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ABSTRACT 

We show that there are operators on a five-dimensional Hilber-t space which are 
not tridiagonal, and that there are compact operators and normal operators on 
separable infinite-dimensional spaces which are not band-diagonal. 

1. INTRODUCTION 

A bounded linear operator on a complex separable Hilbert space is 
tridiagona2 if it is unitarily equivalent to a (finite or infinite) direct sum of 
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tridiagonal matrices of the form 

a1 

Cl 

0 

b, 
a2 b2 

cn-1 

0 

b,-1 
%I 

or 

i 

a1 bl 0 
cl a2 b2 

5 a3 

. ..I b3 

0 .::. 

if the underlying space is finite-dimensional, then no direct sum is 
needed: a tridiagonal operator is one which is unitarily equivalent to 
a (finite) tridiagonal matrix. The study of such operators (on a finite- 
dimensional space) was initiated by W. Longstaff [9]. It was shown that every 
operator on a three-dimensional space is tridiagonal and that on a space of 
dimension at least six there are exceptions. This leaves open the question 
whether operators on spaces of dimensions four and five are always tridiago- 
nal. In Section 2, we settle the case of dimension five negatively. The proof, 
based on Sard’s theorem from differential topology, is a refinement of the 
dimension-counting technique due to B. Sturmfels (cf. [9] and [ll]). For the 
dimension-four case, we have some partial results. For example, we obtain a 
verifiable criterion for tridiagonality and use it to show that every weighted 
permutation matrix is unitarily equivalent to a tridiagonal one. In Section 3, 
we consider operators on infinite-dimensional spaces. Here we are mainly 
concerned with two classes of operators: normal and compact operators. We 
show that every Hermitian operator is tridiagonal, but not every unitary 
operator is. On the other hand, every unitary operator is pentadiagonal, but 
there exist normal operators which are not even band-diagonal (the precise 
definitions will be given later). This latter assertion is proved via some deep 
results concerning the “Cauchy transform” as established in [2]. As for 
compact operators, we show that there are finite-rank operators which are not 
tridiagonal and compact operators which are not band-diagonal. We conclude 
Section 3 by proving that non-band-diagonal operators are abundant in the 
sense that they form a norm-dense set in the space of all operators. Section 4 
lists some open questions concerning this circle of ideas. 

2. FINITE DIMENSION 

The main result of this section is the following 

THEOREM 2.1. Let H be an n-dimensional Hilbert space (1 < n < m). 

(a> If 1 < n < 3, then every operator on H is tridiagonal. 
(b) If n > 5, then there exist operators on H which are not tridiagonal. 
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In f&t, nontridiagonul operators on H form a &rue, second-category subset 
of 9( H ), the space of all operators on H. 

As mentioned in Section 1, the proof is based on Sand’s theorem as in [9] 
and [ll] for n > 6. (Our reference for the manifold theory is [3].) Common 
to such nonconstructive arguments, it has the advantage of showing the 
topological abundance of the objects under consideration, but the drawback 
of not yielding one single such object cannot be avoided. We start with the 
following lemma. 

LEMMA 2.2. Tridiagonal operators on a finite-dimensional space H form 
a closed subset of L&‘(H). 

Proof. Let (Tk) be a sequence of tridiagonal operators on H which 
converges to T. Assume that Tk = U,* Sk U,, where U, is unitary and S, is of 
the form 

a1 bl 0 

Cl a2 b2 

. k-1 

0 C,-1 a” 

(*I 

and let II-II denote the operator norm. Since the sequence llSkll = llTk II 
converges to IlTll, it is bounded. Hence there exists a subsequence {S,,} 
converging, say, to an operator S. On the other hand, the corresponding 
bounded sequence {U,,] has also a convergent subsequence {U, ) converging, 

say, to U. It is obvious that S is of the form (*), U is unit&y, and (Tk } 

converges to U*SU. It follows that T = U*SU is tridiagonal, completing the 
proof. n 

Proof of Theorem 2.1. 
(a): This has been proved in [9, Proposition 2.31. We include an altema- 

tive proof here for completeness. Let T be a 3 x 3 matrix. We may assume 
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that T is of the triangular form 

a b c 

[ 1 0 d e. 

