
行政院國家科學委員會專題研究計畫 期中進度報告

一個以 BDI 為基礎的多個代理程式系統之視覺化開發環境

(1/3)

計畫類別： 個別型計畫

計畫編號： NSC91-2213-E-009-085-

執行期間： 91 年 08 月 01 日至 92 年 07 月 31 日

執行單位： 國立交通大學資訊工程研究所

計畫主持人： 王豐堅

計畫參與人員： 許嘉麟等研究生

報告類型： 精簡報告

處理方式： 本計畫可公開查詢

中 華 民 國 92 年 6 月 24 日

 2

行政院國家科學委員會專題研究計畫期中報告

計畫編號：NSC 91–2213–E–009–085

執行期限：91 年 8 月 1 日至 92 年 7 月 31 日

主持人：王豐堅 國立交通大學資訊工程系

計畫參與人員：許嘉麟等研究生

-. 摘 要
「多個代理程式系統發展方法」對於
分散式系統開發工程提供顯著的優
點，例如：提高「互通性」、「擴充性」
和「可重新組態性」。以代理程式為基
礎的解決方案是實用且吸引人的，因
為方案中的各種代理程式知道如何做
許多事情。例如：代理程式知道如何
與其它代理程式溝通，這使得系統發
展者不再需要設計通訊協定和訊息傳
遞的格式。這類的能力都被當作是基
本的代理程式機制而提供。本計畫第
一 年 的 工 作 主 要 是 分 析 現 有 的
Belief-Desire-Intention(BDI) 智慧型代
理程式平台，並研究如何擴充現有的
BDI 代理程式系統，加入行動能力、
名稱解析、代理程式之間的通訊、協
調、合作等機制，訂定一套「擁有多
個代理程式環境能力」的新 BDI 代理
程式架構之規格並加以實作。另一方
面，分析現有的開發多個代理程式的
方法論，設計一套適合上述新 BDI 代
理程式平台的開發多個代理程式系統
的方法論。

關鍵字：行動代理程式、智慧代理程
式、代理程式發展平台、代理程式導
向

Abstract
The multi-agent approach promises
significant benefits to programming of
distributed systems, such as enhanced

interoperability, scalability, and
reconfigurability. An agent-based
solution is useful and attractive because
the agents used in the solution inherently
owns several capabilities. For example,
agents can communicate with other
agents. The system developers need not
design communication protocols and
message formats, because they are the
agent’s basic mechanisms. In the first
year of the project, we have designed
and implemented a new mobile BDI
agent architecture and platform
providing the essential capabilities, such
as mobility, directory service, and
inter-agent communication,
collaboration, and coordination for
multi-agent systems. Furthermore, we
also proposed a multi-agent
development methodology suited for the
new BDI agent architecture and
platform.

Keywords: mobile agent, intelligent
agent, agent development platform,
agent-oriented

1. Introduction
The multi-agent approach promises
significant benefits to programming of
distributed systems engineering, such as
enhanced interoperability, scalability,
and reconfigurability. An agent-based
solution is useful and attractive because
the agents used in the solution inherently
owns several capabilities. For example,
agents can communicate with other

 3

agents. The system developers need not
design communication protocols and
message formats, because they are the
agent’s basic mechanisms. Agents have
the inherent capability to build the
model of their environment, monitor the
state of that environment, reason and
make decisions based on that state. All
the software developer needs to do is to
specify what the agents do
systematically.

Mobile agent technology has
received a great deal of interest
over the past few years in both
academia and industry. Most models
of mobile agent systems are mainly
based on the concepts of agents,
agent servers (also called agent
systems or agent platforms) and
places. A mobile agent is a
software module responsible for
executing some tasks that can
autonomously migrate from place to
place in a heterogeneous network.
The state and code of an agent are
transferred to the new place when
the agent migration occurs. An
agent server provides the
execution environments, called
places, for the safe execution of
local agents as well as visiting
agents. The server provides
various functions, such as agent
transport, security,
communications of agents with the
host, other agents, and their
owners, and fault tolerance.
On each site, an agent interacts

with other stationary agents,
mobile agents and local resources
in order to accomplish its tasks.
Mobility and communication are
important factors for cooperation
among agents. Mobile agent
platforms need an efficient and

