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% =% Gabor filter ¢ & R4 M RAFHE KR

2.1 Gabor filter & & 2454
A Gabor function is a Gaussian-modulated complex exponent function that
provides the best spatial and frequency information of the signal. The general form of
the Gabor function is given as [7-8]
5

g (5,9) = ———expHED? + () exp(w,x) )
2rao, o ao,

s

where

x'| | cos§ sing ||x

vy —-sing, cos6, ||y
with ¢ being the orientation parameter; o, and ao,are the Gaussian window size
parameters (o« = 1 is assumed here); o, is the spatial frequency parameter. A

normalization condition is usually imposed on the parameters o and ©_ such that

ow, =Nr/d (Here 45 is used to approximate the Gaussian window size, which is

also called the filter size) for all scale indices s.

Gabor functions form a complete but non-orthogonal basis set. Signal expansion
using this basis provides a localized frequency description that is useful for image
encoding and compression [9]. Gabor functions can be extended to Gabor wavelets
used for image representation [10], and object recognition [11]. If Gabor function is
used for extracting the object features, then the even-symmetric component
g:Vi(x,y)can be used to extract the bar (or line) features and the odd-symmetric

component g:¥/(x, y)is for extracting the edge features [12].

Since we want to extract feature point along the object boundary, we shall use the

odd-symmetric Gabor function from now follow on. Fig. 1 depicts such a set of Gabor

filters.
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(a) (b)
Fig. 1 (a) A set of odd-symmetric Gabor filters. (b) The plot of a typical
odd-symmetric Gabor filter with N = 4.

Let I(x,y) be the input image function. For multiple scales s, s € {1, 2, 3, ..., S},

and multiple orientationsg,,8,=/xaA8 ,1 =1, 2,....., L (ris a multiple of A#), the
filter responses or outputs are given by the convolution operations:

R, y)=1(x, ) * g (x,9) 2

In the following, we give the important properties of Gabor-filtered image that

lead to the robust feature points.

We first consider the effect of 2-D rotation on the filter response.

Property 1: LetR**/(x,y) andR**/(x,y) be the filter responses to the images
I(x,y) and I(x,y). If I(x,y) is obtained from I(x,y)by a rotation through an
angle ¢ in the counter-clock direction, i.e., /(x,y)=1I(x',y") for points (x,y) and

(x',y") that are related by

x") [ cosg singlx (6)
( y'j - (— sing cos ¢J( y)

Then RSN (x, ) = RONO 44 (3 5) )
where ¥|_[cosd —sing)(x
y) \sing cosg )\ y
Proof:

RN (x,p) = [[Hw,vigs! (x—u, y - v)dudv



= ”I(u', VgEN ! (x —u, y —v)dudy

where
u') [ cosg sing\u
v —-sing cosg A\ v
and
g% N, I(x —u,y—-v)= ! 5 €Xp {—%[(i')z + (L')z]} -exp(jwsx’)
0 Os Ts

x'| | cosf, sing, |[x-u

v —-sinf, cosf, ||y-v
_| cos6, sing |(cosg sing {cos¢ —sing|(x) (u'
- —sin§, cosf, [—sin¢ cos¢) sing cosg Ay V' )

_| cos(6,+¢) sin(6,+¢) | x-u'
" |=sin(d, + @) cos(@, + @) | y -+

RN (x,y) = ([0, Vg (R -u',5-v)du' dv'

=RS’N’1, (f’ y) With 01' = 6[ + ¢
where
X) (cosg —sing)(x
y - sing cosg J\y
The orientation associated with the maximum Gabor filter response among the L

orientations is called the principal orientation. It is perpendicular to the direction of

the highest changing rate of the intensity in the neighbor around the object point.