0 0 f 

If U is a 2 X 2 unitary matrix such that U II z is a vector of the form [ 1 y , 
then (U @ l)T(U* @ 1) is a matrix of the form 

* * 0 

[ 1 * . 
; ; * 

This shows that T is tridiagonal. 
(b) To prepare for the ground for applying Sard’s theorem, we first 

represent tridiagonal operators in a special form. Indeed, if T is tridiagonal, 
then T = U*SU, where U is unitary and S is of the form (*>. Let 8,, . . . , 0, 
be real numbers such that bj exp[i(Oj+, - O,>] = lbjl for j = 1,. . . , n - 1 

and exp(i Cj ej> = det U. If D is the diagonal unitary matrix d.iag(exp(iBj)), 

then T = (D*u>*(D*sD)(D*u>, where DVJ is unitary with determinant 1 
and D*SD is a tridiagonal matrix with real superdiagonal entries. 

Let M(n) be the set of all n X n matrices, W(n) the set of all n X n 
unitary matrices with determinant 1, and A(n) the set of n X n matrices of 
the form ( * > with all bj’s real. Note that these sets form (real Cm> differential 
manifolds with dimensions 2n2, n2 - 1, and 5n - 3, respectively (cf. [3, p. 
701). Define the differentiable mapping f from A(n) X W(n) to M(n) by 

f<S, U) = U*SU, h w ere S E A(n) and U E SU(n>. Since the dimension of 
A(n) X SU(n> is (5n - 3) + (n2 - 1) = n2 + 5n - 4, which is strictly less 
than 2n2, the dimension of M(n), when n 3 5, Sard’s theorem [3, p. 1671 
implies that the image off has Lebesgue measure zero in M(n). As shown 
in the first paragraph of the proof, this image coincides with the set of all 
tridiagonal operators. Hence by Lemma 2.2 tridiagonal operators form a 
nowhere dense set in .9(H). The assertions in (b) follow immediately. n 

Note that in the proof above Said’s theorem is not applicable when 
n = 4, since in this case the dimensions of A(4) X SU(4) and M(4) are both 
equal to 32. 

For the remaining part of this section, we consider 4 X 4 matrices. The 
next result gives a matrix representation closest to the 4 X 4 tridiagonal one. 
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PROPOSITION 2.3. Every 4 X 4 matrix is unitady equivalent to a matrix 
of the form 

where the (2,4) entry may be chosen to be real. 

Proof. Let 2’ be a 4 x 4 matrix. We first show that T is unitarily 
equivalent to a matrix of the form 

* * 0 0 
* * * * 

I I 

0 * * *’ (**I 

0 * * * 

Indeed, let T = T, + iT,, where T, and T, are Hermitian, and let x be any 
unit eigenvector for T,. Apply the Gram-Schmidt process to the vectors x, 

T,x, Tlx, and Tix, and let e,, e2, es, and e4 be the resulting orthonormal 
basis. (For simplicity, we assume that these four vectors are linearly indepen- 
dent, for otherwise an analogous argument, to the one below can be carried 
through.) Since T, x is a linear combination of ei and e2, the first column of 
the matrix representation of T, with respect to this basis is of the form [ * * 
0 Olt. Hence the self-adjointness of T, implies that its matrix representation 
is of the form ( * * >. On the other hand, since T, x is a scalar multiple of el, 
the self-adjointness of T, implies that the matrix representation of T, is of 
the form * 0 0 0 

