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Abstract

A self-adjoint formulation of the energy transport model of semiconductor devices is
proposed. This new formulation leads to symmetric and monotonic properties of the
resulting system of nonlinear algebraic equations from an adaptive finite element
approximation of the model. A node-by-node iterative method is then presented
for solving the system. This is a globally convergent method that does not require
the assembly of the global matrix system and full Jacobian matrices. An adaptive
algorithm implementing this method is described in detail to illustrate the main
features of this paper, namely, adaptation, node-by-node calculation, and global
convergence. Numerical results of simulations on deep-submicron diode and MOS-
FET device structures are given to demonstrate the accuracy and efficiency of the
algorithm.

1. INTRODUCTION

Computer-aided simulation is one of the important processes in developing
semiconductor devices. Numerical methods for the fundamental semiconduc-
tor equations play a significant role in this development. For most practical de-
vice structures, the electrostatic potential, carrier concentrations, and carrier
temperatures exhibit extreme layers or peaks, particularly in the neighbor-
hood of p-n junctions and the oxide [7,24]. Presence of this kind of singular
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phenomena implies that adaptive mesh generation of unstructured grids is
inevitable if an accurate and efficient device simulation platform is required.

To obtain numerical solutions of semiconductor equations, one must solve a
system of nonlinear algebraic equations resulting from a discretization by, for
example, the finite element method (FEM). The standard method for the so-
lution is Newton’s method or its variant. Newton’s method is a local method
that converges quadratically in a sufficiently small neighborhood of the ex-
act solution. Although Newton’s method has been dominantly used in device
simulations [4,36], it is very sensitive to initial guesses due to its local con-
vergence property. In practical simulation, the device terminal characteristics
of I-V curves (i.e., I-V points) is usually of interest. A conventional approach
to obtain these curves is by the continuation method from lower to higher
biases by Newton’s method, which can be very costly in terms of computing
time and human work load associated with the convergence problems of the
method.

We propose here a global iterative method for the energy transport model for
which a new self-adjoint formulation of carrier energy balance equations is in-
troduced. This formulation is purely mathematical rather than physical and is
motivated by the transformation of carrier densities to the Slotboom variables.
It leads to symmetric and monotonic properties of the resulting system of non-
linear algebraic equations from FE approximation. These properties provide
several advantageous features for device simulation. First of all, the iterative
method is globally and monotonically convergent with simple upper or lower
solutions of the self-adjoint semilinear PDEs as initial guesses. This allows
us to have a simultaneous (parallel) computing of multiple I-V points with
various biasing conditions and with independent constant initial guesses for
each I-V point calculation. The computational effort can thus be dramatically
reduced [20]. Secondly, the solution procedure can be performed in a node-by-
node manner that does not require the assembly of the global matrix system
and full Jacobian matrices. Thirdly, the method does not produce non-physical
negative values for the minority carrier concentration under heavy recombi-
nation [32,36] since the stiffness matrices are diagonally dominant. Finally, its
implementation is considerably simpler than that of Newton’s method since
it essentially depends only on one crucial component, i.e., the monotone pa-
rameter matrix which is a simplified diagonal Jacobian. An adaptive algorithm
implementing this method is also described in detail to illustrate the main fea-
tures of this paper, namely, adaptation, node-by-node calculation, and global
convergence. The algorithm is based on the general framework proposed in
[21] and on the object-oriented programming (OOP) prototype developed in
[22].

This paper is organized as follows. The energy transport model considered
herein is stated in Sec. 2. In Sec. 3, we introduce the self-adjoint formulation
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of carrier energy balance equations. In Sec. 4, we first analyze the structure of
the stiffness matrix of adaptive finite element systems for the Laplace equation
that leads to diagonal dominance feature of the resulting matrices of the model
problem. Starting with the upper and lower solutions as initial guesses, it is
also shown in this section that the iterative method for the solution of the non-
linear algebraic systems is globally convergent. We then summarize in Sec. 6
our implementation of a complete solution process into the adaptive algorithm
which consists mainly of 1-irregular mesh refinement, Gummel’s decoupling
scheme, the iterative method, and error estimation. Sec. 7 represents a part
of our extensive numerical experiments on various deep-submicron diode and
MOSFET device structures to demonstrate the accuracy and efficiency of the
algorithm.

2. THE ENERGY TRANSPORT MODEL

A variety of energy transport models have been developed in the literature
[36]. In particular, we use the following model which is also considered in
[1,2,9,12,13,19]

∆φ=
q

εs
(n− p+N−

A −N+
D), (1)

1

q
∇ · Jn=R, (2)

1

q
∇ · Jp=−R, (3)

∇ · Sn=Jn ·E− n(
ωn − ω0

τnω
), (4)

∇ · Sp=Jp ·E− p(
ωp − ω0

τ pω
), (5)

where φ is the electrostatic potential, n and p are the electron and hole con-
centrations, q is the elementary charge, εs is the permittivity constant of semi-
conductor, N−

A and N+
D are the densities of ionized impurities, Jn and Jp are

the current densities, R is the function describing the balance of generation
and recombination of electrons and holes, Sn and Sp are the energy fluxes for
carriers, E is the electric field, τnω and τ pω are the carrier energy relaxation
times, ω0 is the thermal energy, and ωn and ωp are the carrier average ener-
gies. These physical variables are tightly coupled together with the following
auxiliary relationships

E=−∇φ, (6)

Jn=−qµnn∇φ+ qDn∇n = −qnvn, (7)

Jp=−qµpp∇φ− qDp∇p = qpvp, (8)
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Sn=
Jn

−qωn +
Jn

−qkBTn +Qn, (9)

Sp=
Jp

+q
ωp +

Jp

+q
kBTp +Qp, (10)

ω0=
3

2
kBTL, (11)

ωn=
3

2
kBTn +

1

2
m∗

n |vn|2 , (12)

ωp=
3

2
kBTp +

1

2
m∗

p |vp|2 , (13)

Qn=−κn∇Tn, (14)

Qp=−κp∇Tp, (15)

κn=2(
kB
q
)2nqµnTL, (16)

κp=2(
kB
q
)2pqµpTL, (17)

R=
np− n2

i

τ 0
n (p+ p

T
) + τ 0

p (n+ n
T
)

(18)

where Qn and Qp are the heat fluxes for carries, kB is Boltzmann’s constant,
Tn, Tp, and TL are the electron, hole and lattice temperatures, µn and µp
are the field-dependent electron and hole mobilities, Dn and Dp are the elec-
tron and hole diffusion coefficients expressed by the Einstein relation with the
mobilities, m∗

n and m∗
p are the electron and hole effective masses, vn and vp

are the electron and hole velocities, κn and κp are the electron and hole heat
conductivities, and (18) is the Shockley-Read-Hall generation-recombination
model with ni being the intrinsic carrier concentration, τ

0
n and τ

0
p the electron

and hole lifetimes, and p
T
and n

T
the electron and hole densities associated

with energy levels of the traps. In the above equations, vectors are denoted
by bold letters.

