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a b s t r a c t

Since optical WDM networks are becoming one of the alternatives for building up backbones, dynamic

routing, and wavelength assignment with delay constraints (DRWA-DC) in WDM networks with sparse

wavelength conversions is important for a communication model to route requests subject to delay

bounds. Since the NP-hard minimum Steiner tree problem can be reduced to the DRWA-DC problem, it

is very unlikely to derive optimal solutions in a reasonable time for the DRWA-DC problem. In this

paper, we circumvent to apply a meta-heuristic based upon the ant colony optimization (ACO)

approach to produce approximate solutions in a timely manner. In the literature, the ACO approach has

been successfully applied to several well-known combinatorial optimization problems whose solutions

might be in the form of paths on the associated graphs. The ACO algorithm proposed in this paper

incorporates several new features so as to select wavelength links for which the communication cost

and the transmission delay of routing the request can be minimized as much as possible subject to the

specified delay bound. Computational experiments are designed and conducted to study the

performance of the proposed algorithm. Comparing with the optimal solutions found by an ILP

formulation, numerical results evince that the ACO algorithm is effective and robust in providing

quality approximate solutions to the DRWA-DC problem.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Optical networks are a type of high-capacity telecommunica-
tion networks that can provide routing, grooming, and restoration
at wavelength level (Green, 1992). The technology of Wavelength

Division Multiplexing (WDM) networks is mainly based on
optical wavelength-division multiplexing on optical fibers for
forming a number of multi-communication channels at different
wavelengths with an electronic processing speed (Lowe, 1998).
WDM networks provide connectivity among optical components
to let optical communication meet the increasing demands for
high channel bandwidths and low communication delays. The
utilization of wavelengths to route data is referred as wavelength
routing, and an optical switch employing the technique is referred
as a wavelength-routing switch. Therefore, in a wavelength-
routing WDM network that is constructed using optical fiber links
to connect input ports and output ports in wavelength-routing
switches, data can be routed to other optical switches based on
ll rights reserved.
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wavelengths of optical fibers. If the transmission between input
port and output port involves two different wavelengths, the
switch should have the capacity of wavelength conversion
(Ramamurthy and Mukherjee, 1998) and gives rise to transmis-
sion delay and deployment cost. Deploying a part of switches with
wavelength conversion in networks can be a viable alternative to
balance the cost of constructing networks and network efficiency.
Networks of this type are referred as WDM networks with sparse
wavelength conversion.

In (wavelength-routing) WDM networks, a light-path
(Chlamtac et al., 1992) can be set up in a similar way as a
circuit-switched network to carry data among switches at
wavelength level without optical-to-electrical and electrical-to-
optical conversions, and then the data can be transmitted
according to the trail of the light-path. Since different set-up
light-paths will occupy different resources (e.g., switches, wave-
lengths) and end-to-end transmission time in network commu-
nication, the communication cost and the transmission delay of a
light-path are usually used as the criterion for evaluating the
efficiency of a light-path. The communication cost may be the
numbers or the costs of utilized fibers and switches included in a
light-path. The transmission delay is the sum of transmission
delays of all switches and links in the light-path. The routing and
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wavelength assignment (RWA) problem known to be NP-hard
(Karasan and Ayanoglu, 1998) is defined as follows: Given a set of
connection requests, each of which is specified to transmit data
from a source to a destination, the problem is to find a light-path
from the source to the destination for each request and to assign a
wavelength to each link included in the light-path.

The RWA problem can be categorized into two types, static
RWA (SRWA) and dynamic RWA (DRWA). The SRWA problem is
to determine the logical topology which can be used to configure
all switches according to the found light-paths and assigned
wavelengths in the given network. The objective is usually to
maximize the routing throughput (Krishnaswamy and Sivarajan,
2001) or to minimize the number of required wavelengths. The
DRWA counterpart is an on-line version in which connection
requests arrive one at a time, and the requests must be routed in
real time under the current environment of the network. For
minimizing blocking probability (Shen et al., 2001; Qin et al.,
2003; Ngo et al., 2006) and wavelengths, the objective is to find a
survival light-path when some links fail, and to maximize the
carried traffic (Kavian et al., 2007). For setting up and tearing
down light-paths to minimize the number of blocked connections,
a distributed control scheme for establishing reliability-con-
strained least-cost light-paths and four heuristics were proposed
in Saradhi et al. (2007).

Many new network applications, such as videoconferencing,
video on demand system, on-line gaming, etc., have inspired the
demands for new communication models. Moreover, to guarantee
that video and audio signals can be efficiently transmitted in
interactive multimedia applications, transmission delays from a
source to a destination will be limited under a given delay bound,
where the delay bound may be decided according to the degree of
emergence, data priority, or application type of data. Therefore,
transmitting data with delay bound constraints is realistic to reflect
the demand about data transmission in the future. A request with
delay bound dictates that it needs to be successfully transmitted
before its given delay constraint is violated. The issue of routing
this type of requests is referred as the RWA with delay constraints
problem (RWA-DC) in WDM networks.

In most cases, switches with wavelength conversion are
reserved to provide the imperative of converting wavelength in
the light-path such that the data can be successfully transmitted.
In order to avoid using this type of switches in the light-path not
requiring wavelength conversion, it is necessary to incur extra
costs for using this type of switches. Although most of previous
research neglected the communication cost of wavelength
conversion in switches so as to simplify the problem and thus
reduce the complexity, the communication cost of wavelength
conversion is taken into consideration in this paper to ensure that
the light-path can make better use of the switches without
conversion capability. Besides, because transmission delay occurs
in the case that wavelength is converted in a switch with
wavelength conversion, it is therefore crucial to take transmission
delay into account. In this paper, we assume communication cost
and transmission delay in switches are incurred when the
wavelength is converted between the input and output ports. In
summary, the dynamic RWA-DC (DRWA-DC) problem involves
the following three features: (1) some of the switches can provide
wavelength conversion, (2) data transmission through switches
using different wavelengths at input and output ports incurs
communication cost and transmission delay, and (3) requests are
associated with delay bounds. The goal is to minimize the total
communication cost.