0 * * * I 1 0 * * *’ 
0 * * * 

Thus T can be represented in the form (* * >, as asserted. 
To finish our proof, let a and b denote the (3,2) and (4,2> entries in the 

matrix representation of T of the form (* * 1, and let U be a 2 X 2 unitary 



190 CHE IL40 FONG AND PEI YUAN WU 

matrix such that U is of the form i . Then 
[ 1 

= I 
* * 0 0 
* * * * 
0 * * 

0 0 * * 1 *’ 

If the (2,4) entry is required to be real, just multiply the above matrix from 
the left and the right by a diagonal unitary matrix diag(exp(iOj)) and its 
adjoint, respectively, with some suitable 8, and 0,. n 

Proposition 2.3 can be rephrased in the form: for each 4 X 4 matrix T, 
there is a nonzero vector x for which the subspace generated by the five 
vectors x, TX, T’x, T*x, and TT*r is of dimension at most three. The next 
proposition, orally communicated to the second author by H. Radjavi, 
strengthens this property to a characterization of tridiagonality. 

PROPOSITION 2.4. A 4 X 4 matrix T is tridiagonal if and only if there is 
a nonzero vector x for which the subspace generated by the seven vectors x, 
TX, T2x, T*x, T*2~, TT*x, and T*Tx is of dimension at most three. 

Proof. If T = U*SU is tridiagonal, where U is unitary and S is of the 
form (*), then 

1 

x=u* O [I 0 
0 

is the required vector. 
To prove the converse, let x be a unit vector satisfying the stated 

condition. Below we only give the proof for the case when the subspace 
generated by the seven vectors is of dimension exactly three. The other cases 
can be handled in a similar (even simpler) fashion. 
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(1) Assume that x, TX, and T2x are linearly independent. Apply the 
Gram-Schmidt process to these vectors, and then extend the resulting vectors 
to an orthonormal basis. Then x, TX, and T 2x expressed in terms of this basis 
are of the forms * * 

41 II ; ’ and 
; ' 

0 0 

respectively, where a and b are nonzero scalars. Since T*x is a linear 
combination of these vectors, it is of the form 

In particular, T has the matrix representation 

I 

* * c 0 
a * * e 
0 b * f 

0 0 d * 

where d, e, and f are some scalars. Since T*Tx is a linear combination of x, 
TX, and T2r, its fourth component, which equals Ea, must be zero, and hence 
t’ = 0. A similar argument applied to T *2x yields that & = 0. If c = 0, then 

is tridiagonal. On the other hand, if c # 0, then f = 0. Since TT*x is a linear 
combination of x, TX, and T 2x, its fourth component dc is zero, and hence 
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d = 0, In this case, 
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* * i? 0 

T= [ a * 0 0 ;I 0 1 a 
0 0 ; * 

Since the 3 X 3 principal submatrix 

a * * 

of T is unitarily equivalent to a tridigonal matrix by Theorem 2.1(a), T itself 
is tridiagonal. 

(2) Assume that T ‘x is dependent on the linearly independent x and TX. 
We have two subcases to consider. 
(2a) Assume that r, TX, and T*x are independent. Apply the Gram-Schmidt 
process to these vectors, and then extend the resulting ones to an orthonor- 
mal basis. Then the matrix representation of T with respect to this basis has 
the form * * b 0 

0 0 * * 

where a and b are nonzero. Since T*Tx is a linear combination of x, TX, and 
T*x, its fourth component, which equals &, is zero, and hence d = 0. Let U 

be a 2 x 2 unitary matrix such that U 
[I 

E is of the form [I t . Then 

This proves the tridiagonality of T. 



BAND-DIAGONAL OPERATORS 193 

(2b) Assume that T*x is dependent on x and TX. In this case, apply the 
Gram-Schmidt process to x and TX, and extend the resulting vectors to an 
orthonormal basis. With respect to this basis T has the matrix representation 

0 0 * * 

A similar trick to the above (a 2 X 2 unitary matrix U such that [b c]U is of 
the form [ * 01) yields that T is tridiagonal. 