Based on Boltzmann statistics [16,35], the convectional drift-diffusion (DD)
model (1)-(3) can be written as

∆φ=F (φ, u, v) , (19)

∇ · (Dnni exp(
φ

VT
)∇u)=R (φ, u, v) , (20)

∇ · (Dpni exp(
−φ
VT
)∇v)=R (φ, u, v) , (21)

where VT = (kBTL)/q is the thermal voltage,

u=exp(
−ϕn

VT
), (22)
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v=exp(
ϕp

VT
), (23)

are the Slotboom variables in which the quasi-Fermi potentials ϕn and ϕp are
expressed as

n=ni exp(
φ− ϕn

VT
), (24)

p=ni exp(
ϕp − φ

VT
), (25)

Jn= qDnni exp(
φ

VT
)∇u = −qnµn∇ϕn, (26)

Jp=−qDpni exp(
−φ
VT
)∇v = −qpµp∇ϕp, (27)

and

F (φ, u, v)=
qni
εs
(u exp(

φ

VT
)− v exp(

−φ
VT
)) +

q(N−
A −N+

D)

εs
, (28)

R (φ, u, v)=
n2
i (uv − 1)

τ0
n

³
niv exp(

−φ
VT
) + p

T

´
+ τ 0

p

³
niu exp(

φ
VT
) + n

T

´ . (29)

The system (19)-(21) is subject to some appropriate conditions on the bound-
ary of a bounded domain denoted by Ω ⊂ <2. The boundary ∂Ω = ∂ΩD∪∂ΩN

is piecewise smooth consisting of Dirichlet ∂ΩD and Neumann ∂ΩN parts. The
Dirichlet part corresponds to the ohmic contacts on the device. By assuming
the charge neutrality condition and the mass-action law [37], the Dirichlet
boundary conditions of the model in terms of the variables φ, u, and v are
described as follows:

φ=VO + Vb, (30)

u=exp(
−VO
VT

), (31)

v=exp(
VO
VT
) , (32)

Tn=Tp = 300 , (33)

where VO denotes the applied voltage and Vb represents the built-in potential
[37]. The Neumann part corresponds to the artificial boundary conditions
∂φ/∂n = ∂u/∂n = ∂v/∂n = ∂Tn/∂n = ∂Tp/∂n = 0 for the state variables.
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Several remarks on the model are in order.

Remark 2.1. The carrier current densities (7) and (8) are derived from those
of the standard hydrodynamic model, namely, from

Jn −
τ pn
q
(∇ · Jn)

Jn

n
= qµn[

kBTn
q
∇n+ n∇(kBTn

q
− φ)]

(and a similar equation for the hole) by neglecting the second (convective) term
of this equation and by assuming the electron to be in thermal equilibrium
with the lattice, i.e., Tn = Tp = TL [12,19,23,31]. The same assumption is also
used for the heat conductivities from which (16) and (17) are thus implied by
the Wiedemann-Franz law [18].

Remark 2.2. In our numerical simulations, the kinetic energy in the carrier
average energies (12) and (13) is neglected. Nevertheless, it does not affect the
self-adjoint transformation as shown in the next section.

Remark 2.3. Following the Caughey-Thomas expression [8,33], we use the
field-dependent mobility model

µn,p =
µ0
n,p

(1 + (
µ0
n,p|E|
vsatn,p

)βn,p)1/βn,p
,

where µ0
n = 1500cm2V −1s−1 and µ0

p = 600cm2V −1s−1[37,33] are lattice mo-
bility constants, vsatn = 1.1 × 107 and vsatp = 9.5 × 106 [8,33] are saturated
velocities, and βn = 2 and βp = 1. Typically, the electron mobility varies
between 50cm2V −1s−1 and 1500cm2V −1s−1 while the hole mobility varies
between 50cm2V −1s−1 and 600cm2V −1s−1 for silicon at room temperature.
Moreover, the linear proportionality of the electric field strength and the mag-
nitudes of the drift velocities only holds at relatively low electric fields. The
drift velocities saturate at high electric fields due to carrier heating. This effect
must be accounted for by field-dependent mobilities if high field effects are to
be analyzed.

3. A SELF-ADJOINT FORMULATION FOR CARRIER
TEMPERATURES

In order to have a self-adjoint expression of (4)-(5), we rewrite (9)-(10) more
precisely as

Sn=
5Jn

−2qkBTn − κn∇Tn +
Jn

−q (
1

2
m∗

n |vn|2), (34)
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Sp=
5Jp

+2q
kBTp − κp∇Tp +

Jp

+q
(
1

2
m∗

p |vp|2). (35)

Introduce new variables gn and gp for carrier temperatures Tn = gn exp(cϕn)
and Tp = gp exp(−cϕp) where c is a constant to be determined. With these
two variables, Eqs. (34)-(35) are reformulated as

Sn=
5Jn

−2qkBgn exp(cϕn)− κn [exp(cϕn)∇gn + cgn exp(cϕn)∇ϕn]

+
Jn

−q (
1

2
m∗

n |vn|2), (36)

Sp=
5Jp

+2q
kBgp exp(−cϕp)− κp

h
exp(−cϕp)∇gp − cgp exp(−cϕp)∇ϕp

i
+

Jp

+q
(
1

2
m∗

p |vp|2). (37)

An instrumental choice of the unknown constant c is to eliminate the gradient
of the quasi-Fermi potentials leading to a divergence formulation for the new
state variables. We thus solve the following two equations for c:

5Jn

−2qkBgn exp(cϕn)− κncgn exp(cϕn)∇ϕn=0, (38)

5Jp

+2q
kBgp exp(−cϕp) + κpcgp exp(−cϕp)∇ϕ=0. (39)

Substituting (26)-(27) into (38)-(39) we have

5

2
nµnkB = cκn = 2cTL(

kB
q
)2nqµn, (40)

5

2
pµpkB = cκp = 2cTL(

kB
q
)2pqµp, (41)

which yield c = 5q
4kBTL

= 5
4VT
. The new state variables gn and gp can therefore

be defined as

Tn= gn exp(
5ϕn

4VT
), (42)

Tp= gp exp(−
5ϕp

4VT
). (43)

Note that these two expressions are purely mathematical and very similar to
that of the Slotboom variables (22) and (23). It is unknown to us whether
these formulas have been developed in the literature or have any significant
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and interesting physical relationships between the quasi-Fermi potentials and
carrier temperatures. Nevertheless, as shown below, they provide an intriguing
alternative to the energy transport model in terms of mathematical properties,
especially from the computational viewpoint. The energy fluxes (9)-(10) are
then reduced to