Property 2: Let R*"/(x,y)and R*™'(x,j) be the Gabor filter responses to input
images /(x, y) and I(x, y) . If the two input images are related by a scale factor such
that /(x, y) = I(kx,ky), then there is a correspondence between their responses given by

R (,3) = R (k) with o, = ko, ®

Proof:  R*M!(x,y)= Jff(u, g (x —u,y —v)dudy



= [[10aukv)gesl (x - u, y - v)dudv

X u'y v

= [[re g -2 == ()
(withu’'=ku,v'=kv, Xx=ke, 5 =kv)
= [[rw gy G -u,5-v)du'ay with o, =ko,

= R (ks ky)

We compute the responses R*"'(x,y) at each point (x, y) fors =1, 2, ..., Sand / = I,

2, .., L (N is fixed). Then the total energy value at point (x, y) at a scale s is defined as
L
E:. N , - R:, N, .
(x,») IZ:]” (x, 01 9)

Then the maximum energy value is calculated at point (x,y) with respect to all scales

{1,2,...,8} (NVis fixed)

EMoy)= B V)= max(E" " (x) (10)
The 2D array of the maximum energy values constitutes a maximum energy map. The
point with a strictly local maximum energy is called a dominant point and the scale
s" associated with the maximum energy is called the principal scale. Under proper
filter design condition, it will be shown that there exist the dominant points in the
filtered image.

In Fig. 2 the multi-scale energy maps are obtained through the application of the
same set of Gabor filters with different filter scales to four different squares. Notice
the squares yield different energy maps at the multiple filter scales. However, the
dominant points in the maximum energy maps obtained from the multi-scale energy

maps have the nearly equal energy values, as indicated by Properties 2.
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(d) Scale size =30 (e) Scale size =42 (f) Maximum energy maps

Fig. 2 (a)-(e) The side view of the energy maps at five different scales. (f) The
maximum energy maps at the principal scale (The image containing four squares has
200x100, the sizes of four squares : 7, 10, 14, 20. Filter size = 10, 15, 21, 30,42. N =
3).

The Gabor filter output energy E*¥(x,y) for an input object image I(x, y) is
governed by the filter size parameter o and the filter sinusoidal lobe parameter N.

We shall study the behaviors of the filtering with respect to each of these two

parameters below. First, for a fixed filter size parameter o, we want to know how the

relative magnitudes of the filter output energy at the object points vary with the lobe

parameter N ? To gain some insight, let us consider a particular case in the following
property.
Property 3. Consider the Gabor filter output energy E*%(xy) for a binary

rectangular object image with a fixed filter size parameters and a varying lobe

parameter N. Along a longer rectangle side, the maximum energy value occurs at
consecutive points near the middle point of the side for N <2; while for N > 2, the
maximum energy value occurs at a single point near the vertex of the side. (Please

refer to Fig. 3 for an illustration)
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(a) (®)

Fig. 3 (a) There are no dominant points in the maximum energy map for a rectangular

object image of size 8x33 for N=1.5. (b) There are dominant points in the maximum

energy map for N=3.

Next, let the value of N be fixed. Then the filter output energy at an object edge

point changes as filter size parameter o changes, since the energy is a continuous
function of the filter sizeg,. When o, is too large, the output energy value becomes
small. When o is equal to a proper value, which depends on the local object
structure around the object point under consideration, the output energy value
becomes maximum. When the parameter N is greater than 2, the filter contains more
lobes and it is more responsive to a varying local object structure. Thus, the filter will
reveal the object points with the local maximum output energy. These points are often
isolated and can be used as the feature points for object representation. Several objects
of simple polygonal shape are shown in Fig. 4(a) with isolated dominant points. Fig.
4(b) shows the associated maximum energy maps. From these figures, we can see the

maximum output energy values occur at different principal size scales.

When the object shape becomes more complex, then all structure patterns in the
neighborhood of an object contour point will jointly determine the principal scale and

the existence of the isolated dominant point.

11
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Fig. 4 (a) Various simple polygonal objects with the detected dominant points marked
with individual principal scales and principal orientations. (b) The associated

maximum energy maps.

2.2 FFREBRER
Based on the above properties of the Gabor filtered image, we outline below an

algorithm for extracting dominant points from a given image.

Algorithm for dominant point extraction:

(1) Choose a set of Gabor filters with filter parameters N = 3 and L = 12.

(2) Determine a set of filer size scales based on the structure pattern of the object
under consideration. Apply the multi-scale Gabor filters to the image to obtain
the energy maps at the multiple scales and merge them into a single maximum
energy map by retaining the maximum value among them.