(3) Assume that TX is dependent on x. If T*r is also dependent on x, 
then the matrix representation of T with respect to any orthonormal basis 
whose first element is x is of the form 

[ 0 0 * 0 * * 0 * * 0 * *’ 
0 * * * 1 

Theorem 2.1(a) applied to its reducible 3 X 3 principal submatrix shows that 
T is itself tridiagonal. On the other hand, if x and T*x are linearly 
independent, then we may proceed as in (1) and (2) replacing T with T* to 
derive that T* is tridiagonal. Thus the same is true for T. n 

As an application of the above criterion for tridiagonality, we have the 
following 

PROPOSITION 2.5. Every 4 X 4 weighted permutation matrix is unitarily 
equivalent to a tridiagonal one. 

A weighted permutation matrix is one which has at most one nonzero 
entry on each row and each column. 

Proof. If such a matrix has any nonzero diagonal entry, then it is the 
direct sum of a 1 X 1 and a 3 X 3 matrix, Theorem 2.1(a) implies our 
assertion. Among those which have only zero diagonal entries, there are two 
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different types. Those of the form 

where A and B are 2 X 2 weighted permutation matrices, are easily seen to 
be unitarily equivalent to a tridiagonal one by interchanging a certain pair of 
rows and the corresponding columns. The remaining ones are all unitarily 
equivalent to a mat& of the form 

0 0 0 d 
a 0 0 0 
0 b 0 0 
0 0 c 0 

through an appropriate permutation of rows and columns. To complete the 
proof, we need only restrict our considerations to such matrices. If d = 0, 
then T is already tridiagonal. If a = 0, then 

which shows that T is unitarily equivalent to a tridiagonal one. Similar 
arguments apply to the cases b = 0 and c = 0. Hence in the following we 
may assume that a, b, c, and d are all nonzero. 

Let a = ~c~/aZY’2 and x = [a 0 1 Olt. In view of Proposition 2.4, we 
only need to check that any four vectors among 

x= [;I, TX= [j, T2x= [ta], T*x=[;j, 

T*ii[ ;], TT*x=K], and T*Tx=r] 

are linearly dependent. We consider three cases separately. 
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(1) If the four vectors include both Tx and T*x, then they must be 
linearly dependent, since, by our choice of (Y, TX and T*x are. 

(2) If the four vectors include TX but not T *x, then consider the 4 X 4 
matrix, call it A, formed by taking these four vectors as columns. Its second 
and fourth rows consist of three zeros and one nonzero component (aa or c) 
and hence are scalar multiples of each other. Thus A is singular and hence 
has dependent column vectors. An analogous argument works for the case 
when the four vectors include T*x but not TX. 

(3) If the four vectors include neither TX nor T*x, then the matrix 
formed by these vectors as columns has two zero rows and hence is singular. 
Such a set of four vectors must be linearly dependent. n 

We conclude this section with the following result, saying that a non- 
tridiagonal4 X 4 matrix can be found, if it ever exists, among the (dense set 
00 cyclic invertible operators. Recall that an operator T on H is cyclic if 
there is a vector x (called cyclic uector of T) such that H is generated by the 
vectors x, TX, T’x, . . . . 

PROPOSITION 2.6. Let T be a 4 X 4 matrix. Zf T has rank at most two or 
is noncyclic, then it is tridiagonal. 