Sn=−κn exp(
5ϕn

4VT
)∇gn +

Jn

−q (
1

2
m∗

n |vn|2), (44)

Sp=−κp exp(−
5ϕp

4VT
)∇gp +

Jp

+q
(
1

2
m∗

p |vp|2). (45)

Substituting vn and vp for Jn and Jp in (22)-(23), we obtain the following
self-adjoint system in terms of the new variables

∇ · (κn exp(
5ϕn

4VT
)∇gn)=Rn(gn), (46)

∇ · (κp exp(−
5ϕp

4VT
)∇gp)=Rp(gp), (47)

where

Rn(gn)=n(
ωn − ω0

τnω
)− Jn·E−

1

q
∇ · (1

2
m∗

n

|Jn|2

q2n2
Jn), (48)

Rp(gp)= p(
ωp − ω0

τ pω
)− Jp·E+

1

q
∇ · (1

2
m∗

p

|Jp|2

q2n2
Jp). (49)

The boundary conditions are changed accordingly to

gn=
300

exp(5VO
4VT
)
and gp =

300

exp(−5VO
4VT
)
on ∂ΩD, (50)

∂gn
∂n

=
∂gp
∂n

= 0 on ∂ΩN . (51)

Remark 3.1. It should be noted that effective approximation of the gradient
of current densities in formulas (48)-(49) is in general very difficult to acquire.
Simplified models for these formulas based on physical consideration are pos-
sible. For example, by assuming that the drift energy is only a small part of
the total kinetic energy [9], (48)-(49) can be reduced to

Rn(gn)=n(
ωn − ω0

τnω
)− Jn·E,

Rp(gp)= p(
ωp − ω0

τ pω
)− Jp·E,
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which will be used in our numerical simulations.

4. FINITE ELEMENT APPROXIMATION

Let T be a finite element partition of the domain Ω of Laplace’s equation
∆u = 0 with Dirichlet and Neumann boundary conditions such that T = {
τ j; j = 1, ...,M , Ω̄ = ∪Mj=1τ̄ j} and Sh(T ) denote a finite element subspace on
T for the Laplace problem. The FE approximation of the problem in Sh(T )
is then to find uh ∈ Sh(T ) such that

Bh(uh, vh) = 0∀vh ∈ Sh(T )

with

Bh(uh, vh) ≡
X
τ∈T

Z
τ

∇uh ·∇vhdxdy.

We consider particularly that the partition T is generated by the 1-irregular
mesh refinement scheme [11,22]. Let Na be a set of N indices that are as-
signed to active degrees of freedom (i.e., regular nodes) and N c assigned to
constrained degrees of freedom (irregular nodes). By an active degree of free-
dom, we mean one that defines a parameter associated with the global stiff-
ness matrix whereas a constrained degree of freedom is a linear combination
of active degrees of freedom that are associated with the constrained node
by element connectivity. For each i ∈ N c, there exists a set A(i) ⊂ Na of
corresponding active degrees of freedom such that the resulting finite element
space Sh(T ) consists of continuous functions. If rectangular elements are used,
then uh is of the following form [11,22]:

uh=
X
i∈Na

uib̂i +
X
j∈Nc

uj b̂j,

=
X
i∈Na

uib̂i +
X
j∈Nc

X
k∈A(j)

1

2
ukb̂j,

where ui are scalars and b̂i are unconstrained bilinear bases which can be
constructed via the following four shape functions

s1=(1− ξ)(1− η)/4,

s2=(1 + ξ)(1− η)/4,

s3=(1 + ξ)(1 + η)/4,

s4=(1− ξ)(1 + η)/4,

defined on the reference element τ̂ = {(ξ, η) : |ξ| ≤ 1, |η| ≤ 1}. For every
i ∈ Na, let C(i) = {j ∈ N c | i ∈ A(j)}. We rewrite uh in the form
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uh=
X
i∈Na

uib̂i +
X
k∈Na

X
j∈C(k)

1

2
ukb̂j,

=
X
i∈Na

ui(b̂i +
X

j∈C(i)

1

2
b̂j).

Thus, the functions

bi = b̂i +
X

j∈C(i)

1

2
b̂j ∀i ∈ Na,

form constrained bilinear bases.

Let (xi, yi) ∈ Ω be a mesh point in T . For each i ∈ Na, there exists a set V (i) ⊂
Na of active degrees of freedom such that Bh(bk, bi) 6= 0,∀k ∈ V (i), k 6= i. Us-
ing the standard notation ui ≈ u(xi, yi) as unknown scalars, the approximation
results in a system of linear equations

ξiui −
X

k∈V (i)

ξkuk = f∗i , (52)

where ξi = Bh(bi, bi), ξk = −Bh(bk, bi), and f∗i = 0 if (xi, yi) ∈ Ω and is
associated with the boundary condition if (xi, yi) ∈ ∂Ω.

Theorem 4.1. The matrix induced by (52) is diagonally dominant, i.e.,

ξi≥
X

k∈V (i)

ξk, (53)

ξk≥ 0 ∀k ∈ V (i).

Furthermore, the strict inequality in (53) holds for at least one i ∈ Na.

Proof.Without loss of generality, we construct the proof in the region {(x, y) :
0 ≤ x ≤ 2, 0 ≤ y ≤ 2}.

Type 0: Without subdivided elements. This is a 9-point stencil grid. For
simplicity, we enumerate the unknown scalars u1, u2, . . . , u9 from the top left to
the bottom right. Assume that all nodes are unconstrained. For i = 5, we have
V (i) = {1, 2, 3, 4, 6, 7, 8, 9} and ξ5 = B(b5, b5) =

P4
i=1

R 1
−1

R 1
−1∇si ·∇sidξdη =

8/3. Similarly, we have ξk = 1/3 for all k ∈ V (5). Hence (52) reads as

(8/3)u5 −(1/3)u1 −(1/3)u2 −(1/3)u3 −(1/3)u4

−(1/3)u6 −(1/3)u7 −(1/3)u8 −(1/3)u9 = 0,
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which obviously satisfies (53). Suppose that exactly one node is constrained,
say node 8. Then V (5) = {1, 2, 3, 4, 6, 7, 9}, A(8) = {7, 9}, and

−ξ7=Bh(b5, b7)

=Bh(b̂5, b̂7 +
1

2
b̂8)

=

1Z
−1

1Z
−1

∇s1 ·∇s3dξdη

+
1

2

 1Z
−1

1Z
−1

∇s2 ·∇s3dξdη +

1Z
−1

1Z
−1

∇s1 ·∇s4dξdη


=(−1/6) + (1/2)(−1/6− 1/6) = −1/2.