reliable communication system.
Such a communication system needs
a good procedure for locating
mobile agents and a reliable
message delivery mechanism. In
general, both mechanisms are
complicated than those in
traditional distributed systems
since agents may migrate anytime.
For example, the receiver agent
might migrate to another host after
the message sender agent gets its
location information. Since the
location information is overdue
now, the delivery mechanism needs
additional efforts to deliver the
message.
Most existing intelligent agent

architectures use
Belief-Desire-Intention (BDI)
architecture. The BDI approach is
based on the study of mental
attitudes and tackles the problems
arising when trying to use
traditional planning in situations
requiring real-time reactivity.
However, the disadvantages of
existing BDI architectures are
that they mainly focus on single
agent and thus lack mobility and
some essential capacities in
multi-agent environments, such as
directory service and inter-agent
communication, collaboration, and
coordination. The objective of
this report is to design a new BDI
agent architecture and platform
that support these features.

In this report, session 2 discusses
naming, location tracking, and
inter-agent communication issues in
mobile agent systems. Session 3
presents our new mobile BDI agent and
agent server architectures with mobility,
directory service, and inter-agent

 4

communication support. Session 4
introduces our methodology for the
development of multi-agent systems
based on our platform. In the final
session, we draw a conclusion and
suggest the future work.

2. Design Issues for Supporting
Mobility

2.1 Mobility
A mobile agent consists of code, state,
and attributes. Mobile agent’s code is a
program that defines agent’s behavior.
Besides code, the state of the agent
contains all contents and values of the
agent’s runtime state and object state.
The state contains all the information
required to resume execution at the
suspended point after migration. The
third part of a mobile agent consists of
attributes that describe the agent, its
requirements, and its history for the
infrastructure. They include data such as
a unique agent identifier, the agent’s
owner, error messages, and movement
history.

An agent can request its host server to
transport it to a remote destination. After
receiving the commands, the agent
server deactivates the agent, captures its
state, and transmits it to the server at the
remote host. The destination server then
restores the agent state and reactive it at
the remote host, thus completing the
migrating.

In order to let code be executed on
heterogeneous machines, there are many
languages used for implementing agent
system before Java was shown in the
world [1]. For example, Agent Tcl [3]
and Ara (Agent for remote access) [4]
are based on the Tool Command
Language, and Telescript [5] is from
General Magic [10] Inc. Java is an
appropriate choice of languages for
agent systems, because it has some
features not found in other languages for
supporting mobile agent systems. For
example, by using object serialization in

Java, objects can be easily “serialized”
and sent over the network or written to
disk for persistent storage.

2.2 Directory Service: Naming scheme
and Name Service
A naming scheme and a name
service are needed for
addressing various entities in a
mobile agent system, such as
hosts, agent servers, agents, and
other global resources. A
naming scheme is location
transparent [12] if the agent
name does not contain any
site-specific information. For
example, a name comprising the
site to which the agent belongs
plus an agent identifier (e.g.
dssl.csie.nctu.edu.tw/MyAgent)
is not location-transparent. On
the contrary, a naming scheme
according to an agent’s
properties or functions may be
location transparent. An
example is the name
“MySearchAgent”. Furthermore,
a naming scheme is location
independent if an agent’s name
does not change after being
created and might be used to
identify and reach the agent
independently of its current
location. Note that
“location-independent” property
does not indicate that an agent
name cannot contain any
site-specific information. For
example, an agent name might
contain the name of its creator
server to record the current
location of the agent. Once an
agent migrates, its current
location record is updated

 5

correspondingly. Thus, by
contacting the creator server, it
is possible to locate the agent
much easier. This scheme is
location independent but not
transparent, as it requires the
name presence of the creator
server to form an agent name.