For the RWA problem, Karasan and Ayanoglu (1998)
proved the NP-hardness. Integer linear programming (ILP)
models (Krishnaswamy and Sivarajan, 2001), statistics (Ngo
et al., 2006), and meta-heuristics including heuristics (Shen
et al., 2001; Qin et al., 2003) and genetic algorithm (GA) (Kavian
et al., 2007) were proposed to cope with different problem
settings. Although the ILP model can be deployed to find optimal
solutions, the execution time is not affordable for large-scale
networks. Moreover, the DRWA-DC problem exhibits much more
complicated structures; it is unlikely to follow the ILP approach to
produce optimal solutions in an acceptable time.

In this paper, we address a design of ant colony optimization
(ACO), which is a meta-heuristic developed in the early 1990s
(Dorigo et al., 1991). The ACO uses natural metaphor inspired by
the behavior of ant colonies to solve complex combinatorial
optimization problems for finding near-optimal solutions. It has
demonstrated significant strengths in many application areas,
such as the traveling salesman problem (Dorigo and Gambardella,
1997), generalized minimum spanning tree problem (Shyu et al.,
2003), scheduling problems (Shyu et al., 2004a; Lin et al., 2008;
Udomsakdigool and Kachitvichyanukul, 2008; Sabuncuoglu et al.,
2009), optimization of chaotic systems (Wang and Ip, 2005),
minimum weight vertex cover problem (Shyu et al., 2004b),
layout design of satellite modules (Sun and Teng, 2003), assembly
line balancing (McMullen and Tarasewich, 2006), and distributed
optimization of a logistic system (Silva et al., 2006), just to name a
few. The details of the ACO design for solving the RWA problem
will be described later.

In Varela and Sinclair (1999), Garlick and Barr (2002), and
Kwang and Weng (2003), the ACO has been used to solve the RWA
problem, but communication cost, wavelength conversion cost
and delay bound were not incorporated in their studies. To the
best of our knowledge, Varela and Sinclair (1999) is the first paper
applying the ACO to cope with the SRWA problem. In their design,
each ant keeps a tabu list of previously visited nodes to avoid
dead-ends and cycles and to allow backtracking, where back-
tracking means that an ant will reversely pop out its previous
location to alter the visited nodes when the already found partial
tour is blocked. Garlick and Barr (2002) extended the ACO
application to the DRWA problem by using length and congestion
information in making routing decisions to reduce the possibility
of network blocking in the tour-constructing phase. In Kwang and
Weng (2003), a survey and comparison on ACO applications to
routing and load-balancing issues were presented. Varela and
Sinclair (1999) and Garlick and Barr (2002) both used the shortest
path algorithm and the minimum number of edges of paths to
find a light-path as the heuristic ingredient of the ACO. However,
delay bounds make these heuristics inappropriate for solving
the DRWA-DC problem. Moreover, the realistic concerns about
wavelength conversion in switches give rise to a more compli-
cated problem. According to the three characteristics: delay bound,
wavelength conversion, and objective function, Table 1 shows the
comparisons of previous research papers: Krishnaswamy and
Sivarajan (2001), Shen et al. (2001), Garlick and Barr (2002), Qin
et al. (2003), Ngo et al. (2006), and Kavian et al. (2007).

The DRWA-DC problem is relatively difficult because many
issues need to be simultaneously taken into account: the request
is associated with a delay bound, the parts of switches have a
wavelength conversion capability, and a light-path is evaluated by
communication cost and wavelength conversion cost. Since the
DRWA-DC problem is computationally challenging, it is very
unlikely to optimally solve it in polynomial time. While the ACO
has been applied to solve some specific RWA, no results have been
reported to the complex, but realistic, problem involving delay
bound and wavelength conversion simultaneously. In this paper,
we shall design new ACO features to produce solutions to the
studied problem.

The rest of this paper is organized as follows. Section 2 is
dedicated to a formal formulation of the DRWA-DC problem. In
Section 3, we shall introduce the basic structure of the ACO and



Table 1
Comparisons of related research.

Delay

bound

Wavelength

conversion

Objective

Krishnaswamy and Sivarajan

(2001)

No No Maximizing the number of connections and minimizing the number of required

wavelengths

Shen et al. (2001) No Yes Minimizing the blocking probability

Garlick and Barr (2002) No No Minimizing the blocking connections

Qin et al. (2003) No Yes Maximizing the number of connections and reducing the number of required conversions

Ngo et al. (2006) No No Minimizing the blocking probability

Kavian et al. (2007) Yes No Maximizing the number of connections

This paper Yes Yes Minimizing the communication cost of a connection
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then present several features that can nicely shape the DRWA-DC
problem into a graph-based framework that is suitable for the
development and application of ACO algorithms. Section 4 is
dedicated to the computational experiments designed to evaluate
the performance of the proposed ACO algorithm. Numerical
results and analysis are also included. Section 5 summarizes the
results and gives some concluding remarks.
2. Problem formulation

Before proceeding to the problem statements and formulation,
we introduce the notation that will be used throughout this paper.

Notation

W set of wavelengths available for data transmission in the
given WDM network

n number of nodes in the WDM network
m number of different wavelengths in W

Ii wavelength label at the input port of node i

Oi wavelength label at the output port of node i

r(s, d, D) transmission request r from source s to destination d

subject to delay bound D
eij directed edge from node i to node j

eijl directed wavelength link of wavelength l on eij

c(eij) communication cost on eij

d(eij) transmission delay on eij

ĉðiÞ wavelength conversion cost at node i

d̂ðiÞ wavelength conversion delay at node i

Tc(eijl) communication cost for routing from node i to node j

using wavelength l

Td (eijl) transmission delay for routing from node i to node j

using wavelength l

wi binary variable dictating whether node i provides
wavelength conversion or not; i.e., wi¼1, if yes; 0,
otherwise

lijl binary variable dictating whether wavelength link eijl is
feasible or not to represent the wavelength l in eij can be
to be used to transmit data or not, i.e., lijl¼1, if yes; 0,
otherwise

A network is represented by a weighted graph G(V, E), where V

is the set of switches and set E contains directed edges
corresponding to the directed optical links among the switches.
9V9¼n denotes the number of nodes in the network. Binary
variable wi indicates whether the node iAV is associated with
wavelength conversion, annotated by wi¼1 or 0. The directed
edge from node i to node j is denoted by eij. c(eij) and d(eij)
represent the communication cost and the transmission delay of
edge eij, respectively. At node i, wavelength communication cost
and wavelength transmission delay are denoted by ĉðiÞ and d̂ðiÞ,
respectively. The set of wavelengths available on the optical links
is denoted by W with cardinality 9W9¼m as the number of
different wavelengths. The m wavelengths on each eij can be
viewed as m wavelength links eijl, 1r lrm, to represent the
wavelength-based connections, where c(eijl)¼c(eij) and
d(eijl)¼d(eij). Therefore, when a light-path includes two wave-
length links eijl and ejkl0 (la l0), the switch j must provide the
wavelength conversion capacity such that the signal passing
from eij to enter the input port of j using wavelength l can be
transmitted to switch k from the output port of j using
wavelength l0.