Other ξ0ks are computed in a similarly way. Hence (52) reads as

(8/3)u5 −(1/3)u1 −(1/3)u2 −(1/3)u3 −(1/3)u4

−(1/3)u6 −(1/2)u7 −(1/2)u9 = 0,

which again satisfies (53). If V (5) = {1, 2, 3, 6, 7, 9}, i.e., nodes 8 and 4 are
constrained, then we have

(8/3)u5 −(1/2)u1 −(1/3)u2 −(1/3)u3

−(1/3)u6 −(2/3)u7 −(1/2)u9 = 0.

All other cases with different constrained nodes can be computed similarly
and (53) holds for this type of finite elements.

Type 1: With one subdivided element. For a typical case of this type of
partition, we refer to Fig. 1. Other cases can be shown in a similar way. All
nodes are enumerated as that shown in the figure. Note that the coordinates
of node 10 is (1.5,0.5), 11 is (1.5,1), and 12 is (1,0.5) etc. Nodes 11 and 12 are
constrained. Consider the case V (5) = {1, 2, 3, 4, 6, 7, 8, 10, 13, 14}, A(11) =
{5, 6}, A(12) = {5, 8}, C(5) = {11, 12}. We have

b5= b̂5 +
1

2
b̂11 +

1

2
b̂12

b8= b̂8 +
1

2
b̂12

b6= b̂6 +
1

2
b̂11
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Fig. 1. A 1-irregular mesh with one subdivided element.

Fig. 2. A 1-irregular mesh with two subdivided elements.
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Fig. 3. A 1-irregular mesh with two subdivided elements.

Fig. 4. A 1-irregular mesh with three subdivided elements.
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where

b̂5 =



(2− x)(2− y) if 1 ≤ x ≤ 2, 1 ≤ y ≤ 2

x(2− y) if 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

xy if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

4(1.5− x)(y − 0.5) if 1 ≤ x ≤ 1.5, 0.5 ≤ y ≤ 1

b̂11 =

 4(x− 1)(y − 0.5) if 1 ≤ x ≤ 1.5, 0.5 ≤ y ≤ 1

4(2− x)(y − 0.5) if 1.5 ≤ x ≤ 2, 0.5 ≤ y ≤ 1

b̂12 =

 4(1.5− x)(1− y) if 1 ≤ x ≤ 1.5, 0.5 ≤ y ≤ 1

4(1.5− x)y if 1 ≤ x ≤ 1.5, 0 ≤ y ≤ 0.5

Other basis functions can be constructed analogously. Hence, for example,

ξ5=

2Z
0

2Z
0

∇b5 ·∇b5dξdη

=

2Z
0

2Z
0

∇b̂5 ·∇b̂5dξdη +
1

2

X
j∈C(5)

2Z
0

2Z
0

∇b̂5 ·∇b̂jdξdη

+
1

2

X
j∈C(5)

2Z
0

2Z
0

∇b̂j ·∇b̂5dξdη +
1

4

X
j∈C(5)

2Z
0

2Z
0

∇b̂j ·∇b̂jdξdη

+
1

4

2Z
0

2Z
0

∇b̂11 ·∇b̂12dξdη +
1

4

2Z
0

2Z
0

∇b̂12 ·∇b̂11dξdη

=(8/3) + (1/2)(−1/6− 1/6) + (1/2)(−1/6− 1/6)
+ (1/4)(4/3 + 4/3) + (1/4)(−1/3) + (1/4)(−1/3)
=17/6

and we have

(17/6)u5 −(1/3)u1 −(1/3)u2 −(1/3)u3 −(1/3)u4 −(1/12)u6

−(1/3)u7 −(1/12)u8 −(4/6)u10 −(1/6)u13 −(1/6)u14 = 0,

for (52) which also satisfies (53). It can be shown similarly that (53) holds for
various cases of A(k) and V (i) for this type of elements.
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Type 2: With two subdivided elements. Again, for simplicity, we re-
fer to two typical cases as shown in Figs. 2 and 3. The proof of (53) pro-
ceeds analogously as that of Type 1. For instance, for the case of V (5) =
{1, 2, 3, 10, 12, 14, 15, 17}, A(11) = {5, 6}, A(16) = {5, 4}, C(5) = {11, 16} in
Fig. 2, we have

3u5 −(1/3)u1 −(1/3)u2 −(1/3)u3 −(1/2)u10 −(2/3)u12

−(1/6)u14 −(1/2)u15 −(1/6)u17 = 0.

And, for V (5) = {2, 3, 4, 6, 7, 8, 10, 13, 14, 15, 16, 17}, A(18) = {4, 5}, A(11) =
{5, 6}, A(12) = {5, 8}, A(19) = {2, 5} and C(5) = {11, 12, 18, 19} in Fig. 3,
we have

3u5 −(1/12)u2 −(1/3)u3 −(1/12)u4 −(1/12)u6 −(1/3)u7 −(1/12)u8

−(2/3)u10 −(1/6)u13 −(1/6)u14 −(2/3)u15 −(1/6)u16 −(1/6)u17 = 0.

Type 3: With three subdivided elements. Finally, we prove for a typical
case of this type of elements by referring to Fig. 4, i.e., V (5) = {1, 10, 11, 12, 15, 17, 19, 20},
A(16) = {4, 5}, A(21) = {2, 5}, C(5) = {16, 21}, which gives

3u5 −(1/3)u1 −(1/3)u10 −(1/2)u11 −(1/2)u12 −(1/2)u15

−(1/6)u17 −(1/2)u19 −(1/6)u20 = 0.

The strict inequality in (53) holds for at least one i ∈ Na since the boundary
condition is not of pure Neumann type. This completes the proof.

We are now concerned with the matrix properties of the FE approximation
of the model system, namely, Eqs. (19), (20), (21), (46) and (47) associated
with their corresponding boundary conditions. In device simulations, the cou-
pled system of nonlinear PDEs is usually solved one by one in a manner of
Gummel’s decoupling. For each Gummel’s iteration and after the discretiza-
tion, each one of these equations will result in a system of nonlinear algebraic
equations for which we only have to examine the property of the stiffness
matrix. Obviously, the matrix corresponding to the problem (19) is exactly
that of (52) and hence Theorem 4.1 applies to this problem. However, for the
rest of equations, it is well known that the Scharfetter-Gummel discretization
induces non-physical diffusion in the direction normal to drift velocity for mul-
tidimensional problems, which has led to various modifications of the method
[4,26,30,34,39,40]. In order to obtain the same matrix property, we extend
in particular the method proposed in [39] to the 1-irregular mesh refinement
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scheme. It suffices to consider only the electron energy transport equation
(46). Analysis for other equations is completely analogous to what follows.

