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*O&Æ@~degenerate differential equations describing two-phase
flow in porous media Ý3�Ý®Þ�&ÆÃàalternative argument
C'°�×degeneracy at two sides J�hdifferential equations Ý3
�ÝHölder continuity�3�Ý°×P�ã&ÆÝ��à#.0��

2. zZ`�

The degenerate differential equations describing two-phase flow in
porous media are considered this year. Hölder continuity of the weak
solution of the differential equations with degeneracy at two sides and
without mild degeneracy assumption is shown by an alternative argu-
ment. Uniqueness of the weak solutions is a direct consequence from
this result.
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Î3�!Ý s�ø�Ý�;ºb�!Ýtime-scaleÝ���!`�
�!Ý s�ÏXàWÝ�í8+²ôÅ(ÕÞ8ø3 s�Ý�
;�Ñ@Ýó.ÿPT���®ß|î9°©P�3Ï×OÝ��
�[20]�&ÆD¡ÝÞ8ø3ã�M� sàWÝ�í8+²�Ý�
ÌìÝó.ÿPÝ�Ýwell-posedness�¬¢ãtwo-scaleÝ*»0�Í
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5. êÝ

*Ox�D¡ã�M� sXxWÝ�í8+²ÝÞ8ø3�Ì
ìÝ�Ýwell-posednessÝ®Þ�9Î��0�ÍETÝ�ÌÿPÝ
Ï×M�uÎ�ÿÕ�ÝØËuniform bound�Jµb��¢ãtwo-
scaleÝ*»�.0�¸8ETÝ�ÌÿP�

6. Z¤"D

3�Ìì�Þ8ø3�M���M� sXxCÝ�í8+²Ý
�;Ýt�-²Î3�M�Ý+²��¥æ�E¯����8DÝ�
3�M�Ý+²��¥æÎ�¥�Ý�.h��ÆXETÝó.ÿ
Pô�!��M� sETÕnonlinear degenerate differential equa-
tion���M�ÝETÕnonlinear degenerate differential system�.
h3D¡�M�ìÝÞ8ø®Þ`æp�¦��9�¨×ËTÙÝ
1°Î@~�M�Ý���yÎ�degenerate elliptic-parabolic equa-
tions with discontinuous and highly oscillating coefficients and with
degeneracy at two sides�3Antontsev etc. [4] CChavent etc. [8]
Ýh�X+ÛÝÞ8ø®Þ�x�ÎjEnondegenerate differential
equations���DiBenedetto [3]ô�@~degenerate elliptic-parabolic
equations with degeneracy at two sides Ý���¬�©�J��Ý
=�P�Chen [9] ô@~Ädegenerate elliptic-parabolic equations�
¬��©§y×Ð[;Ý����yÍ��s�ÝD¡degenerate
parabolic equationsÝ��[10]�ô©bjE×ÐÎ[;Ý����9
°K�Êày&ÆÝ®Þ�

7. @~]°

&Æ2àalternative argumentC'°�×degeneracy at two sides�
¼ÿÕ&ÆXnTÝ®ÞÝ�Ýregularity�

8. ���D¡

We first describe our problem then state main result.

8.1. Statement of problem
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The degenerate differential equations describing two-phase flow in porous
media are concerned. Existence of weak solutions of the equations had
been considered in [3, 4, 7, 8, 9, 16, 19] and references therein. How-
ever, regularity of the weak solutions has not been well-established. In
this paper, we show Hölder continuity of the weak solutions for the
differential equations of two-phase flow in porous media. Uniqueness of
the weak solutions is a direct consequence from this result. If Ω ⊂ <N

(N = 3 in reality) is a porous medium, equations for the two-phase
flow in porous media in global pressure formulation are (see [4, 8]), for
t > 0,

Φ∂tS −∇
(
KΛw(S)∇(P − Ew)−K

ΛwΛo

Λ
∇Υ(S)

)
= Qw, (8.1)

−∇(KΛ(S)∇P −KΛw(S)∇Ew −KΛo(S)∇Eo) = Qt, (8.2)

Φ is porosity; K is absolute permeability field; S ∈ [0, 1] is water sat-
uration; Λα (α = w, o) is phase mobility of α-phase, a nonnegative
monotone function of S; Λ(= Λw + Λo) is the total mobility; P de-
notes global pressure; Qw (resp. Qt) is the water (resp. total) external
source; Eα is a function depending on density, gravity, and position;
and Υ is capillary pressure, a nonnegative decreasing function of S.
From physics, ΛwΛo

Λ
Υ′(0) = ΛwΛo

Λ
Υ′(1) = 0, so equation (8.1) is a de-

generate parabolic equation with degeneracy at two end sides, that is,
S = 0, 1. For the purpose of presentation, we shall set porosity Φ and
permeability field K to 1, and neglect external sources Qw, Qt.

Boundary ∂Ω of the porous medium Ω includes Γ1 and Γ2 satisfying
Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = ∂Ω. The initial and boundry conditions are
given by

(Λw(S)∇(P − Ew)− ΛwΛo

Λ
∇Υ(S)) · ~n = 0, for x ∈ Γ1,

(Λ(S)∇P − Λw(S)∇Ew − Λo(S)∇Eo) · ~n = 0, for x ∈ Γ1,
S = Sb, for x ∈ Γ2,
P = Pb, for x ∈ Γ2,
S(0, x) = Sinit(x), for x ∈ Ω,

(8.3)

where ~n is the unit vector outward normal to Γ1.