A request under a delay bound D is represented by r(s, d, D)
indicating that there is data originating from source s to be routed
to destination d and the transmission delay of the complete
routing session from s to d must be smaller than or equal to the
delay bound D. Each request may be different from any of the
others in respects of different sources, different destinations, and
different delay bounds, which usually are determined by its
priority, degree of emergence or other criteria.

The DRWA-DC problem seeks to find an assigned light-path P

that consists of a sequence of connected wavelength links. Let
variables Ii and Oi represent the used wavelength labels at the
input and output ports passing through switch i, respectively. The

transmission delay passing through switch i is
Ii�Oij j

m

l m
d̂ðiÞ, where

Ii�Oij j
m

l m
is 0 or 1 depending on whether Ii¼Oi or not; that is, the

transmission delay (d̂ðiÞ) exists only in the case that the
wavelengths are different between input and output ports
(IiaOi). Considering wavelength conversion in general, the
communication cost Tc(eijl) and the transmission delay Td(eijl) of
using wavelength link eijl to node j could be calculated as follows:

TcðeijlÞ ¼

1 if wi ¼ 0 and la Ii,

cðeijlÞþwi
9Ii�l9

m

� �
ĉðiÞ otherwise,

8><
>: ð1Þ

TdðeijlÞ ¼

1 if wi ¼ 0 and la Ii,

dðeijlÞþwi
9Ii�l9

m

� �
d̂ðiÞ otherwise :

8><
>: ð2Þ

The formula is computed based on the used wavelength links
to reduce the complexity. Therefore, the overall communication
cost and the transmission delay incurred in the assigned light-
path P are cðPÞ ¼

P
eijl APTcðeijlÞ and dðPÞ ¼

P
eijl APTdðeijlÞ, respec-

tively. The assigned light-path P will be a feasible solution for
routing the request r(s, d, D) when the following three conditions
are all satisfied:
(1)
 the origin of P is s;

(2)
 the destination node of P is d; and

(3)
 the transmission delay of P is no greater than the delay bound

(i.e., d(P)rD).
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In the rest of paper, for notational convenience, assigned light-
path and feasible solution will be replaced with light-path and
solution if no confusion would arise.
3. ACO design for DRWA-DC

In this section, we develop several features for the deployment
of the ACO. The notation used in our ACO design is given in the
following:

b number of ants
x percentage of the b ants to distribute at s and d

Ak set of nodes accessible to ant k

tijl initial pheromone on wavelength link eijl

tijl dynamic desirability measure (pheromone intensity) on
wavelength link eijl

Zk
ijl static desirability measure about link eijl based on a

heuristic value for ant k

pk
ijl probability that ant k moves from node i to node j using

wavelength l (i.e., using eijl)
Pk light-path traversed by ant k

c(Pk) communication cost of Pk, cðPkÞ ¼
P

eijl APk TcðeijlÞ

d(Pk) transmission delay of Pk, dðPkÞ ¼
P

eijl APk TdðeijlÞ

The ACO is a family of meta-heuristics that are inspired by the
natural optimization mechanism conducted by real ants. The
general framework of the ACO algorithm is shown in Fig. 1. In
the ACO framework, the underlying environment for the ant
colony to explore through is a directed graph, possibly with
weights assigned to the edges. Therefore, a studied problem is
usually represented by a weighted graph. The ACO system starts
by distributing a set of artificial ants onto the graph. Each ant
will construct a tour that corresponds to a solution to the original
problem. When all ants attain solutions, they share their
information via pheromone and then next iteration commences.
The process is repeated until some pre-specified criterion is
satisfied. The optimization mechanism of the above-mentioned
process is carried out by two important features: state transition
rules and pheromone updating rules. A state transition rule is
used for an ant to determine which node it will visit next (Step
2.2.1). The pheromone updating rules dynamically updates the
pheromone intensities (or, in simple words, the degree of
preference) on the edges (Steps 2.2.2 and 2.3). For general
discussion on the philosophy and design detail, the reader is
referred to Dorigo et al. (1991).

Although the ACO has been applied to deal with SWRA (Varela
and Sinclair, 1999) and DRWA (Garlick and Barr, 2002), these
proposed approaches do not work for the DRWA-DC problem. For
example, the backtracking method for avoiding dead-ants in
Varela and Sinclair (1999) and Garlick and Barr (2002) cannot be
Fig. 1. ACO fra
used in DRWA-DC because transmission delays need to be taken
into account. The existence of delay bounds of requests stipulates
the global pheromone updating rule to test whether some ants
arrive at the destinations successfully qualifying by the delay
bound. In this section, we propose and design an ACO algorithm
that can produce approximate solutions with all the addressed
realistic constraints incorporated.

3.1. Initialization of ACO

In our ACO design for the DRWA-DC problem, the initialization
phase includes two parts, dispatching ants to nodes and
initializing pheromone on edges. For the first part, the trail of
an ant can be viewed as a light-path. Therefore, it is reasonable to
expect that an ant will start from the source and stop at the
destination of the request. The optimal trail with the minimum
communication cost indicates that it is an optimal routing light-
path for the request. The strategy that finds trails from source
towards destination is called forward searching. On the other
hand, backward searching refers to the strategy starting from the
destination. Combining both strategies, we can let the ants begin
their searching sessions randomly at either the source s or the
destination d. In this paper, parameter x is given to adjust
the percentage of b ants to be initially dispatched to s; that is,
the numbers of ants initially positioned at the source and the
destination are xb and (1�x)b, respectively.

For the second initialization task, applying some heuristics
will provide informative guidance to determine the initial
pheromone, and possibly shorten the time required by finding
a near optimal or even optimal solution. Considering the
objective of minimizing the total communication cost of routing
a given request, the initial pheromone tijl on each wavelength
link eijl is defined as

tijl ¼

0 if lijl ¼ 0,

1þ
1=cðeijlÞP

xAV lixl=cðeixlÞ
� � if lijl ¼ 1:

8><
>: ð3Þ

Recall the definition of lijl¼0, which indicates that wavelength
link eijl is infeasible. In order to prevent an ant from traversing an
infeasible wavelength link, the initial pheromone of that wave-
length link is set to 0 (Eq. (3)). If the wavelength link is viable, the
initial pheromone will be set as in Eq. (3) to let a wavelength link
with less communication cost have a higher intensity of initial
pheromone than the others.