The FE approximation of the electron energy transport equation is to find
ghn ∈ Sh(T ) such that

X
τ∈T

Z
τ

Sh ·∇vhdxdy =
X
τ∈T

Z
τ

Rn(g
h
n)vhdxdy ∀vh ∈ Sh(T ), (54)

where

Sh≡S(ϕn)∇ghn, (55)

S(ϕn)≡κn exp(
5ϕn

4VT
). (56)

For each i ∈ Na with gi = ghn(xi, yi), let lik denote the line segment from
node i to node k, k ∈ V (i). On lik, we use the Scharfetter-Gummel scheme to
approximate S(ϕn) by

eSik(ϕn) = κn|(k,i)

 1

|lik|

Z
lik

1

exp(5ϕn
4VT
)
ds


−1

≈κn|(k,i)B(
5ϕi − 5ϕk

4VT
) exp(

5ϕi

4VT
), (57)

where κn|(k,i) = (κn(xk, yk) + κn(xi, yi)) /2 andB(t) = t/(et−1) is the Bernoulli
function for any real number t. For each element τ ∈ T and taking vh = bi,
we have

Z
τ

Sh ·∇bidxdy=
X

k∈V (i)∪{i}

Z
τ

S(ϕn)gk∇bk ·∇bidxdy

≈
X

k∈V (i)

eSik(ϕn)
Z
τ

(gk∇bk ·∇bi + gi∇bi ·∇bi) dxdy

=
X

k∈V (i)

eSik(ϕn)
Z
τ

(gk∇bk ·∇bi − gi∇bk ·∇bi) dxdy

=
X

k∈V (i)

ξk
eSik(ϕn)(gk − gi). (58)

Summing over all elements, the discrete form of (46) can thus be written as

ηigi −
X

k∈V (i)

ηkgk = −Rn(gi) +R∗i , (59)
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for the i-th equation or in a more compact matrix form

AU = −Rn(U) +R∗n(U) =: −F (U), (60)

where

ηi=
X

k∈V (i)

ηk, (61)

ηk= ξkdk, (62)

dk=κn|(k,i)B(
5ϕi − 5ϕk

4VT
) exp(

5ϕi

4VT
), (63)

ξk=−Bh(bi, bk), (64)

U =(g1, . . . , gN), (65)

Rn(U)= (Rn(g1), . . . , Rn(gN)) , (66)

R∗n(U)= (R
∗
n(g1), . . . , R

∗
n(gN)) . (67)

Here Rn(gi) is defined by evaluating (54) at (xi, yi) ∈ Ω, and R∗i is associated
with the boundary conditions if (xi, yi) ∈ ∂Ω and R∗i = 0 if (xi, yi) ∈ Ω. Note
that, by the definition of the Bernoulli function and of the heat conductiv-
ity coefficient, the factors dk in (63) are positive. We therefore conclude the
following result.

Theorem 4.2. The matrix A in (60) is diagonally dominant, i.e.,

ηi≥
X

k∈V (i)

ηk, (68)

ηk≥ 0 ∀k ∈ V (i).

Furthermore, the strict inequality in (68) holds for at least one i ∈ Na.

The diagonal dominance of the resulting matrices of the model problems pro-
vides not only stability of numerical solutions (i.e., no non-physical oscilla-
tions) but also convergence of iterative procedures when the special properties
of the nonlinearity in these problems are taken into account. Moreover, the
existence and uniqueness of the solutions can also be guaranteed by means of
the construction of lower and upper solutions which are defined as follows:

Definition. A vector Ũ ≡ (eg1, . . . , egN) ∈ <N is called an upper solution of
(60) if it satisfies the following inequality

ηiegi − X
k∈V (i)

ηkegk ≥ −Fi(egi) (69)
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and Û ≡ (bg1, . . . , bgN) ∈ <N is a lower solution if

ηibgi − X
k∈V (i)

ηkbgk ≤ −Fi(bgi), (70)

for all i ∈ Na.

It is obvious that every solution of (60) is an upper solution as well as a lower
solution. We say that Û and Ũ are ordered if Û ≤ Ũ . Given any ordered lower
and upper solutions Û and Ũ , we define

hÛ , Ũi≡ {U ∈ <N ; Û ≤ U ≤ Ũ} (71)

hbgi, egii≡ {gi ∈ <; bgi ≤ gi ≤ egi}. (72)

By (7), (12), (42), and (48), we can always choose the nonnegative scalars γi
so that

γi ≡ max
(
∂Rn(gi)

∂gn
; gi ∈ hbgi, egii

)
(73)

or in matrix form

Λ ≡ diag(γi) (74)

for all i ∈ Na. Then by adding the term γigi on both sides of (60) we obtain
the equivalent system

ηigi + γigi =
X

k∈V (i)

ηkgk + γigi − Fi(gi). (75)

Let U
(0)
= Ũ be an initial iterate. We construct a sequence {U (m)} by solving

the linear system

ηig
(m+1)
i + γig

(m+1)
i =

X
k∈V (i)

ηkg
(m)
k + γig

(m)
i − Fi(g

(m)
i ), (76)

for m = 0, 1, 2, . . . and i ∈ Na. Similarly, by using U (0) = Û as another initial
iterate, we obtain a sequence {U (m)} from the linear system

ηig
(m+1)
i

+ γig
(m+1)
i

=
X

k∈V (i)

ηkg
(m)
k
+ γig

(m)
i
− Fi(g

(m)
i
), (77)
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for m = 0, 1, 2, . . . and i ∈ Na. We refer to {U (m)} and {U (m)} as the maximal
and minimal sequences. The following results are direct consequences of The-
orem 4.2 for which a proof can be found, for instance, in [27]. These results
insure that the iterative method (76) or (77) is monotonically, globally, and
uniquely convergent.

Theorem 4.3. Let Ũ , Û be a pair of ordered upper and lower solutions of

(60). Then the sequences {U (m)} and {U (m)} generated by solving (76) and
(77) with U

(0)
= Ũ and U (0) = Û converge monotonically to the solutions U

and U of (76), respectively. That is

Û ≤ U (m) ≤ U (m+1) ≤ U ≤ U ≤ U
(m+1) ≤ U

(m) ≤ Ũ , m = 1, 2, . . . . (78)

Moreover, U = U is the unique solution of (60).

Remark 4.1. A great deal of numerical methods have been developed for
energy transport models, see e.g. [1,5,10,12,13,15,17,18,25,40]. Mixed FEM is
one of the most frequently used methods to approximate the semiconductor
equations [5,6,10,13,25], whereas our approximation is based on the standard
FEM since only one linear FE space is used for all state variables. As shown
in [6], the major difference between the standard FEM and mixed FEM is
that the use of harmonic average in mixed FEM for the exponential function
can extend the effective features of the Scharfetter-Gummel scheme to the
two-dimensional problems whereas in the standard method one can only have
one-dimensional harmonic average as that of (57). Nonetheless, our numerical
experience suggests that sufficiently fine (adaptive) mesh can alleviate this
drawback. Another frequently used method is the finite volume method (FVM)
or the box method [4,12,14]. In view of the harmonic average (a simplification
for the integral in (58)), the present FEM is essentially equivalent to FVM as
proved in [4] and as numerically demonstrated in [20].