Location-dependent naming schemes
may allow simpler implementation of
name service systems than
location-independent ones. Platforms
like Agent Tcl, Aglets, and Concordia
use location-dependent scheme to name
agents. In these systems a mobile agent
is named based on the host name, port
number, and an identifier. Name
resolution is based on DNS. When an
agent migrates, its name would change.
However, the location-dependent
naming schemes make the
implementation of agent location
tracking cumbersome. On the contrary, a
location-independent naming scheme
requires a name service to map the
symbolic name to the agent’s current
location. A simpler solution is to use a
unique name server to keep track of all
agents. However, this is only suitable for
small scale systems and lacks of
scalability. Another approach taken by
Voyager design uses proxies object. A
remote mobile agent is located by
contacting its creator server to obtain its
local references called proxies. Such
proxies are updated by the runtime
environment when the agent migrates.
However, this method creates a strong
binding between application level names
and network level names and raises the
issue of performance if there are a lot of
proxies for an agent in the network.

Because entities such as agents are
mobile in the network, it is desirable to
allow accessing them in a location
independent manner. Table 1 gives
examples of possible naming schemes
for agents and in which platforms that
have been implemented.

 6

Scheme Example Transparency Independence Used by
Properties or Functions MyTestAgent Yes Yes
Home-Host + Name Home host/TestAgent No Yes Ajanta
Home-Host + ID Home host/756721 No Yes ARCA, MOA
Current-Host + Name Current host/TestAgent No No Voyager, AgentTcl
Current-Host + ID Current host/756721 No No Aglets, Concordia

Table 1: Naming Scheme

2.3 Inter-agent Communication

The design challenges for inter-agent
communication mechanisms arise due to
the mobility of the agents. There are
several design choices:
connection-oriented communication
(such as TCP/IP), connection-less
communication (RMI, RPC, or
CORBA-IIOP), or indirect
communication based on the event
publisher/subscriber model and shared
mailboxes or meeting objects. In TCP/IP
or RMI based communication, agents
need to know each other’s network
address in order to establish
communication. Connection-oriented
schemes raise the issue of connection
disruption due to a participating agent’s
migration. In other words,
connection-oriented communication can
be location-independent as long as the
agents do not move during
communications. Otherwise a new
connection for communications has to
be established. In comparison, RMI
based request-reply model throws an
exception when a remote invocation
fails due to the migration of the server
agent; the client agent only need to
re-execute the lookup and binding
protocol to re-establish communication

with the migrated agent at its new
location. However, it may become hard
to establish communication if the
invoked agent moves very frequently.
The indirect communication model
using stationary objects to hold
events/messages/tuples is more
appropriate for such cases. The
tuple-space mode is suitable for agent
coordination, but not applicable for bulk
data exchange.

Several systems (such as Aglets,
Grasshopper, and Voyager) have
supported synchronous, asynchronous
with a reply, and asynchronous without
a reply (or one-way) communication
models. When an agent sends a
synchronous message, its thread blocks
until the receiver replies to the message.
When sending an asynchronous message,
the agent does not block and a return
handler is used to get the reply via
waiting, polling, or call back. The last
type of message is one-way message, i.e.
asynchronous without a reply; it is
useful when a message sending agent
that does not expect reply from message
receiving agent. Table 2 compares
several existing mobile agent systems
according to naming, transport protocol,
and inter-agent communication issues.

System Naming Transport

protocol
Communication

protocol
Messaging

modes
Multicast
messages

Aglet URLs based on DNS
names.

(location-dependent)

ATP based on
TCP/IP

Plain TCP/IP
and RMI

Synchronous,
asynchronous,
and one-way

Yes

Concordia Location-dependent
(based on DNS).
Directory service

RMI RMI Synchronous
and

asynchronous,
based on

Yes

 7

collaboration
points

D`Agents
(Agent Tcl)

Location-dependent
name based on DNS,

and optional
symbolic alias.

Proprietary
protocol
based on

TCP/IP or on
e-mail

Proprietary
protocol based

on TCP/IP or on
e-mail

Asynchronous
and one-way

No

Grasshopper Location-independent
global names.

Plain
TCP/IP+SSL,

RMI+SSL,
CORBA IIOP

and MAF
IIOP

Plain
TCP/IP+SSL,

RMI+SSL,
CORBA IIOP

and MAF IIOP

Synchronous,
asynchronous,
and one-way

Yes

Odyssey Use process name RMI,
CORBA IIOP
and DCOM

RMI, CORBA
IIOP and
DCOM

Through
meeting places

No

Voyager Location-independent
global ID, as well as

local proxy.