3.2. State transition rule

The state transition rule presented in this paper features the
following two aspects. First, unlike the ACO research (Shyu et al.,
2004b) proposed solutions through the exploration of the power
mework.
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set of the vertex set, the solution in this paper will obtain a path of
wavelength links from the source to the destination. Depending
on whether the switches provide wavelength conversion or not,
each ant can choose wavelength links using the same or different
wavelengths to route data to the next switch. That is, the solution
to DRWA-DC can be viewed as a sequence of wavelength links,
and the preference information (including pheromone intensity
and local heuristic value) is deposited on the wavelength links.
Secondly, the local heuristic used in most of previous research is
static (that is, the value will not change during the optimization
process). Shyu et al. (2004b) deployed a dynamic heuristic to
reflect the situation that the access preference for a wavelength
link changes over time depending on which wavelength links
have been already selected. Due to the above concerns, we modify
the state transition rule defining the probability that ant k at node
i uses wavelength link eijl to route data to node j as follows:

pk
ijl ¼

1 if qoq0 and /j,lS¼arg max
rAAk ,tAW

flirttirtðZk
irtÞ

b
g,

0 if qoq0 and /j,lSaarg max
rAAk ,tAW

flirttirtðZk
irtÞ

b
g,

lijltijlðZk
ijlÞ

b

P
rAAk

lirltirlðZk
irlÞ

b if qZq0,

8>>>>>>><
>>>>>>>:

ð4Þ

where Ak denotes the set of accessible nodes for ant k to visit such
that no node can be traversed for more than once, tijl is the
dynamic desirability measure about the access to the wavelength
link eijl, Zk

ijl is the static desirability measure about the same
wavelength link based on a problem-specific local heuristic, and b
is the parameter controlling the relative significance between the
two measures. Following the same line of reasoning in Eq. (3), lijl

is added to each equation to guarantee that any infeasible
wavelength link, i.e., lijl¼0, cannot be chosen.

The value of pk
ijl can be decided according to a random number

q drawn from the open interval (0, 1). If q is less than a specified
threshold q0, the wavelength link eijl with the maximal product
lirttirtðZk

irtÞ
b is always selected (see Eq. (4)); otherwise, the

wavelength link is selected according to the probability given in
Eq. (4). That is, the state transition rule is a controlled trade-off
scheme between the exploitation search and the exploration
search of the problem space. Note that the probability value pk

ijl

depends on which wavelength link the ant uses to construct the
light-path (trail) and that the transmission delay of the light-path
is constrained by the delay bound. When the trail exceeds the
delay bound, the value of Zk

ijl will be set to be 0 in Eq. (5), which
will be defined in the next paragraph. Therefore, such a
wavelength link will not be selected in Eq. (4). It thus highly
suggests that the quality and feasibility of a solution depend on
the wavelength links selected; that is, the communication cost
and the transmission delay of light-path reflect the quality of the
solution found by some ant and whether the solution is feasible or
not, respectively. The value of variable tijl, which gradually
reflects the global preference for link eijl, is updated according to
the quality of the final solution constructed at the end of each
cycle and will be described in the next subsection. Local
preference is incorporated to reflect the objective of communica-
tion cost minimization subject to transmission delay bounds.
When there is no feasible solution found by the ant colony,
determining a feasible solution, if exists, becomes more crucial.
Therefore, the local preference needs to reflect the status of
whether a feasible solution has been found thus far. During the
solution-seeking session, if no feasible solution has been encoun-
tered, the local preference will center on how to find a feasible
solution according to the transmission delays of links; otherwise,
the aspect of communication cost is considered. Therefore, the
value of variable Zk

ijl, which evaluates the local preference of ant k
for wavelength link eijl, changes dynamically and is given by

Zk
ijl ¼

0 if dðPk
ÞþTdðeijlÞ4D,

lijl

TdðeijlÞ
if no feasible solution has been found,

lijl

TcðeijlÞ
otherwise,

8>>>>>>><
>>>>>>>:

ð5Þ

where Zk
ijl can be seen as the inverse value of transmission delay

(Eq. (5)) or the inverse value of communication cost (Eq. (5)),
depending on whether the ACO system has explored some
feasible solution or not. In the sequel, the proposed dynamic
local heuristic favors the feasible wavelength link that has
either minimum transmission delays or minimum communica-
tion costs.
3.3. Pheromone updating rule

In the proposed system, we apply global and local pheromone
updating rules as follows. First, at the end of each cycle we keep
track of the best feasible solution Pbest and the worst infeasible
solution Pworst encountered by the colony. Our idea is to
encourage the ants to follow links in Pbest and avoid links in Pworst

in the following cycles. This idea is realized by reinforcing
(respectively, lessening) the intensities of the pheromone cur-
rently left on the wavelength links in Pbest (respectively, Pworst).
The pheromone tijl on wavelength link eijl is updated according to
the following global updating rule:

tijl ¼ ð1�rÞtijlþr
X

k
tuijl�r

X
k
t00ijl, ð6Þ

where

tuijl ¼

1=TcðeijlÞP
eAPbest

1

Tc
ðeÞ

if eijlAPbest ,

0 otherwise,

8>><
>>:

ð7Þ

and

t00ijl ¼
TdðeijlÞP

eAPworst TdðeÞ
if eijlAPworst ,

0 otherwise :

8><
>: ð8Þ

Parameter rA(0, 1) simulates the evaporation rate of the
pheromone intensity and enables the algorithm to reduce the
significance of inferior links or forget the bad decisions previously
made.

Secondly, we activate the local pheromone updating rule to
shuffle the solutions and prevent early convergence, i.e., all the
ants make the same decisions. The local updating rule is
performed at the end of each step when each ant selects a new
wavelength link eijl. The pheromone intensity on link eijl is
updated by

tijl ¼ ð1�jÞtijlþjtijl, ð9Þ

where jA(0, 1) is a parameter adjusting the current pheromone
previously laid on eijl and tijl is the initial value of pheromone laid
on eijl. Note that the local updating rule decreases the pheromone
intensity on the link just visited by an ant and makes the selected
links less attractive to other ants. The effect of the process will
direct the exploration session of an ant toward the links that have
not yet been visited by other ants.