Proof. Since T has the block matrix representation 

0 A 

[ 1 0 B 

with respect to the decomposition H = ker T @ ran T*, by our hypothesis 
that rank T < 2 we may assume that the four operator entries, 0, 0, A, and B 
are all acting on two-dimensional spaces. Let U and V be unitary operators 
such that 

Then 

[Y :*I[“, #I* iI = [g-J. 
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This latter matrix is unitarily equivalent to 

0 a 0 0 
0 * * 0 

[ I 

0 * * 0 
0 0 b 0 

by a permutation of the rows and columns. Hence T is tridiagonal. 
An equivalent condition for the noncyclicity of T is the existence of some 

scalar h such that dim ker(T - AZ) > 2. This latter condition is equivalent to 
rank(T - AZ) Q 2. Hence the first part of our proof implies that T - AZ is 
tridiagonal. Thus a noncyclic T is tridiagonal, as asserted. n 

3. INFINITE DIMENSION 

Recall that on an infinite-dimensional space a tridiagonal operator is one 
which is unitarily equivalent to a (finite or infinite) direct sum of (finite or 
infinite) tridiagonal matrices. We start our discussion with Hermitian and 
unitary operators. 

PROPOSITION 3.1. 

(a) Every Hermitian operator is tridiagonal. 
(b) A unitary operator is tridiagonal if and only if it is diagonal, i.e., it is 

unitarily equivalent to a diagonal matrix. 

Part (a> of the proposition is a well-known result; part (b) can be verified 
as in [9, Proposition 3.11. 

Note that not every Hermitian operator can be represented as a single 
tridiagonal matrix. (This is the reason why we define the tridiagonal operator 
as the direct sum of tridiagonal matrices instead of one single such matrix.) 
Indeed, if T is unitarily equivalent to a matrix of the form 

a1 bl 0 
cl a2 b2 

: :. 

c2 a3 . 

0 . . *: 
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then either some c, is zero, in which case T has a nonzero finite-dimensional 
invariant subpsace, or none of the c,‘s is zero, in which case T is cyclic (with 
cyclic vector x = [l 0 0 a** 3”). However, the Hermitian operator T = M @ 
M, where M is the operator of multiplication by the independent variable t 
on L2(0, 1) with the Lebesgue measure, has no such invariant subspace and is 
not cyclic. 

Proposition 3.1(b) al so shows that not every unitary operator is tridiagonal. 
One example is the bilateral shift on Z2(Z>, since it has no eigenvalue at all. 
However, unitary operators are always pentadiagonal, as will be shown later 
on. 

The next result generalizes [9, Theorem 3.21 to infinite-dimensional 
operators, using a simpler proof. 

PROPOSITION 3.2. lf P, and P, are projections, then the operator 
P, + iP, is tridiagonal. 

Proof. Assume that P, and P, are acting on the space H. Let x be any 
nonzero eigenvector of P,. Apply the Gram-Schmidt process to the vectors 
x, P,x,P,P,x,P,P,P,r, P,P,P,P,x )... to obtain an orthonormal basis for 
the subspace (call it K) they generate. (For simplicity, we assume that these 
vectors are linearly independent.) Then P, I K and P, I K have the matrix 
representations 

* 
* 

* 
* 

* 
* 

* 
* 

and 

* 
* 

* 
* 

* 
* 

respectively. Hence (P, + iP,) I K has a tridiagonal matrix representation. If 
K # H, repeat the above process with H 8 K. N 

In light of the results in Section 1 for finite-dimensional operators, we 
may expect all finite-rank operators (on an infinite-dimensional space) to be 
tridiagonal, since there is more room to accommodate them. But this is not to 
be, as the next theorem shows. 

THEOREM 3.3. There are nontridiagonal operators with rank no mm-e 
than 9. 
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This is proved by first reducing to the finite-dimensional case via the 
following lemma and then invoking Sard’s theorem. For any m (0 < m < co>, 
let 0, denote the zero operator on an m-dimensional space. 

LEMMA 3.4. Let T be a rank-k operator on an ndimensional space 
(1 Q n < w). Then T 8 0, is tridiagonal if and only if T 8 Osk _” is. (In case 
3k Q n, T @ Osk-,, is interpreted as T.) 