Proprietary
Voyager ORB

based on
TCP/IP and

CORBA

Proprietary
Voyager ORB,

by use of
messengers

Synchronous,
asynchronous,
and one-way

Yes,
enhanced

Table 2: comparisons of naming, transport protocol, and inter-agent communication

3. Mobile BDI Agent Architecture &
Platform

3.1 Mobile BDI Agent Architecture –
MBDI Agent

The intelligent agent architecture we
have proposed is based on BDI-theories
[16]. A generic agent is shown in Figure
1. The generic agent includes the
following components:

Environment

MBDI
Agent

Interpreter

Coordination
Engine

Belief
DatabasePlan Library

Intention
Structure

Execution

Sensing results,
Communication,

etc.

Actuation and Communication
Actions, Sensing, etc.

Goals,
Intensions,
Execution

Communicated,
Inferred, Deduced,

Revised Beliefs

Co
mm

uni
cat

ed,
Ge

ner
ate

d, R
evi

sed
Pla

ns

Actions, Reasoning,etc.

Figure 1: MBDI agent architecture

 Belief Database represents what

the agent knows about itself and the
world. For example, the belief may
contain information that describes
the agent’s relationships with other

agents and the capabilities of those
agents.

 Goals specify what the agent is
trying to achieve.

 Plan Library defines the

 8

sequences of actions and tests to be
performed to achieve a certain goal
or react to a specific situation.

 Intention Structure contains those
plans that have been chosen for
eventual execution.

 Interpreter (Reasoner) selects
appropriate plans based on agent’s
current belief, goals, and intentions.
Then the interpreter places the
selected plans on the intention
structure, and executes them.

 Co-ordination Engine (CE) is a
lightweight plan that the agent
executes between plan steps. CE is
responsible for processing the
incoming/outgoing messages and
events that coordinating the agent’s

interactions with agent servers and
other agents by using the
information stored in the belief
database. The CE manages the
agent’s problem solving behavior,
especially for those involving
multi-agent collaboration, i.e. team
plans. It provides several
predefined co-ordination protocols,
such as master-slave for delegating
tasks to subordinate agents,
contract-net for contracting tasks
out to peer agents, and various
auction protocols for buying or
selling resources. The CE also
provides a number of methods that
enable to customize the behavior of
the CE.

Place

Administration
Tools

Visualization
Tools

Global
Directory
Service

Region

MBDI
Server

MBDI
Server

Queue
Manager

Agent
Manager

Security
Manager

MBDI
Server

Messaging Manager

Directory
Manager

Agent Transfer Protocol
Agent Messaging Protocol

Network

Persistence
Manager Place

AgentAgent

Figure 2. MBDI Server architecture

3.2 Mobile BDI Agent Platform – MBDI Server

 9

Our Mobile BDI Agent Platform –
MBDI Server provides the environment
called place for the safe execution of
local agents as well as visiting agents.
The MBDI Server provides various
functions, such as agent management,
transport, security, communications of
agents with the host, other agents, and
their owners, and fault tolerance. The
MBDI Server accepts incoming agents,
authenticates the identity of the owner,
and passes the authenticated agent to the
execution environment. The MBDI
Server also keeps track of the agents
running on its machines and answers
queries about their status. Furthermore,
the MBDI Server allows an authorized
user to suspend, resume and terminate a
running agent, and allows agents to
communicate with each other through
message passing and direct connections.
A MBDI server can join a region. A
region is a set of agent systems that have
the same authority, but not necessarily of
the same agent system type. Global
directory service is provided if a MBDI
Server joins a region. As in Figure 2,
MBDI Server consists of the following
components:

 Agent Manager (AM) is

responsible for providing
fundamental agent management
operations. The operations include
the creation, suspending, resuming,
transferring, receiving, termination,
and getting status of agents.