8.2. Assumption and main result

Definition 8.1 Boundary ∂Ω of the bounded domain Ω belongs to Hm
∗ ,

m ≥ 1, if (1) in the neighborhood U(x) of each boundary point x 6∈ Γ1∩
Γ2 there exists a homeomorphic transformation x′(x) = (x′1(x), x′2(x), · · ·,
x′N(x)) ∈ Cm,

∣∣∣dx′

dx

∣∣∣ ≥ M > 0 (dx′

dx
is the Jacobian of the transformation)

such that x′N(∂Ω ∩ U(x)) = 0, x′N(Ω ∩ U(x)) > 0, i.e., Γi(i = 1, 2) can
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be locally straightened, (2) in the neighborhood of each point x ∈ Γ1∩Γ2

there exists a transformation x′ = x′(x) with the same properties map-
ping it at the neighbor of the edge(vertex) of a cube in variable x′.
We make the following assumptions:

A1. ∂Ω ∈ H1
∗,

A2. Λw (resp. Λo) : [0, 1] → [0, 1] is continuous and increasing (resp.
decreasing), Λw(0) = Λo(1) = 0, ΛwΛo(z)|z∈(0,1) 6= 0, inf

z∈[0,1)
Λ(z) >

0,

A3. Υ : (0, 1] → <+
0 is onto, decreasing, and a locally Lipschitz contin-

uous function, and inf
z∈[0,1)

∣∣∣dΥ
dS

(z)
∣∣∣ > 0, ΛwΛo

Λ
Υ′(z) ∈ L∞((0, 1)),

A4. Ew, Eo ∈ L∞(0, T ; W 1,∞(Ω)), Pb ∈ L2(0, T ; H1(Ω)),

A5. Sb, Sinit ∈ L2(0, T ; H1(Ω))∩C0,k1(Ω
T
), ∂tΥ(Sb) ∈ L1(ΩT ), Sb, Sinit ∈

(k2, 1− k2),

where k1 > 2,k2 are positive constants. Introduce the following nota-
tion: 

U ≡ {ζ ∈ H1(Ω) : ζ|Γ2 = 0},
dual X ≡ dual space of X,
J (z) ≡ −ΛwΛo

Λ
Υ′(z), z ∈ (0, 1),

R(z) ≡
∫ z
0 J (ξ)dξ.

(8.4)

We consider the following problem: Find {S, P} satisfying

∂tS ∈ dual L2(0, T ;U), (8.5)

0 ≤ S ≤ 1, (8.6)

R(S)−R(Sb), P − Pb ∈ L2(0, T ;U), (8.7)∫
ΩT

∂tS ζ +
∫
ΩT

(Λw(S)∇(P − Ew) +∇R(S))∇ζ = 0, (8.8)∫
ΩT

Λ(S)∇P∇ξ −
∑

i∈{w,o}

∫
ΩT

Λi(S)∇Ei∇ξ = 0, (8.9)

S(x, 0) = Sinit, (8.10)

for any ζ, ξ ∈ L2(0, T ;U). By [2, 9, 19], we have
Lemma 8.1 Under (A1)-(A5), (8.5–8.10) has a weak solution.
Let us define So ≡ 1−S. It is easy to see that Λo is an increasing func-
tion of So, and that equations (8.5–8.10) are equivalent to the following
equations: Find {So, P} satisfying

∂tSo ∈ dual L2(0, T ;U), (8.11)
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0 ≤ So ≤ 1, (8.12)

R(So)−R(1− Sb), P − Pb ∈ L2(0, T ;U), (8.13)∫
ΩT

∂tSoζ +
∫
ΩT

(Λo(So)∇(P − Eo)−∇R(1− So))∇ζ = 0, (8.14)∫
ΩT

Λ(1− So)∇P∇ξ −
∑

i∈{w,o}

∫
ΩT

Λi(1− So)∇Ei∇ξ = 0, (8.15)

So(x, 0) = 1− Sinit, (8.16)

for any ζ, ξ ∈ L2(0, T ;U). Let ϑ ∈ (0, 1/8) such that J is increasing
(resp. decreasing) in (0, ϑ) (resp. (1 − ϑ, 1)). Next we give more
assumptions:

A6. Pb ∈ L∞(0, T ; W 1,k(Ω)) with k > max{N,k1},

A7. maxz∈[0,1] |Λ(z)− 1| < b, where b < 1 is a small number,

A8. Λw(z) ≤ k3z
√
J (z) and J (z) = k4z

m for z ∈ (0, ϑ),

A9. Λo(1 − z) ≤ k3|1 − z|
√
J (1− z) and J (1 − z) = k5|1 − z|m1 for

z ∈ (1− ϑ, 1),

where k3,k4,k5,m,m1 are positive constants. By [3, 4], we have
Lemma 8.2 Under (A1)-(A9),

‖P‖L∞(0,T ;W 1,k1 (Ω)) ≤ c(
∑
α

‖Eα‖L∞(0,T ;W 1,k(Ω)) + ‖Pb‖L∞(0,T ;W 1,k(Ω)))
k1 .

Our main result [21] is:
Theorem 8.1 Under (A1)-(A9), S of (8.1–8.3) is Hölder continuous

in Ω
T
.

If Pb, Ew, Eo ∈ L∞(0, T ; C1,k(Ω)), then P ∈ L∞(0, T ; W 1,∞(Ω)) by
Theorem 8.1 and Corollary 8.35 of [13]. Uniqueness of weak so-
lution of (8.1–8.3) is a direct result of Theorem 8.1 by [19].
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10. W��Ý

Hölder continuity of saturation for two-phase flows in fractured me-
dia is shown. It is an improvement of previous results in literatures. Our
result also implies that global pressure is uniformly bounded in W 1,k

space. However, this is not good enough to employ two-scale method
to show the convergence of the microscopic model for two-phase flows
in fractured media. To get that convergence, a stronger bound (e.g.
W 1,∞) is required, and this is our next target.
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