Table 2
Average execution time (s) for different w values and different networks.

w n¼40 n¼50 n¼60

3.0 0.216 0.369 1.987

2.0 0.583 0.682 3.496

1.5 1.463 1.691 9.889

1.4 2.245 4.192 19.382

1.3 3.664 9.758 55.751

1.2 4.679 10.746 79.421

1.1 32.789 395.394 1380.914
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3.4. Stopping criterion

Like other meta-heuristics, different types of stopping criteria
can be used for the ACO. We cite the following four for the
reader’s interest:

C1: The number of iterations is greater than a specified
iteration limit.
C2: The execution time is longer than a specified CPU time
limit.
C3: The averages of communication costs of ants in some
consecutive iterations remain unchanged.
C4: The number of consecutive iterations in which no
improvement attained on the incumbent solution is greater
than a specified limit.

In this paper, we use the last one (C4) as the stopping criteria
of our ACO design.
4. Computational experiments

This paper focuses on determining an assigned light-path of
low communication cost such that switches in the network can be
set up to route a request. To study the performance of the
proposed approach, we designed and conducted a series of
computational simulations. The scheme used in our simulation
can be referred to Waxman (1988). In the scheme, there are n

nodes randomly distributed over a rectangular grid with integer
coordinates. In a network topology generated for experiments,
each directed link from node u to node v is associated with the
probability function p(u,v)¼l exp(�p(u,v)/gd), where p(u,v) is the
coordinate distance between u and v, d is the maximum distance
between each two nodes, and l and g are control variables
selected from interval (0, 1].

The communication cost from node u to node v is defined by
taking the integer value of the distance between them on the grid.
The transmission delay is an integer randomly generated from
interval [1, 5]. For each request r(s, d, D), s and d are generated in a
random manner. The delay bound D must be reasonable, for
otherwise it is unlikely for a feasible light-path to be found. To
generate a request with a reasonable delay bound, we use the
value according to the minimum transmission delay between s

and d found by applying Dijstra’s shortest path algorithm (Dijstra,
1959), and set D to be equal to w times of the derived minimum
transmission delay, where w is a control parameter dictating the
tightness between delay bound and minimum transmission delay.
In our experiments, we set l¼0.7, g¼0.7, and size of rectangular
grid¼100 to simulate the networks with different numbers of
nodes. Moreover, 15% of the nodes are equipped with wavelength
conversion. As for the parameters of the ACO algorithm,
preliminary experiments suggest x¼0.5, b¼1, r¼0.7, j¼0.9,
and qo¼a¼0.5.

The experiments consist of three parts: (1) introduction of
transmission delays to the ILP formulation (Chen and Tseng,
2003), (2) comparisons between the ACO algorithm and the ILP
formulation, and (3) investigation on the number of iterations
exerted in the ACO algorithm. The codes were written in C+ +. The
platform is a personal computer with an Intel P4 2.4 GMHz CPU
and 1 GB RAM.

4.1. Introduction of transmission delays to the ILP formulation

The ILP formulation used in the simulation to solve DRWA-DC
is adapted from that proposed in Chen and Tseng (2003). It was
implemented using the linear programming tool ILOG’s CPLEX 7.1.
Three types of networks were tested: 40 switches (n¼40), 50
switches (n¼50), and 60 switches (n¼60), for each of which 200
different requests were randomly generated. Five wavelengths
were provided for the networks. The delay bound was set to be w
(w¼3.0, 2.0, 1.5, 1.4, 1.3, 1.2, 1.1) times of the minimum
transmission delay between the source and the destination in
each request. For each combination of values of w and network
types, the elapsed run times, each of which are averaged over 200
requests, are summarized in Table 2. The experimental results
suggest that the elapsed execution times increase sharply as the
number of switches grows or the delay bound becomes tighter
(i.e., smaller values of w). For example, when w¼1.1, the average
execution time is more than 1380 s. Therefore, the ILP formulation
cannot solve the DRWA-DC problem well when the number of
switches is more 70 or the specified delay bound of a request is
close to the minimum transmission delay.

4.2. Comparisons between the ACO and the ILP formulation

In this part, we define the stopping criterion for the ACO
algorithm to be that 2000 iterations are reached or the incumbent
value is equal to the optimal one. The same experiment settings
were also applied to observe the solutions found by the ACO
approach. Experimental results are shown in Tables 3–5 for the
networks with 40, 50, and 60 switches and different w values,
respectively. The solutions found by the ILP formulation are used
as the baseline for comparisons. In these tables, the first two
columns show the value of w and the number of ants. We kept
track of the scenarios of the ACO algorithm at iteration 1000 and
iteration 2000. Recall that the algorithm will stop before entering
later iterations if it encounters an optimal solution. Consider the
major column entitled ‘‘1000 Iterations’’. Four sub-columns
summarize the computational statistics at the end of the 1000th
iteration:
#Fea: number of requests for which feasible solutions are
found;
#Opt: number of requests that are optimally solved;
Dev: average communication cost deviation of the found
solutions from the optimal ones; and
ET: average execution time.
Dev is defined as follows:

Dev¼

P
rcðP

feas
r Þ�cðPopt

r Þ=cðPopt
r Þ � 100%

#Fea
, ð10Þ

where cðPfeas
r Þ and cðPopt

r Þ are the communication cost of the
feasible solution Pfeas

r found at the end of some iteration in the
ACO algorithm and the communication cost of the optimal
solution Popt

r found by the ILP formulation, respectively. The
second part reports the results at the end of 2000 iterations. When
the ACO algorithm finished processing 200 requests, we also keep



Table 3
Results of 200 requests routing in 40 nodes (n¼40).