Remark 4.2. It is well-known that the Slotboom variables (22), (23), (42),
and (43) can lead to catastrophic roundoff errors if these variables are not
properly scaled during computations [4]. To improve matrix conditioning, we
can divide (59) by κn|(k,i) exp( 5ϕi

4VT
) in a node-by-node basis. The corresponding

stiffness matrix is an M-matrix and Theorem 4.2 still holds with this scaling.
Another way to improve the conditioning is to perform (at the discrete level)
a change of the variable gn back to its original variable (42) as suggested
in [6]. The resulting stiffness matrix may not be an M-matrix. However, the
mixed method can be used to recover the M-matrix property and furthermore
to have the current conservation property [6]. However, the implementation
of this method is more complicated than that of (59) since the discrete sys-
tem is enlarged by this method and the matrix reduction by means of static
condensation requires an element-wise inversion of the block-diagonal matrix
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associated with the auxiliary variable. Moreover, a suitable numerical inte-
gration formula for the local and global matrices and for the right-hand side
vector is required (see [6] for more details). The monotone parameters (73)
will also be more involved with this method.

5. AN ADAPTIVE ALGORITHM

To illustrate the implementation of the iterative method (77), we briefly sum-
marize our adaptive monotone-Gummel algorithm as follows. Here we use the
notation l as Gummel’s (outer) iteration index and m as the monotone (inner)
iteration index.

Step 1. Initial Mesh: Create a coarse and structured mesh for which the number
of nodes can be chosen as small as possible.

Step 2. Preprocessing: Since the initial mesh is usually very coarse, a suffi-
ciently fine mesh created by solving the Poisson problem (19) with low bi-
asing conditions proves to be an essential step for more effective refinement
and faster convergence in the subsequent computations. With this step, a finer
mesh can be generated to capture intrinsic irregularities caused by the junc-
tion layers of the doping profile and by the applied voltages. The problem is
solved only for a few levels of refinement. Furthermore, the mesh near the in-
terface between the oxide and the semiconductor will be refined several times
by the refinement scheme as that in Step 6. We now have a nonuniform mesh
with a better resolution in the vicinity of the interface and the junction.

Step 3. Gummel and Monotone Iterations on the Drift-Diffusion Model:

Step 3.1. Set l = 0 and do the following sub-steps:
Step 3.1.1. Set m := 0 and the initial guess φ

(m)
j = eφj or bφj ∀ j where eφj

and bφj are constant values for all (xj, yj) ∈ Ω
h
that can be easily verified

to be an upper and lower solution of φ, respectively.
Step 3.1.2. Set u(0) and v(0) by the charge neutrality condition.
Step 3.1.3. Compute φ

(m+1)
j by solving the discrete potential system



ξjφ
(m+1)
j + γj (φ)φ

(m+1)
j =

P
k∈V (j) ξkφ

(m)
k

−F (φ(m)
j , u

(l)
j , v

(l)
j ) + γj (φ)φ

(m)
j , ∀(xj, yj) ∈ Ωh,

φ
(m+1)
j = VO + Vb, ∀(xj, yj) ∈ ∂Ωh

D ,

∂φ
(m+1)
j

∂n
= 0, ∀(xj, yj) ∈ ∂Ωh

N ,

(79)

where

γ
j
(φ)=max

(
∂F (φj)

∂φ
; φ̂j ≤ φj ≤ φ̃j

)
, (80)
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ξk=−Bh(bj, bk).

Step 3.1.4. Set φ
(m)
j := φ

(m+1)
j ∀ j and m := m+ 1. Go to Step 3.1.3 until

the stopping criteria of the inner iteration are satisfied.
Step 3.1.5. Set φ

(l+1)
j := φ

(m+1)
j ∀ j.

Step 3.1.6. Set the initial guess u
(m)
j = euj or buj∀ j where euj and buj are

constant values for all (xj, yj) ∈ Ω
h
that can be easily verified to be an

upper and lower solution of u, respectively.
Step 3.1.7. Compute u

(m+1)
j by solving the discrete electron system

ζju
(m+1)
j + γj (u)u

(m+1)
j =

P(m)
k∈V (j) ζku

(m)
k

−R(φ(l+1)
j , u

(m)
j , v

(l)
j ) + γj (u)u

(m)
j , ∀(xj, yj) ∈ Ωh,

u
(m+1)
j = exp

³
−VO
VT

´
, ∀(xj, yj) ∈ ∂Ωh

D ,

∂u
(m+1)
j

∂n
= 0, ∀(xj, yj) ∈ ∂Ωh

N ,

(81)

where

γj (u)=max

(
∂R(uj)

∂u
; ûj ≤ uj ≤ ũj

)
, (82)

ζj =
X

k∈V (j)

ζk, ζk = ξkdk,

Dn|(k,j)=(Dn(xk, yk) +Dn(xj, yj)) /2,

dk=Dn|(k,j)niB(
φ

(l+1)
j − φ

(l+1)
k

VT
) exp(

φ
(l+1)
j

VT
). (83)

Step 3.1.8. Set u
(m)
j := u

(m+1)
j ∀ j and m := m+ 1. Go to Step 3.1.7 until

the stopping criteria of the inner iteration are satisfied.
Step 3.1.9. Set u

(l+1)
j := u

(m+1)
j ∀ j.

Step 3.1.10. The discrete hole continuity system is solved analogously as
that in Step 3.1.7 for v

(l+1)
j .

Step 3.1.11. Set l := l + 1.

Step 3.2. For φ
(l+1)
j , do the following sub-steps:

Step 3.2.1. Set m := 0 and φ
(m)
j := φ

(l)
j ∀ j.

Step 3.2.2. Compute φ
(m+1)
j by solving the discrete potential system (79).

Step 3.2.3. Set φ
(m)
j := φ

(m+1)
j ∀ j and m := m+ 1. Go to Step 3.2.2 until

the stopping criteria of the inner iteration are satisfied.
Step 3.2.4. Set φ

(l+1)
j := φ

(m+1)
j ∀ j.

Step 3.3 For u
(l+1)
j , do the following sub-steps:

Step 3.3.1. Set m := 0 and u
(m)
j := u

(l)
j ∀ j.

Step 3.3.2. Compute u
(m+1)
j by solving the discrete electron system (81).
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Step 3.3.3. Set u
(m)
j := u

(m+1)
j ∀ j and m := m+ 1. Go to Step 3.3.2 until

the stopping criteria of the inner iteration are satisfied.
Step 3.3.4. Set u

(l+1)
j := u

(m+1)
j ∀ j.

Step 3.4. For v
(l+1)
j , the discrete hole continuity system is solved analogously

as that in Step 3.3. Set l := l + 1 and go to Step 3.2 until the stopping
criteria of the outer iteration are satisfied.