 Directory Manager (DM)
provides local directory service.
DM maintains two lists of agents,
one is for the agents that are created
locally and the other is for visitor
agents. DM provides white pages
(address books) services to agents.
Each newborn agent created locally
must register with local DM in
order to get a valid and unique
name and the DM is also in charge
of keeping the location of agents
created locally. An agent may

register with the DM to announce
its address or query DM to find out
current locations of other agents
created locally. When the agent
migrates to another MBDI Server,
the agent informs the DM to update
its location information. DM also
provides yellow pages services to
agents. An agent may register with
the DM to announce its capabilities
or query the DM to find out what
capabilities are offered by other
agents. For an MBDI Server
joining a region, the global
directory service is described in
latter session.

 Security Manager (SM) is
responsible for protecting hosts and
agents from malicious entities.
SM provides mechanisms for
identifying users, authenticating
and authorizing their agents, and
data encryption.

 Persistent Manager (PM) is
required to ensure that the agents
can recover from the MBDI Server
crash successfully. It maintains the
state of agents in transit around the
network. As a side benefit, it allows
for the checkpoint and restart of
agents in the event of MBDI Server
failure. Additionally, it can
checkpoint objects upon request by
agents, to provide finer granularity
of reliability guarantees for critical
procedures.

 Queue Manager (QM) is
responsible for the scheduling and
guaranteed delivery of mobile
agents between MBDI Server.

Message Manager (MM) is
responsible for managing
incoming/outgoing messages and
events. The MM has two queues,
one for incoming messages/events,
and the other for outgoing
messages/events. For incoming
messages, the MM forwards these
messages one at a time to the
corresponding object. It ensures

 10

that the next message is not
forwarded until the current message
has been handled. For an outgoing
message, it will be kept in the
outgoing queue until it has been
delivered successfully or failurely
in a fixed time.

3.2.1 The mobility

The agent can migrate with its
own will, forced by another authorized
agent, or by the agent system or the user
via the GUI. Our system provides two
basic mobility patterns, sequential and
parallel migrations, which can be used to
derive (other) different travel plans.
 Sequential Migration:
Here an itinerary object maintains a list
of destinations, including the next the
agent will move to, defines a routing
scheme, and handles special cases such
as what to do if a destination place does
not exist. Objectifying the itinerary
allows programmer to save and reuse it
later. It is similar to use bookmarks.

 Parallel Migration:
The Master-Slave Pattern [2] allows an
agent to spawn several slave agents,
which move to the places of different
locations for execution in parallel. A
slave agent is delegated a task by the
master agent. After finishing its task, the
slave returns to the place created to
report the results to the master agent.

3.2.2 Naming scheme
Our naming scheme contains three
characteristics:

1. Adopt hierarchical naming that
provides ease of maintenance and
delegation of namespaces.

2. Provide location independent
naming for mobile object.

3. Use existing name resolution
infrastructures.

To comply with the location
independent naming requirement of
mobile objects, we adopted Uniform
Resource Name (URN) scheme. A URN
is a persistent, location-independent
resource identifier that can be used for
accessing the characteristics of the
resource, or the resource itself. The
format is as follows:

URN:MBDI:NS/SubNS

Here “MBDI” is the Namespace
Identifier (NID) and “NS/SubNS” is
the Namespace Specific String (NSS).
The NID indicates the unique
name-space for which a URN is created.
In our case, it is “MBDI”, which stands
for our Mobile BDI Agent Name Space.
The representation of NSS part is NID
specific. We use a hierarchical naming
where sub name-spaces are separated by
a slash, ‘/’. For example, an agent
server’s NSS part is
RegionName/AgentServerName and
an agent’s NSS part is
RegionName/AgentServerName/Loc
alAgentName. For the agent name,
RegionName represents the region
where the agent was created. We refer
RegionName as the agent’s home
region. AgentServerName is the name
of the agent server that the agent is
created and LocalAgentName is the
name of the agent chosen by generator
or programmer. The unique name
requirement imposes that there is no
more than one agent, which is born in
the same agent server, to have the same
LocalAgentName. The string
expressing the agent’s characteristics
can be used for agent’s
LocalAgentName for better readability.
The following is a sample agent name:
URN:MBDI:CsieRegion/MyAgentSer
ver/MySellerAgent.