w b 1000 iterations 2000 iterations Opt Non-opt

#Fea #Opt Dev (%) ET #Fea #Opt Dev (%) ET Iter ET Iter ET

3.0 20 200 156 1.49 0.654 200 169 0.70 1.045 205 0.463 619 4.218

40 200 169 0.71 0.992 200 179 0.35 1.503 177 0.763 516 7.807

60 200 178 0.37 1.132 200 184 0.26 1.604 128 0.767 390 11.236

80 200 178 0.33 1.467 200 182 0.26 2.146 121 0.980 434 13.944

100 200 185 0.26 1.190 200 190 0.15 1.655 92 0.854 344 16.870

2.0 20 200 153 4.39 0.558 200 163 3.74 0.906 229 0.403 429 3.124

30 200 149 3.17 0.760 200 161 2.02 1.281 202 0.451 471 4.708

60 200 164 1.45 1.046 200 174 1.00 1.668 166 0.714 264 8.052

80 200 168 1.65 1.341 200 173 1.29 2.082 138 0.820 390 10.171

100 200 172 0.98 1.346 200 180 0.62 2.149 133 0.941 405 13.021

1.5 20 199 152 3.73 0.438 200 161 2.31 0.748 174 0.235 513 2.868

40 199 161 2.34 0.699 200 170 1.69 1.090 160 0.406 357 4.964

60 200 160 2.69 0.943 200 169 1.94 1.534 149 0.521 242 7.055

80 200 172 1.81 0.985 200 178 1.11 1.558 123 0.589 389 9.393

100 200 172 2.21 1.104 200 177 1.97 1.817 96 0.561 253 11.483

1.4 20 200 152 5.43 0.420 200 155 4.28 0.732 130 0.170 342 2.667

40 200 168 2.54 0.569 200 171 2.40 0.943 112 0.269 392 4.917

60 200 159 3.20 0.952 200 167 2.23 1.581 156 0.559 364 6.753

80 200 171 1.95 0.882 200 179 1.25 1.420 117 0.556 335 8.779

100 200 172 2.31 1.088 200 177 1.53 1.804 110 0.605 337 11.031

1.3 20 200 159 4.79 0.352 200 168 3.01 0.593 163 0.210 270 2.604

40 200 173 2.71 0.432 200 180 1.58 0.682 119 0.286 201 4.247

60 200 171 2.93 0.669 200 177 2.62 1.062 115 0.399 142 6.167

80 200 170 2.57 0.818 200 175 2.10 1.349 79 0.353 577 8.316

100 200 184 0.76 0.757 200 186 0.60 1.138 86 0.472 184 9.987

1.2 20 200 164 4.19 0.349 200 169 3.59 0.549 132 0.182 189 2.549

40 200 167 3.39 0.465 200 177 2.14 0.764 135 0.301 366 4.331

60 200 170 2.93 0.645 200 175 2.34 1.077 102 0.334 301 6.276

80 200 173 2.04 0.783 200 176 1.87 1.303 81 0.346 173 8.325

100 200 178 2.10 0.845 200 181 1.03 1.346 83 0.435 267 10.026

1.1 20 199 180 1.96 0.204 199 182 1.90 0.318 69 0.102 69 2.502

40 199 178 2.07 0.315 200 182 1.75 0.517 72 0.157 328 4.161

60 200 184 1.85 0.382 200 188 1.21 0.596 72 0.243 52 6.127

80 200 185 1.56 0.430 200 188 1.34 0.694 62 0.259 43 7.515

100 200 186 1.57 0.464 200 191 0.77 0.737 68 0.328 181 9.421
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track the number of requests that have been optimally solved
(column #Opt). The sub-columns Iter and ET contain the average
number of iterations and the average execution time required to
produce these optimal solutions. The last major column Non-Opt

records information on those test cases for which no optimal
solutions were found. Sub-column Iter records the iteration at
which the best feasible solution was encountered.

From the numerical results, we have the following
observations:
(1)
 For the case that w has a tight value, it is guaranteed to find a
feasible solution with less iterations or fewer ants. According
to the following three sets of experimental results in w¼1.1 of
Table 4, (i) #Fea¼190 in b¼20 and at the end of 1000
iterations, (ii) #Fea¼200 in b¼100 and at the end of 1000
iterations, and (iii) #Fea¼198 in b¼20 and at the end of 2000
iterations, the first and the second sets of results indicate that
more ants can benefit to find feasible solutions. This is due to
wider and diversified explorations within the solution space.
Moreover, the second and the third sets of results demon-
strate that execution with more cycles will have a higher
probability of finding feasible solutions.
(2)
 When a request with a tight delay bound which is close to the
minimum transmission delay, it seems to take less execution
time because the ants were soon trapped and because a tight
delay bound diminishes the number of viable wavelength
links. It is thus less possible to compose feasible solutions.
This reasoning is evinced in the numerical results. For
example, for w¼1.1 and ¼1.5 in Table 5, we have #Fea¼196
and #Fea¼200, and ET¼0.657 s and 1.483 s at the end of 1000
iterations for b¼60.
(3)
 According to the comparisons from Tables 2 to 5, the
execution time of the ACO algorithm is not sensitive to the
change of the number of switches and the tightness of delay
bound; but the time required by the ILP formulation highly
depends on the change of the two features. For example, the
ET values of ACO for w¼1.1, n¼40, 50, and 60 are less than 1 s,
but the corresponding ET values of ILP are more than 32, 395,
1380 s. This demonstrates the robustness and superiority of
the ACO algorithm for the DRWA-DC problem.
(4)
 Although a larger number of iterations and ants deployed in ACO
can reduce the communication cost of feasible solutions, the
long execution time may be inefficient. The maximum average
numbers of iterations to optimally solve optimally and non-
optimally requests are 124 and 318 for n¼40, 123, and 440 for
n¼50, and 169 and 420 for n¼60. Therefore, the stopping
criterion adopts the combination of that a given number of
consecutive iterations within which no improvement on
solutions is attained and a given limited number of iterations,



Table 4
Results of 200 requests routing in 50 nodes (n¼50).