Step 4. Monotone Iteration on Electron Energy Transport Model:

Step 4.1. Set m := 0.
Step 4.2. Set the initial guess g

(0)
j = egj or bgj∀ j where egj and bgj are constant

values for all (xj, yj) ∈ Ω
h
that can be easily verified to be an upper and

lower solution of gn, respectively.
Step 4.3. Compute g

(m+1)
j by solving the discrete electron system



ηjg
(m+1)
j + γj (g) g

(m+1)
j =

P(m)
k∈V (j) ηkg

(m)
k

−Rn(g
(m)
j ) + γj (g) g

(m)
j , ∀(xj, yj) ∈ Ωh,

g
(m+1)
j = 300/ exp(5VO

4VT
), ∀(xj, yj) ∈ ∂Ωh

D ,

∂g
(m+1)
j

∂n
= 0, ∀(xj, yj) ∈ ∂Ωh

N ,

(84)

where

γj (g)=max

(
∂Rn(gj)

∂g
; ĝj ≤ gj ≤ g̃j

)
, (85)

ηj =
X

k∈V (j)

ηk, ηk = ξkdk,

κn|(k,j)=(κn(xk, yk) + κn(xj , yj)) /2,

ϕk=− ln(u
(l)
k )VT ,

dk=κn|(k,j)B(
5ϕj − 5ϕk

4VT
) exp(

5ϕj

4VT
). (86)

Step 4.4. Set g
(m)
j := g

(m+1)
j ∀ j and m := m+ 1. Go to Step 4.3 until the

stopping criteria of the inner iteration are satisfied.

Step 5. Error Estimation: For each element, we use the variation of the gradient
of the computed potential, concentration, or temperature compared with that
of all other elements as an local error indicator. Gradients are calculated with
respect to every two nodes in the element, from which the largest one is chosen
to be the error indicator. Error indicators are obtained on an element-by-
element basis according to the hierarchical tree structure of the OOP data
base. A set of criteria on such as global error estimators of approximated
solutions, inner iteration, and outer iteration etc. will be verified. If none of
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the stopping criteria is satisfied, the adaptive process will continue to Step 6,
otherwise it will go to Step 7 for postprocessing the computed solutions.

Step 6. Refinement: Each one of the elements that are associated with error
indicators greater than a preset error tolerance is divided into four subelements
according the rules of the 1-irregular mesh refinement scheme (see, e.g., [22]).
We then move on to Step 3.

Step 7. Postprocessing: All computed solutions are then postprocessed for
further analysis of physical phenomena.

Note that the solution procedure in Step 3 consists of an outer loop associated
with Gummel’s iteration solving (19)-(21) consecutively and an inner loop as-
sociated with the monotone iteration for each nonlinear equation. The energy
equation (46) is then solved by monotone iteration only. Moreover, as shown in
the iterations of (79), (81) and (84), the assembly of global stiffness matrices of
the resulting approximation is not required, that is, the solution of discretized
nonlinear systems is performed on a node-by-node (regular node) basis. It is
also readily seen that the implementation of these iterations is very simple
since the monotone parameters (80), (82), and (85) can be easily evaluated.
In general, they are evaluated by using the most recent available solution at
the current grid point. For this case, the corresponding matrix (74) is simply
the diagonal part of the Jacobian matrix used in Newton’s method.

6. NUMERICAL EXAMPLES

To demonstrate the effectiveness and accuracy of the numerical algorithms
presented in the previous sections, several numerical studies have been made
for sample diode and MOSFET device structures. First of all, a benchmark
model, namely, an abrupt n+−n−n+ silicon diode is used to verify our methods
and formulation with the results reported in literature. Numerical experiments
are performed on a 0.6-µm silicon diode at 300K with n+ = 5.0 × 1017cm−3

and n = 2.0× 1015cm−3. The length of the n-region is approximately 0.4µm.
The boundary conditions are given as follows:

(1) At the position x = 0µm: φ = Vb, u = 1.0 and gn = 300.

(2) At the position x = 0.6µm: φ = VO + Vb, u = exp
³
−VO
VT

´
and gn =

300/ exp(5VO
4VT
).

The steady state results for this problem are shown in Figs. 5-7 where the
applied voltage VO is taken as 1.5V (the solid line) or 2.0V (the dashed line).
These results agree very well with that previously reported in the literature
[1,15,28] and thus show the accuracy of the proposed self-adjoint formula-
tion. This motivates us to further use the formulation in simulations for more
complex device structures.
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Fig. 5. Electrostatic potential.
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Fig. 6. Electron concentration.
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Fig. 7. Temperature.

The next model that we have verified is a typical 2D n+ − n − n+ deep-
submicron diode illustrated in Fig. 8 [1]. The bold lines indicate the contact
positions. Contacts A-B and A-F are terminated at a distance of 0.1µm from
the top left corner. In order to simulate a realistic device, contacts are not
extended to the full n+ region near the top left corner as shown in Fig. 8. The
channel length L is 0.18µm. The doping profile in the highly doped regions is
5.0× 1017cm−3 and in the lowly doped regions is 2.0× 1015cm−3, i.e.,

5.0× 1017cm−3 for 0.0 ≤ x ≤ 0.4µm and 0 ≤ y ≤ 0.1µm,
5.0× 1017cm−3 for 0.3 ≤ x ≤ 0.4µm and 0 ≤ y ≤ 0.4µm,
5.0× 1017cm−3 for 0.0 ≤ x ≤ 0.12µm and 0.28 ≤ y ≤ 0.4µm, and
2.0× 1015cm−3 elsewhere.

The associated boundary conditions are as follows:

(1) On the contacts A-B and A-F: φ = Vb, u = 1.0 and gn = 300.

(2) On the contacts D-C and D-E: φ = 1.0 + Vb, u = exp
³
−1.0
VT

´
and gn =

300/ exp( 5
4VT
).

(3) On the boundaries E-F and B-C: Neumann boundary conditions for φ, u
and gn.

The applied voltage is 1.0V . The location of junction layers is evidently shown
in the final adaptive mesh in Fig. 9. The corresponding potential, electron
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concentration, and temperature distribution are shown in Figs. 10, 11 and 12,
respectively.

Fig. 8. A 0.4µm × 0.4µm n+ − n− n+ silicon device. Contacts are denoted
by bold lines.
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Fig. 9. The final adaptive mesh for a diode.
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Fig. 10. Electrostatic potential.
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Fig. 11. Electron concentration.
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Fig. 12. Electron temperature.

Finally, numerical results were also obtained for an n-MOSFET device with
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the channel length of 0.34µm and with the gate oxide thickness of 7nm. Fig.
13 illustrates the geometry of the MOSFET device structure. The boundary
conditions are as follows:

(1) On B-C: φ = Vb, u = 1.0 and gn = 300.
(2) On I-J: φ = VGS + Vb.