Proof. Assume that T @ 0, is tridiagonal. Since rank(T @ 0,) = k, it 
follows from the special pattern of nonzero entries in a tridigonal matrix that 
there can be at most 3k nonzero rows and columns in the tridiagonal matrix 
representation of T @ 0,. In particular, T @ 0, is unitarily equivalent to an 
operator of the form S 8 O,, where S is tridiagonal on a 3kdimensional 
space. Let A = T @ 0, and B = S @ O,, and let U be a unitary operator 
such that UA = BU. Assume that T and S act on the spaces H and K, 
respectively, and H, = ran A V ran A* and K, = ran B V ran B *. We have 
U(ran A) c ran B and U(ran A*) E ran B*, and hence UH, 5 K,. Simi- 
larly, U*K, c H,. Thus U, = U I H, is a unitary operator from H, onto K,. 
If T = T, @ 0 on H, ~3 (H 8 H,) and S = S, CB 0 on K, 8 (K 8 K,), then 
U,T, = S,U, and hence T, is unitarily equivalent to S,. This implies that 
T 8 Osk_,, is unitarily equivalent to S in case 3k > n, and T is unitarily 
equivalent to S @ 0, _ ak in case 3k < n. Our assertion follows immediately. 

W 

Proof of Theorem 3.3. In view of the preceding lemma, we need only 
show that there are rank-9 operators on a space of dimension 27 which are 
not tridiagonal. 

Indeed, let M’(9), SU(27), and A’(9) be the sets of 27 X 27 matrices 
with rank 9, 27 X 27 unitary matrices with determinant 1, and 27 X 27 
tridigonal matrices with rank 9 and with real superdiagonal entries, respec- 
tively. Note that M’(9) and SU(27) form (real Cm) differential manifolds with 
dimensions 810 and 728 (cf. [3, p. 171, Problem 41 and [3, p. 701). On the 
other hand, A’(9) is also a differential manifold having finitely many con- 
nected components each with dimension no more than 81. (This can be 
verified by noting that a tridiagonal matrix with rank 9 can have at most 9 
nonzero superdiagonal and 9 nonzero subdiagonal entries.) As in the proof of 
Theorem 2.1(b), every rank-9 tridiagonal operator on a 27dimensional space 
can be expressed in the form U*SU, where S and U are in A’(9) and SU(27), 
respectively. Hence the image of the differentiable mapping f from A’(9) x 

SU(27) to M’(9) gi ven by f(S, U> = U*SU coincides with the set of rank-9 
tridiagonal operators. We infer from Sard’s theorem that this latter set has 
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Lebesgue measure zero in M’(9). This shows the existence of nontridiagonal 
rank-9 operators on a 27dimensional space and hence that of nontridiagonal 
rank-9 operators on an infinite-dimensional space. n 

For the remaining part of this section, we consider the more general 
band-diagonal operators. An operator T is band-diagonal with band width n 
(n = 2k - 1, k > 1) if T is unitarily equivalent to a direct sum of matrices 
of the form [aijhjsl with aij = 0 for all i and j satisfying Ii -jl > k. In 
particular, the cases n = 1, 3, and 5 correspond to the diagonal, tridiagonal, 
and pentadiagonal operators, respectively. The next proposition shows that 
every unitary operator is pentadiagonal although, as we have seen before, not 
every one is tridiagonal. 

PROPOSITION 3.5. Eve y isomety is pentadiagonal. 

Proof. By the Wold decomposition, every isometry can be decomposed 
as the direct sum of a unitary operator and a unilateral shift. Since the latter 
is obviously tridiagonal, we need only prove that every unitary operator is 
pentadiagonal. Hence let T be unitary on H, and x be any nonzero vector in 
H. Consider the subspace K generated by the vectors x, TX, T *x, T 2 x, 
T*2 x,... . Evidently, K reduces T. After deleting those vectors from the 
above sequence which are linearly dependent on the one preceding them, we 
denote the resulting sequence by {xi, x2, . . . 1. Apply the Gram-Schmidt 
process to the x,‘s to obtain an orthonormal basis (e,) for K. Since 