 11

Home
Region

(a). Registration (b). Intra-Server Migration

(c). Inter-Server Migration in the same
Region (d). Inter-Region Migration

Region

Server Agent Registry (SAR)

Place

Agent
Server

Mobile Agent (before and
after migration)

Link without update

Original link before update

Region Name Server (RNS)
Region Agent Registry (RAR)

Link updated before migration

Migration

1

2

1

1

2

3

1

5

2

3

4

2

4

6

Link updated after migration

Figure 3: Location management

3.2.3 The Mechanism to Track an
Agent in a Region
In each Region there are one or more
hosts acting as Region Name Servers
(RNS) for that Region to provide global
naming service. Each RNS contains a
Region Agent Registry (RAR), the entry
in which provides the location where the
target agent is to be found. Similarly,
each agent server’s Directory Manager
(see session 3.2) contains a Server Agent
Registry (SAR) used to store the place
name where the target agent is to be
found. Both RAR and DAR contain
information about all the agents that
have been created in their scope or have
transited through their scope.

An entry of RAR is in the form of
{AgentName, CurrentLocation,
IsHome, IsMigrating}. AgentName is
our URN name of an agent. IsHome
indicates that whether the agent is
created in this region or just a visitor
transiting through this region. Moreover,
IsMigrating is used to indicate whether
the agent have started to migrate or not.
If IsMigrating is false, the
CurrentLocation stores URN name of
the region or agent server where the
agent stays currently; otherwise, it
indicates the target region or agent

server to where the agent have started to
migrate. Similarly, an entry of SAR is
also in the form of {AgentName,
CurrentLocation, IsHome,
IsMigrating}. The only difference is that
the CurrentLocation of SAR stores the
URN name of place where the agent is
to be found.

The management of agents’ location
information in our system could be
described in four separate phases:
registration, migration, getLocation, and
deregistration phase.

Registration(Deregistration)

When an agent is created or arrives at
an agent server, the agent will
perform a registration operation to
declare its existence. The agent
registers its birth in the former case
(birth registration) while it registers
as a visitor in the latter case (visitor
registration). Both cases use the same
procedure. The difference is the
information used to register: the field
IsHome is set to True in the former
case while it is set to False in the
latter. The registration operation is as
follows. First, the agent registers its
name and current place name in the
SAR of current agent server and then

 12

registers its name and current agent
server name in the RAR of current
region. Note that for birth registration,
the SAR will check the agent name to
guarantee the requirement of name
uniqueness (see Figure 3(a)).

Migration
The operations carried out during this
phase depend on whether the source
place and destination place belong to
the same agent server, different agent
servers but the same region, or
different agent servers and regions.
For intra-server (the same agent
server) migration, only the SAR is
updated with the new place name
(Figure 3(b)). For inter-server
migration in the same region, before
migration, the agent updates the SAR
with the URN name of destination
agent server. After migration, the
agent performs a visitor registration
(Figure 3(c)). For inter-region
migration, firstly, the agent updates
the SAR with the URN name of
destination agent server. After
successful migration, the agent
performs a visitor registration. Finally,
the agent updates the RAR of source
region with the URN name of
destination agent server and the RAR
of the agent’s home region with the
URN name of destination region
(Figure 3(d)).

getLocation
The getLocation procedure follows
the links that the agent has left in the
agent registry on the regions or agent
servers it has visited.

1. The name of agent’s home
region is extracted from its
URN name and the existing
resolution framework of the
Domain Name System (DNS)
for URN resolution is used to
find the relative RNS of the
agent’s home region.

2. The RNS is contacted and the
RAR entry for the agent is
retrieved. This (Home) RAR

entry contains an indication of
A. The target agent server

the agent is on if it is still
within its home region.

B. The target region the
agent is on if it has
migrated to the outside of
its home region.

In case A, the agent then contacts the
target agent server’s SAR to find on
which place the agent stays, whereas
in case B the RNS of target region is
contacted and then the similar
procedure in case A is repeated until
the place on which the agent stays is
found.

Deregistration
When the agent terminates, it informs
the home SAR and the home RAR to
clear the entry of the agent.

If all the update operations in the

migration phase have been successful,
the target agent can be found by at most
six messages (Request/Reply with home
RAR, current RAR, and current SAR).