w b 1000 iterations 2000 iterations Opt Non-opt

#Fea #Opt Dev (%) ET #Fea #Opt Dev (%) ET Iter ET Iter ET

3.0 20 200 169 0.98 0.614 200 174 0.61 1.010 139 0.367 832 5.313

40 200 172 0.73 0.922 200 181 0.46 1.455 122 0.585 572 9.743

60 200 178 0.49 1.204 200 185 0.31 1.868 123 0.883 739 14.014

80 200 181 0.46 1.408 200 185 0.30 2.223 99 0.979 694 17.562

100 200 181 0.44 1.618 200 185 0.26 2.543 80 0.907 835 22.724

2.0 20 200 152 3.78 0.621 200 156 2.21 1.089 129 0.256 706 4.045

30 200 156 2.21 1.017 200 165 1.28 1.697 166 0.609 747 6.825

60 200 164 1.50 1.342 200 174 0.79 2.009 168 0.880 515 9.561

80 200 167 1.89 1.516 200 176 0.87 2.397 145 0.958 625 12.951

100 200 170 0.94 1.762 200 175 0.80 2.825 109 0.907 378 16.248

1.5 20 200 143 8.61 0.618 200 149 6.71 1.084 142 0.247 506 3.527

40 200 151 5.50 0.948 200 158 4.67 1.655 143 0.418 367 6.308

60 200 154 3.88 1.160 200 161 2.95 2.066 120 0.492 535 8.566

80 200 152 3.82 1.665 200 159 2.69 2.875 123 0.740 461 11.154

100 200 155 2.98 1.865 200 161 2.48 3.271 108 0.785 489 13.532

1.4 20 200 142 8.71 0.587 200 153 7.02 1.013 171 0.286 274 3.379

40 200 156 6.11 0.843 200 161 4.11 1.457 123 0.369 521 5.950

60 200 162 4.98 1.024 200 170 3.56 1.732 144 0.541 427 8.479

80 200 165 4.27 1.362 200 172 3.03 2.183 145 0.788 422 10.752

100 200 165 3.51 1.379 200 170 2.44 2.452 85 0.574 411 13.091

1.3 20 198 155 6.75 0.478 199 164 5.80 0.826 161 0.285 231 3.287

40 200 158 7.11 0.751 200 166 5.24 1.291 140 0.393 519 5.675

60 199 162 5.16 0.960 199 172 3.87 1.649 157 0.648 322 7.800

80 200 170 3.74 1.004 200 175 2.67 1.688 112 0.545 299 9.692

100 200 164 4.00 1.274 200 169 2.75 2.265 90 0.510 435 11.830

1.2 20 197 154 6.80 0.432 199 165 5.63 0.739 163 0.259 269 3.003

40 200 161 5.82 0.622 200 171 4.72 1.018 137 0.328 304 5.084

60 199 166 5.74 0.772 200 173 4.34 1.333 106 0.369 380 7.514

80 200 169 5.11 1.042 200 173 4.66 1.743 111 0.512 294 9.625

100 200 171 4.23 1.109 200 174 3.76 1.927 77 0.450 188 11.813

1.1 20 190 169 4.37 0.347 198 178 4.61 0.547 150 0.247 370 2.972

40 198 170 4.56 0.488 199 176 3.68 0.830 106 0.279 272 4.878

60 198 182 2.43 0.545 198 187 1.52 0.847 102 0.426 199 6.908

80 199 181 2.03 0.660 199 183 1.86 1.074 70 0.378 61 8.571

100 200 185 2.73 0.620 200 186 2.39 0.978 53 0.299 188 10.003
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which may be more reasonable. The comparisons about the
number of iterations will be discussed in following section.
4.3. Comparisons of iterations

This part is dedicated to investigating the number of
consecutive iterations within which no improvement is attained
on solution values. Average experimental results of Dev, ET, #Fea,
and #Opt of different w values (w¼3.0, 2.0, 1.5, 1.4, 1.3, 1.2, and
1.1) are shown in Figs. 2–7 for different numbers of consecutive
iterations (Iter¼200, 400, 600, 800, and 1000) and different
networks (n¼40, 50, and 60). According to the experimental
results, the type of stopping criterion can provide the performance
with less execution time and approximated deviation in average.
The number of consecutive iterations could be determined by the
response time and the number of ants. Nevertheless, deviation and
execution time seem to be the reasonable factors. From different
criteria, we make several observations:
(1)
 From the experimental results in Figs. 2–4, the value of Dev

decreases steadily for the increase of the number of ants and
the increase of the number of iterations. For example, in Fig. 2,
the average values of Dev are 7.38, 5.14, 4.52, 3.93, and 3.57%
for 200, 400, 600, 800, 1000 iterations in 20 ants (b¼20), and
are 4.82, 4.19, 3.84, 2.77, and 2.93% for 40, 60, 80, 100, and
110 ants in 200 iterations. More ants collaborate through a
longer execution course would accumulate and share more
knowledge (in the differentiation of pheromone densities over
edges) through extensive explorations. Nevertheless, it is not
clear which factor’s increase has impacts on the decrease the
Dev values.
(2)
 According to the experimental results in Fig. 5, the elapsed
execution time is proportional to the numbers of ants and
iterations. This is due to the fact that the algorithmic steps
required in the ACO algorithm are proportional to the ant
population and the number of cycles. Besides, the ACO
algorithm needed a larger number of consecutive iterations
and fewer ants seem to provide lower deviation and to take
longer run time than the ACO algorithms that used a smaller
number of consecutive iterations and more ants. For example,
in Figs. 4 and 5 (n¼60), the values of ET and Dev are 3.622 s
and 3.84% in b¼40 and 1000 iterations, and 2.165 s and 4.85%
in b¼130 and 200 iterations.
(3)
 For the approximate elapsed execution time, it is more likely
for the ACO algorithm needed a larger number of consecutive
iterations and fewer ants to construct feasible solutions than
the ACO algorithms using less consecutive iterations and
more ants. Nevertheless, for the opportunity of attaining



Table 5
Results of 200 requests routing in 60 nodes (n¼60).