TX, E ‘-‘{xl,..., x,_~} for n 2 3 odd, 

TX, E V{x,>...> x,+21 for n even, 

T*x, E V{x,,..., x,+~} for n odd, 

T*x, E V{x,, . . . . x,-~} for n > 4 even, 

the matrix representation of T I K with respect to {e,) is easily seen to be 
pentadiagonal. If K # H, repeat the above process with H 8 K. n 

In light of the above results, it seems natural to ask whether every normal 
operator and compact operator is band-diagonal. As we will see later, the 
answers to both questions are negative. These are shown by making use of 
commutators and zero-diagonal operators, which we are going to define now. 
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An operator is zero-diagonal if it is unitarily equivalent to a matrix with all 
diagonal entries zero. Such operators were first studied by P. Fan [4]. The 
next result is due to him; it gives a condition for zero-diagonality which is 
easier to verify than the condition in the original definition. 

PROPOSITION 3.6. An operator is zero-diagonal if (and only if) it is 
unitarily equivalent to a matrix [ailK j= 1 for which the sequence (Cy= 1 uii}z= 1 
has 0 as a limit point. 

As a consequence, a trace-class operator is zero-diagonal if and only 
if its trace is zero. The next proposition gives a necessary condition for 
band-diagonality. 

PROPOSITION 3.7. 

(a) Zf A is band-diagonal and B is compact, then AB - BA is zero- 
diagonal. 

(b) Zf A is band-d iagonal and compact and B is arbitrary, then AB - BA 
is zero-diagonal. 

Proof. We only prove (a) and omit the analogous proof of (b). There is 
no loss of generality in assuming that A = [aijl with aij = 0 for Ii -jl > k, 
and B = [bjj]. A little computation yields that the accumulated sums of the 
diagonal entries of AB - BA = [cij] are given, for n > k, by, 

5 cii = 5 5 (aijbji - bijuji) 
i=l j-1 j=l 

n+k 

C (a,jbji - bijaji)* 
i=n-k+l j=n+l 

Hence 

n+k 

C (lbj,l + lbijl). 
i=n-k+l .j=n+l 

The sum on the right-hand side has 2k2 terms, all converging to zero 
as n approaches infinity due to the compactness of B. Therefore, the 
sequence {Cy= 1 cJ~= 1 converges to zero. Our assertion then follows from 
Proposition 3.6. n 
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COROLLARY 3.8. 

(a) Zf A is Hermitian and B is compact, then AB - BA is zero-diagonal. 
(b) Zf A is an isomety and B is compact, then AB - BA is zero-diagonal. 

Note that part (a) of the preceding corollary generalizes [6, Lemma 1.31, 
and part (b) generalizes [8, Theorem 51. 

Now we are ready for examples of non-band-diagonal operators among 
normal and compact ones. 

THEOREM 3.9. 

(a) Zf a normal operator is the sum of a band-diagonal operator and a 
Schatten p-class operator for some p, 1 < p < 2, then its spectral measure is 
supported on a set of planar measure zero. In particular, every normal 
operator with spectral rneasure not supported on a set of planar measure zero 
is not band-diagonal. 

(b) There is an operator in the intersection of all the Schatten p-classes, 
p > 2, which is not band-diagonal. 

Proof. Using results in [2], it is easy to show that any normal operator N 
with spectral measure supported on a set of positive planar measure contains, 
as a direct summand, the operator M of multiplication by .z on the space 
L2( /J), where the compactly supported positive regular Bore1 measure p on 
the plane is such that its associated Cauchy transform 

(xf)(z) = P(@)~‘J’--f(w)(z - w)-‘do for fEL2(p) 

is in every Schatten p-class, p > 2. Since 

(MX - XM)(f) = /-G-’ /Cf(w) d&w) for any f E L” ( *) , 

MX - XM is a rank-one projection. If N = M CD L, then Y = X @ 0 is in the 
intersection of the Schatten p-classes, p > 2, and NY - YN is a rank-one 
projection. Proposition 3.7 implies that N cannot be the sum as specified in 
(a) and X (or Y > is not band-diagonal. n 