3.2.4 Communication
In our system, agents can send messages
either synchronously or asynchronously,
locally or remotely, peer-to-peer or
multicast. Messaging is done through
the passing of message objects. The
message object can contain anything,
from a simple data type to a serializable
object. The actual message passage is
performed by obtaining a reference to
the receiver agent object via the name
service and then calling sendMessage
method with the message object as an
argument. A messenger component is
responsible for reliable message delivery.
The receiver collects the messages in a
queue managed by the receiver’s
messageManager component. Through
the messageManager, priority levels of
messages can be set for faster processing
for messages of more importance. When
the receiver invokes its handleMessage
method, the message at the head of the

 13

queue is dequeued and processed. After
the message response has been
determined, the receiver invokes one of
several sendReply methods of the
message object. These methods take the
reply as an argument and send it
automatically back to the original sender;
addressing and location are transparent
and handled automatically by the name
service.
The messaging system supports three
types of message modes: (1)
synchronous, (2) asynchronous with a
reply, and (3) one-way, i.e.
asynchronous without a reply. These
messaging mechanisms work not only
with the agents running in the same
place, but between remote agents as well.
However, care must be taken to ensure
that the sender knows where the
intended receiver is and the message is
guaranteed to be delivered to the
receiver, which might even migrate
anytime. It is done in our system
through the name service and
messenger.

4. A Methodology for Analysis &
Design of Multi-Agent Systems
Our methodology is based on role
models. A role model, a collection of
roles, is an abstraction for modeling and
designing multi-agent systems. A role is
an abstract description of an agent’s
expected function and encapsulates the
system goals that it has been assigned
the responsibilities of fulfilling. In our
methodology, a role is described by five
attributes: authorities, responsibilities,
collaborators, relationships, and
protocols. A role’s Authority identifies
the person or organization for whom the
role acts and the rights associated with
the role. The Responsibilities of a role
define what the role should do, i.e. the
system goals that a role should achieve.
In other words, a responsibility of a role
defines a relationship between a set of
roles (the role and its collaborative roles
if any) and a goal to be achieved. The

collaborators of a role are the roles
which interact with the role. The
Relationships of a role identify
correlations and dependencies among
the role and other roles. The
methodology for the analysis of
multi-agent systems is summarized as
follows:

Analysis phase:
1. Identify key roles of the application

domain according to organizational
or functional views. There are two
kinds of roles: domain independent
roles and domain specific roles.
Domain independent roles, such as
information maintenance and
concurrent control, can be reused
through minor changes. The major
task is to analyze domain specific
roles.

2. Identify the authority and lifetime
of each role and analyze
dependency and relationship
between roles to develop a role
hierarchy.

3. For each role, identify its
associated responsibilities. Each
responsibility designates the role
and associated collaborators (if any)
to achieve a goal. For each
responsibility, identify the
interactions among the role and its
collaborators, the performatives
(speech acts) required for those
interactions, and the coordination
protocols according to their
relationship. (Identify events and
conditions to be noticed, and
actions to be performed.)

4. Iterate steps (1)－(3)
5. Refine the role hierarchy.

Design phase:
In general, each role identifies a
particular type of agent that will be in
the system. However, the designer may
combine multiple roles to make a single
agent type. In our design, an agent can
play multiple roles and can change

 14

dynamically. Furthermore, each role
identified from the analysis phase must
be played by at least one agent. An agent
class is a template for a particular type
of agent that will be in the system. In
this phase, our methodology for the
development of an agent class begins
from selecting the roles it will play. This
defines the agent’s purpose, and
determines the agent’s top-level goals to
be achieved. Analysis and
decomposition of the goals into subgoals
might result in the identification of
different plans by which a goal can be
achieved. The methodology for the
development of an agent class is
summarized as follows:

1. Determine the roles that an agent

will play. Identify the top level
goals of the agent by collecting
responsibilities (goals) of these
roles.

2. Construct the goal hierarchy as
follows. For each goal, analyze the
different contexts in which the goal
has to be achieved and for each of
these contexts, decompose the goal
into activities, represented by
subgoals, and actions. Analyze, in
corresponding order and conditions,
the activities and actions to be
performed, specify how failure
should be dealt with, determine the
performance measures that need to
be collected (for meta-level
planning), and then generate a plan
to achieve the goal in this context.
Repeat the analysis for subgoals.