w b 1000 iterations 2000 iterations Opt Non-opt

#Fea #Opt Dev (%) ET #Fea #Opt Dev (%) ET Iter ET Iter ET

3.0 20 200 152 1.40 1.147 200 159 1.04 1.847 220 0.681 731 6.371

40 200 156 0.93 1.793 200 168 0.62 2.870 236 1.262 597 11.313

60 200 158 0.92 2.288 200 168 0.64 3.751 168 1.373 592 16.237

80 200 168 1.11 2.550 200 177 0.37 4.020 161 1.704 621 21.847

100 200 174 0.47 2.643 200 181 0.32 4.098 133 1.768 603 26.297

2.0 20 200 133 4.83 1.015 200 144 3.12 1.768 237 0.597 668 4.778

30 200 141 3.65 1.473 200 150 1.94 2.579 187 0.802 500 7.910

60 200 146 2.51 2.018 200 157 1.92 3.370 194 1.190 411 11.331

80 200 149 2.61 2.445 200 159 1.90 4.172 185 1.479 475 14.618

100 200 150 1.90 2.961 200 164 1.52 4.781 213 2.058 382 17.188

1.5 20 200 140 7.15 0.869 200 151 5.66 1.416 223 0.491 465 4.268

40 200 149 6.18 1.246 200 159 4.77 2.020 210 0.730 468 7.025

60 200 158 4.21 1.483 200 164 3.35 2.464 165 0.831 498 9.905

80 200 158 3.52 1.803 200 169 2.16 2.872 177 1.140 441 12.311

100 200 163 2.78 1.958 200 172 1.72 3.085 179 1.273 380 14.214

1.4 20 200 139 7.61 0.784 200 152 5.95 1.298 252 0.500 315 3.828

40 200 150 6.33 1.081 200 160 3.37 1.801 199 0.639 522 6.445

60 200 153 4.66 1.506 200 161 4.21 2.460 188 0.841 302 9.144

80 200 165 3.51 1.473 200 174 2.27 2.323 173 0.981 377 11.307

100 200 156 3.84 2.065 200 171 1.98 3.367 210 1.498 789 14.388

1.3 20 199 143 6.40 0.550 200 155 4.31 0.927 187 0.297 330 3.098

40 200 148 6.12 0.718 200 158 4.18 1.221 154 0.352 252 4.488

60 200 159 4.59 0.848 200 164 3.86 1.453 130 0.418 376 6.167

80 200 165 2.74 1.073 200 172 2.05 1.657 156 0.640 237 7.907

100 200 172 3.03 1.083 200 178 2.21 1.682 143 0.704 277 9.594

1.2 20 199 146 6.61 0.458 200 156 5.01 0.773 163 0.227 336 2.711

40 199 158 5.40 0.636 200 167 2.81 1.020 151 0.352 570 4.402

60 200 160 4.18 0.822 200 167 2.74 1.381 142 0.447 367 6.111

80 200 162 3.69 0.975 200 165 3.11 1.703 98 0.381 340 7.936

100 200 165 3.79 1.135 200 169 2.59 1.951 112 0.568 425 9.493

1.1 20 193 167 2.77 0.366 196 170 2.74 0.595 127 0.251 225 2.548

40 196 170 2.77 0.506 198 174 2.39 0.827 113 0.317 258 4.239

60 196 170 2.74 0.657 197 177 1.96 1.076 114 0.469 196 5.748

80 198 178 2.31 0.650 199 181 2.08 1.030 77 0.360 262 7.415

100 198 179 1.65 0.763 199 189 1.02 1.146 132 0.693 106 8.936
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Fig. 2. The values of Dev for different numbers of ants in 40 nodes (n¼40).
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Fig. 3. The values of Dev for different numbers of ants in 50 nodes (n¼50).
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optimal solutions, the situation is reversed. For example, for
the results of the values of #Fea shown in Fig. 6 and Opt

shown in Fig. 7 (n¼60), ET¼2.165, #Fea¼198.7, and
#Opt¼150.6 for 200 iterations in b¼130, and ET¼2.171,
#Fea¼199.0, and #Opt¼148.9 for 400 iterations in b¼60.
Nevertheless, the phenomenon is inconspicuous.
(4)
 Although it is hard to decide the most appropriate ant
population and the number of iterations, the colony with a
greater number of ants seem to let the ACO algorithm find
feasible solutions in a more efficient way. This could be
attributed to the fact that the increase of ant populations can
better facilitate the mechanism of information or knowledge
sharing. To route the requests with less deviation and higher
success probability, we suggest that the ant population may
be set as the number of nodes in the network plus 20, and that
the value of consecutive iterations is set as large as possible.



190

191

192

193

194

195

196

197

198

199

200

40

#F
ea

Number of Ants (b)

Iter=200 Iter=400

Iter=600 Iter=800

Iter=1000

50 60 70 80 90 100 110 120 130

Fig. 6. #Fea for different numbers of ants in 60 nodes (n¼60).

100

110

120

130

140

150

160

170

180

40

#O
pt

Number of Ants (b)

Iter=200 Iter=400

Iter=600 Iter=800

Iter=1000

50 60 70 80 90 100 110 120 130

Fig. 7. #Opt for different numbers of ants in 60 nodes (n¼60).

1

2

3

4

5

6

7

8

9
Iter=200 Iter=400

Iter=600 Iter=800

Iter=1000

D
ev

 (%
)

Number of Ants (b)

40 50 60 70 80 90 100 110 120 130

Fig. 4. The values of Dev for different numbers of ants in 60 nodes (n¼60).

0

1

2

3

4

5

6

7

8

9

10

11

40

ET
 (s

ec
.)

Number of Ants (b)

Iter=200 Iter=400

Iter=600 Iter=800

Iter=1000

50 60 70 80 90 100 110 120 130

Fig. 5. ET for different numbers of ants in 60 nodes (n¼60).

M.-T. Chen et al. / Engineering Applications of Artificial Intelligence 24 (2011) 295–305304
5. Conclusions

In this paper, a meta-heuristic scheme based upon ant colony
optimization has been proposed to compose approximate solu-
tions to the DRWA-DC problem, which is already known to be
computationally intractable. Some heuristics for the SRWA
problem and the DRWA problem have been developed in the
literature, but few of them have applied the ACO approach or have
addressed the issue concerning delay bounds. In this study, we
have designed and implemented an ACO approach for solving the
DRWA-DC problem. To adjust the ACO approach to meet the
specific characteristics of the studied problem, a wavelength-link-
based graph is constructed for the ants to traverse on. The
effectiveness and robustness of the ACO approach have been
examined by extensive experiments. We have also implemented
the ILP formulation as a baseline to study the performance of the
proposed ACO approach.

The experimental results have clearly evinced that our
proposed ACO algorithm can find approximate solutions with
average deviations of less than 4% from the optimal ones with an
average elapsed execution time only about 0.1% of that required
by an ILP formulation. Moreover, the ACO algorithm still works
well in solving the DRWA-DC problem for large-scale networks,
for which the ILP formulation fails to provide optimal solutions in
a reasonable time.

The purpose of this paper is not to address the superiority the
ACO over other meta-heuristic in solving the RWA problem. Our
focus is set on addressing the applicability as well as the
capability of the ACO algorithm in dealing with the DRWA-DC
problem. Our study has not only extended the application areas of
the ACO approach but also suggested a new viable method for
coping with the complex optimization problems arising from the
WDM domain. For further research, it is of potential interest to
apply the ACO approach to solve the static RWA-DC problem or
the logical network topology design problems. Besides, the
multicast routing and wavelength assignment may be another
interesting research direction.
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