Note that the preceding theorem is more general than [lo, Corollary 41, 
as the latter concerns only the representation of one band-diagonal matrix 
(instead of direct sum of such matrices). 
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We remark that the existence of a non-band-diagonal operator in the 
Schatten p-class gp for each p > 2 can also be deduced from [l, Theorem 

31. Indeed, it was shown therein that for any p > 2 there are operators A in 
gp and B in GFr for some large r such that AB - BA is a rank-one 
projection. Such A and B were constructed as matrices of the form 

where, for each pair of i and j, Cij is an i X j matrix; this is completely 
different from the above measure-theoretic construction. 

Knowing that there are indeed non-band-diagonal operators, we now 
proceed to show their abundance with the following theorem. 

THEOREM 3.10. The set of non-band-diagonal operators on H is norm- 
dense in 99( H ). 

Recall that a property of operators is referred to as bad (according to 
Herrero) if it satisfies the following conditions: 

(1) if T is bad, then aT + bl is bad for any scalars a # 0 and b; 
(2) if T is bad and S is similar to T, then S is also bad; 
(3) if T is bad and S and T have disjoint spectra, then T CB S is bad. 

The following result is due to Herrero [7, Theorem 3.511. 

PROPOSITION 3.11. 
norm-dense in S’(H). 

Every set of bad operators on H is either empty or 

Proof of Theorem 3.10. Define an operator T to be bad if there is a 
compact operator K such that TK - KT is a finite-rank operator with 
nonzero trace. By Proposition 3.7(a), a bad operator cannot be band-diagonal. 
Our assertion then follows from Theorem 3.9 and Proposition 3.11. W 
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4. OPEN QUESTIONS 

One question left unsolved from Section 2 is the following 

QUESTION 4.1. Is there any 4 x 4 nontridiagonal matrix? More elabo- 
rately, is the set of nontridiagonal operators on a four-dimensional H dense 
and of the second category in LZ?‘( H )? 

As seen in Section 3, there are tridiagonal (pentadiagonal) operators 
which are not diagonal (tridiagonal). In fact, examples of such operators are 
provided by Hermitian (unitary) operators. These lead naturally to the 
following 

QUESTION 4.2. Is there any operator band-diagonal with width n + 2 
but not band-diagonal with width n for every odd integer n > 5? Can such 
operators be found among normal ones? 

The examples of non-band-diagonal compact operators we found are in 
the class %Fr with p > 2. How about 1 < p < 2? 

QUESTION 4.3. Is there any operator in the class %Yp (1 < p < 2) which 
is not band-diagonal? 

The next two questions concern topological properties of the set of 
band-diagonal operators. Theorem 3.10 says that the complement of this set 
is dense. This does not rule out the possibility of itself being dense. 

QUESTION 4.4. Is the set of band-diagonal operators on H norm-dense 
in 9’( H I? Can this be true for tridiagonal operators? 

Note that both sets are dense in the strong operator topology. Indeed, 
since an operator with norm strictly less than one can be extended to some 
backward shift [5, Problem 1521, every operator has a tridiagonal extension. 
Our assertions then follow from [5, p. 1241. 

QUESTION 4.5. Is the set of non-band-diagonal operators on H of the 
second category in .ZB( H)? More precisely, is the set of band-diagonal 
operators with width n nowhere dense for every odd integer n > l? 
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Note that the last question has a positive answer when n = 1: the norm 
closure of diagonal operators is the set of normal operators, which is indeed 
nowhere dense. 

Although it is always risky to speculate on answers, we conjecture that the 
answers to the above questions are “yes,” “yes,” “yes,” “no,” and “yes.” 
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