3. Determine the belief structure of
the system — the information
requirements for each plan and goal.
Analyze the input and output data
requirements for each subgoal in a
plan and make sure that this
information is available either as

beliefs or as outputs from prior
subgoals in the plan.

4. Iterate step (1)—(3)
5. Refine the agent classes by

introducing a new class which
existing agent classes can
specialize and composing agent
classes via inheritance or
aggregation.

6. Use deployment diagram to show
the numbers, types, and locations of
agent instances within the system.

5. Conclusions
In the first year of the project, we have
analyzed the existing BDI agent
architectures and mobile agent platform
to design and implement a new mobile
BDI agent architecture and platform that
provides essential capabilities in
multi-agent environments, such as
mobility, directory service, and
inter-agent communication,
collaboration, and coordination.
Furthermore, we have analyzed existing
methodologies for analysis and design of
multi-agent systems and have proposed
our own methodology suited to the new
platform.

The major work of the next year
is to: (1) continue accomplishing
implementation and testing of the new
platform; (2) use our methodology to
analysis and design several example
applications to verify its practicability;
(3) implement the examples on the new
platform to verify the platform’s
practicality; (4) analyze existing
development environments for
multi-agent systems; (5) design and
implement a visual programming
environment which supports analysis,
design, implementation, and simulation
for multi-agent systems.

 15

Requirement

RelationshipRoles

Responsibility

Interaction

Refined Roles

Agent Classes

Agent
Architecture

Deployment
Diagram

Identifying
Roles

Identifying
Responsibilities
and Interactions

Refining
Roles

Creating Agent
Classes

Assembling
Agent

Classes

System
Deployment

A
nalysis

D
esign

Creating an
Agent Class

Belief
Structure

Selecting
Roles

Goal
Hierarchy

Plan Library

Figure 4: Methodology for the Development of Multi-Agent Systems

Reference

[1]”Software Agents: A review”, Shaw Green, Leon Hurt etc.
[2] Programming and Deploying Java Mobile Agents with Aglets, Danny B. Lange
and Mitsuru Oshima
[3] Agent Tcl was developed by Robert S. Gray and colleagues at the Dartmouth
College Computer Science Department.
[4] Ara is a project within the Distributed Systems Group in the Computer Science
Department of the University of Kaiserslautern, Germany.
 http://www.uni-kl.de/AG-Nehmer/Projekte/Ara/index_e.html
[5] James E. White; Telescript technology: The foundation for the electronic market
place; General Magic White Paper.

 16

[6] IBM Aglets, http://www.trl.ibm.co.jp/aglets
[7] Voyager 3.1, http://www.objectspace.com
[8] Concordia, http://www.meitca.com/HSL/Projects/Concordia
[9] MASIF-The OMG Mobile Agent System Interoperability Facility; Mobile
Agents–Second International Workshop, MA’98 (Stuttgart, Germany, September
1998); Published as Kurt Rothermel and Fritz Hohl, editors, Lecture Notes in
Computer Science, 1477. Springer, September 1998.
[10]Mobile Agents White Paper, General Magic,

http://www.genmagic.com/technology/techwhitepaper.html/
[11] Agent system Development Method Based on Agent Pattern; Yasuyuki Tahara,
Akihiko Ohsuga and Shinichi Honiden; 21st International Conference on Software
Engineering, 16-22 May 1999.
[12] Distributed Systems: concepts and Design; George Coulouris, Jean Dollimore,
and Tim Kindberg; second edition 1994
[13] Distributed Operation Systems & Algorithms; Randy Chow and Theodore
Johnson at university of Florida; publisher Addison Wesley 1997
[14] HOSTNAME Server; Tech. Report RFC 953; ftp://nic.ddn.mil/user/pub/RFC
[15] Mobile Objects and Agents (MOA); Dejan S., William LaForge and Deepika
Chauhan; The Open Group Research Institute.
[16] Marcus J. Huber. JAM: A BDI-theoretic mobile agent architecture. In
Proceedings of the Third International Conference on Autonomous Agents
(Agents'99), pages 236--243, May 1999.

