a large variation when the channel length is de-

462 creased. Here, we scale the figures into the same size for comparison.
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Fig. 19. Hole temperature (R = 0).
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463 The second example of our simulation test on the model is a MOSFET device structure which has an

464 elliptical 1019 cm�3 Gaussian doping profiles in the source and drain regions and 1016 cm�3 in the p-sub-

465 strate region as shown in Fig. 5. The junction depth is 20 nm, the lateral diffusion under gate is 8 nm, the

466 channel length is 34 nm, and the gate oxide thickness is 2 nm. With VBS = 0 V, VDS = 1.0 V and VGS = 0.8

467 V, Figs. 6–13 present the final adaptive mesh, electrostatic potential, electron concentration, hole concen-
468 tration, electron temperature, hole temperature distribution, electron quantum potential, and hole quantum

469 potential, respectively. Across the junction, Figs. 12 and 13 clearly show similar quantum potential profiles

470 as that in Fig. 4 for the 1D diode device. Furthermore, in the direction perpendicular to the interface, a very

471 thin boundary layer of about 6 nm appear in the inversion layer as shown in Figs. 12–17. The boundary

472 layer as shown in Fig. 6 is effectively captured by the a posteriori error estimation with 1-irregular refine-

473 ment strategy developed in [11,12,25,26].

474 As mentioned earlier, a suitable constraint on the values of the quantum potentials at the oxide interface

475 is not available. One solution to this lack of quantum potential BCs is to solve the DGET model in the
476 oxide as well as in the adjoining silicon and poly gate. This will allow us to simulate the tunneling effects

477 across the oxide [13]. This issue is not addressed here and will be reported elsewhere in our future works.

478 We do not impose zero Dirichlet BCs for the variables fn and fp exactly at the interface but instead at the

479 grid points in silicon that are very close (about 0.13 nm) to the interface. In effect, these BCs are very similar

480 to that in [8] where a small but non-zero value of the carrier densities is set at the interface. We found that if

481 the BCs are prescribed exactly at the interface, the result of temperature will be very poor although the

482 algorithm is still convergent.
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Fig. 20. Channel current for MOSFET, gate voltage VGS = 0.7, 0.8, 0.9 V.
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483 As noted in Remark 2.2, the quantum corrections are implicitly defined in the energy fluxes (9) and (10)

484 via the carrier densities (19) and (20), the temperature distribution of carriers will not be very accurate as

485 shown in Figs. 10 and 11. More specifically, the temperature peak for electron appears to be near the drain

486 but the peak for hole is in the middle of the channel. We found that the generation-recombination model

487 will influence the hole temperature distribution significantly. If the standard SHR model (54) is used instead
488 of the MSHR model of Remark 3.1, the hole temperature is even much worse as shown in Figs. 18 and 19.

489 To our knowledge, there are no numerical results of quantum corrected carrier temperatures available in

490 the literature to be compared with our results. Evidently, efficient and effective numerical methods for han-

491 dling energy fluxes with explicit quantum corrections are needed for future investigations.

492 The electron density profile shown in Fig. 14 is a cross section of the 2D profile at the middle point of the

493 interface. The peak of the density is about 1.5 nm away from the interface, which agrees well with that in

494 [7], see also [1]. Fig. 15 is the electron current density computed by the ET model, which clearly shows that

495 the classical density is sharply peaked comparing with the smoothly peaked in Figs. 16 and 17 obtained by
496 the DG and DGET models. The substantial QM effect of transconductance degradation is also evidently

497 displayed in these figures. From these figures, we observe that the carrier temperature provides a mecha-

498 nism to increase carrier diffusion as noted in Remark 2.1. This is the main justification to consider DGET

499 instead of DG along.

500 Finally, Fig. 20 shows the simulated I–V curves in which the drain current obtained by the DGET model

501 is about 20–60% below that predicted by the ET model for the gate biases of 0.7, 0.8, and 0.9 V. This result

502 is also in good agreement with that of [8] where a MOSFET with 30 nm gate length and 2 nm gate oxide

503 thickness is considered. Admittedly, this represents a serious decrease in the current drive capability of the
504 device. Note also that the difference of the maximal temperatures between the ET (T = 3677 K) and DGET

505 (T = 3649 K) models is not very significant. The corresponding thermal energies are 0.475 and 0.471 eV.

506 The figure also shows that ET over estimates the current whereas DG under estimates.

507 6. Conclusion

508 A self-adjoint model combining both ET and DG models is proposed here for nanoscale semiconductor
509 devices. This model is capable of describing hot carrier and quantum correction effects.

510 Moreover, due to the self-adjointness and monotonic nonlinearity, the present model enjoys many fav-

511 orable mathematical properties such as global convergence with simple initial guesses, highly parallelizable,

512 and fast iterative solution. Numerical convergence is a fundamental issue constantly faced by the practi-

513 tioner in device and circuit simulation. This model and monotone iterative methods may offer an alternative

514 in handling the convergence difficulties frequently associated with Newton�s methods.

515 Our numerical simulations on diode and MOSFET with the gate length down to 34 nm using the DGET

516 model have been performed and compared with that using the ET model. And the results are shown to be in
517 good agreement with those reported in the literature. It is shown that the I–V characteristics of this short-

518 channel device is significantly corrected by the density-gradient equations with current drive reduced by up

519 to 60% comparing with that of the classical model along. Furthermore, a 2D quantum layer, which is only a

520 fraction of the length scale of inversion layer, is also effectively captured by this model with very fine mesh

521 near the interface generated by an adaptive finite element method.

522 Nevertheless, many improvements on our preliminary model can be further studied in future works. For

523 example, the self-adjoint formulation of the present paper is based on Maxwell–Boltzmann statistics. It is

524 however unclear to us whether the self-adjointness can be also derived for the case of Fermi–Dirac statistics
525 which is more exact but more complicated to implement. Moreover, efficient and effective numerical meth-

526 ods for handling energy fluxes with explicit quantum corrections are also deserved for future investigations.
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