(3) On D-E: φ = VDS + Vb, u = exp
³
−VDS

VT

´
and gn = 300/ exp(

5VDS
4VT

).

(4) On A-F: φ = VBS + Vb, u = exp
³
−VBS

VT

´
and gn = 300/ exp(

5VBS
4VT

).

(5) On A-B and E-F: Neumann boundary conditions for φ, u and gn.
(6) On C-D: Interface boundary condition for φ. Neumann boundary condi-
tions for u and gn.

Note that the general formulation of the model in Sec. 2 is stated only in the
silicon region, i.e., the solution domain Ω in (79) represents this region only.
For MOSFET devices, we need to extend the solution domain to the oxide
region to which Laplace’s equation for the potential is applied. More precisely,
the solution step in (79) is replaced by

ξjφ
(m+1)
j + γj (φ)φ

(m+1)
j =

P
k∈V (j) ξkφ

(m)
k − Fj(φ

(m)
j , u

(g)
j , v

(g)
j ) + γj (φ)φ

(m)
j

∀(xj, yj) ∈ Ωh

φ
(m+1)
j = VO + Vb ∀(xj, yj) ∈ ∂Ωh

D

∂φ
(m+1)
j

∂ν
= 0 ∀(xj, yj) ∈ ∂Ωh

N

ξjφ
(m+1)
j =

P
k∈V (j) ξkφ

(m)
k ∀(xj, yj) ∈ Ωh

O

φ
(m+1)
j = VGS + Vb ∀(xj, yj) ∈ ΓIJ

∂φ
(m+1)
j

∂ν
= 0 ∀(xj, yj) ∈ ΓCI ∪ ΓDJ

εs∂yφ
(m+1)
− = εd∂yφ

(m+1)
+ ∀(xj, yj) ∈ ∂ΓCD,

(87)

where ΩO denotes the gate oxide region, εs and εd are the permittivity con-
stants of the silicon and the oxide, and the + and - signs refer to as the limits
from the oxide and the silicon regions respectively to the interface.

The device has an elliptical 1020cm−3 Gaussian doping profiles in the source
and drain regions and 1016cm−3 in the p-substrate region as shown in Fig.
14. The shallow implantation is needed to obtain a ’normal-off’ device with
positive threshold voltage and the deep implantation is necessary to avoid
punchthrough. The junction depth is 0.2 µm and the lateral diffusion under
gate is 0.08 µm. With VBS = 0V, VDS = 1.5V and VGS = 1.0V , Figs. 15, 16,
17, 18, and 19 present the final adaptive mesh, electrostatic potential, electron
concentration, electron temperature distribution, and electron current density,
respectively. Here the current density is illustrated in the longitudinal direction
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since the transversal components are comparatively very small. Fig. 19 clearly
shows that electrons are moving very close to the interface and jam to the
intersection of the oxide, silicon, and drain contact.

Fig. 13. Geometry of an N-MOSFET device.

Fig. 14. Doping concentration.
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Fig. 15. The final adaptive mesh for an N-MOSFET.
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Fig. 16. Electrostatic potential.
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Fig. 17. Electron concentration.
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Fig. 18. Electron temperature.
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Fig. 19. Electron current density.

We make a remark on the convergence and uniqueness of the iterative method
that has been verified by using the upper ũ = 1 and the lower û = 1.0e− 18
solutions as initial guesses for the electron continuity equation with the voltage
VDS = 1. The lower solution is readily obtained by the charge neutrality
condition exp(−VDS

VT
) ' 1.7e− 17. As mentioned above, the dynamic range of

the numerical values of u and v is very large in computations. The worst case
of the numerics for the Slotboom variables u and v that we have experienced
during the course of the development of our code is about of order 10100 on
our computing systems (Unix on DEC workstations and Linux on Pentium
III) with the machine number of order 10300. The range of applied voltages
that have been tested with our code is -10V (the reverse bias) to 10V (the
forward bias) for a diode and 0V to 5V (the drain bias) and 0V to 4V (the
gate bias) for a MOSFET. Although the Slotboom variables are limited for
larger bias conditions because of the exponential of the Slotboom variables,
applied voltages are much less than 5V in submicron electron devices with the
gate oxide thickness less than 22nm [38]. This may suggest that the Slotboom
formulation for classical device properties may be revived in future simulations
as the miniaturization of devices continues.

7. CONCLUSION

A self-adjoint model of the energy transport model is proposed in this paper.
An iterative method is then developed for the solution of the resulting non-
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linear algebraic equations of the model from adaptive finite element approxi-
mation. This method exhibits many appealing features for device simulations
as follows:

Global convergence: The self-adjointness implies the diagonal dominance of
the resulting matrices, which provides not only stability of numerical solutions
but also convergence of iterative procedures. The method is shown to generate
convergent and unique solutions with simple initial iterates (e.g., the charge
neutrality condition). Moreover, a good approximation of the electrostatic
potential by the iterative and adaptive methods can lead to the convergence
of the solution for the Slotboom variables. The decoupling (Gummel) approach
is hence shown to work well with the present iterative method for submicron
devices.

Efficiency : The method is highly parallel due to it’s Jacobi nature. The con-
ventional approach to obtain an I-V curve is by some continuation procedure
from lower to higher voltages due to the local property of Newton’s method.
This procedure can be very costly in terms of computing time and human
work load. The present method can be used to simultaneously (in parallel)
simulate device I-V points with independent initial guesses due to the global
convergence. The parallelism is thus two folds: the method itself and the I-V
computations. This greatly reduces the overall working time for device simu-
lation practitioners.

Easy implementation: This is a constructive method that essentially depends
only on one crucial element — the monotone parameter. It can be easily imple-
mented on a node-by-node basis. No global stiffness matrix is necessary. The
treatment of the monotone parameter matrix is much more simpler than of
the standard Jacobian matrix.

However, it is unknown to us that the self-adjoint formulation for carrier
temperatures represents any interesting properties in semiconductor physics.
Our numerical results nevertheless show that the carrier temperature can be
well approximated with this formulation.
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[10] P. Degond, A. Jüngel and P. Pietra, Numerical discretization of energy-
transport models for semiconductors with non-parabolic band structure, SIAM
on Scien. Comput., 22, 986 (2000).

[11] L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, Toward a universal
h-p adaptive finite element strategy. Part 1. Constrained approximation and
data structure, Compt. Meth. Appl. Mech. Engng., 77, 79 (1989).

[12] A. Forghieri, R. Guerrieri, P. Ciampolini, A. Gnudi, M. Rudan and G.
Baccarani, A new discretization strategy of the semiconductor equations
comprising momentum and energy balance, IEEE Trans. on CAD, 7, 231
(1988).
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