(3) Construct the maximum energy histogram and choose a lower bound on the
energy value for a candidate dominant point in the upper T %. (T = 10 in our
case)

(4) Partition the image into non-overlapping blocks of mxm pixels each (m=7 in



the experiments).
(5) Find one candidate dominant point having the maximum energy in each block.
Then check if each candidate dominant point obtained so far is also a local

maximum in a neighborhood of size mxm centered at the point.

13
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In general, there are two classes of algorithms for point matching. The algorithms
in the first class use the neighborhood around the feature points to derive some
properties for use in the initial point matching stage. These methods can reduce the
search space for final point matching, but the viewing parameters, including rotation,
scaling, translation and perspective deformation, need to be solved in the initial point
matching stage. Then, a mechanism, for example, relaxation [13-15] and maximum
clique [16], is imposed to eliminate the false matching pairs. It is generally not clear
whether the relaxation process will be converged. Still, the exponential complexity of
finding maximum clique is unacceptable.

On the other hand, the algorithms in the second class are the point pattern
matching method without performing the initial matching process. These cover the
relaxation-based [17-18], graph matching [19] and neural network [20] method. Most
of techniques are computationally exhaustive in the worst-case theoretical sense.
Some researchers attempt to circumvent the high complexity by estimating the
matching pairs and the transform parameters simultaneously. Their basic idea is that
three pairs of non-collinear points determine a unique affine transformation between
two images of plane (or five points in projective space [21], depending on the number
of parameters of the transformation space). Thus, by choosing a sufficient number of
triplets of points, and enumerating all possible matching triplets in the other point set,
one is possible to find a good match. The intuitive algorithm is to use the full search
of all possible combinations of triplets of points. If there are m points in the sensed

image and # points in the reference image, it needs to examine a total of C xCJ x 3!

possibilities. Although Lamdan [22] used a hashing table to store the pre-computed

possibilities of ¢y item such that the possibilities can be reduced to C7x3!.
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However, in addition to the exhaustive memory requirement, it is also sensitive to
noise. Cheng [23] combined the relaxation technique by computing the compatibility
coefficient of the triplet. The concept is also based on a triplet of points.

In chapter 2, a multi-scale Gabor filtering technique is used to detect feature
points in the scale-orientation space. The feature points extracted are quite invariant to
rotation, scaling, translation, and robust to the image noise and minor perspective
deformation. The individual feature point also accompanies with the information of
principal scale, principal orientation, and output responses to a bank of filters. A
feature vector p(x,y) computed at the principal scale and cyclically reordered base on
the principal orientation describs the feature point located at(x, y).

V(x,y) = [RG* (6, 9), R (x,),... R (x, )] (b
where s, is the principal scale with the maximum energy in a set of filter scale sizes, /;
is the label of the principal orientation with the maximum absolute response among L
line orientations at the principal scale. The feature vector representation is invariant to
rotation and scaling, and thus can be used to measure the similarity between points
with which the above viewing parameters be changed.

In this chapter, a computational efficient method for point-based image
registration will be proposed. First, two Gabor feature points in the reference image
together with their counterparts in the sensed image, each with its principal
orientations, is employed to initially estimate the transformation. Then, an iterative
closest matching pairs (ICMP) algorithm based on point-to-point alignment is
iteratively applied to establish the corresponding point sets that are then used to refine
the transformation result. Comparing with the algorithms using three pairs of point
correspondences in most methods, the numbers of point sets need to be examined are

reduced dramatically. Moreover, to avoid the full search of all possible combinations

15



of two selected points, some search strategies based on the pre-analyzed information

of the points in the reference image are employed.

3.1 Estimation of transform parameters and determination of the matching
pairs simultaneously
In this section, we will propose an iterative closest matching pairs registration
algorithm to estimate the correct matching pairs and the transform parameters
simultaneously. First, by using only two pairs of corresponding points together with
their individual principal orientation, an initial estimation of transform parameters is
determined. Then, an iterative refinement algorithm is imposed to refine these results.
At each iteration, the algorithm determines the corresponding pairs by finding the
closest matching pairs and uses them to re-compute the transform parameters.
Comparing with the triplet-based methods, the computational complexity can be

reduced dramatically.

3.1.1 Initial estimation of the transform parameters

Assume the distance between the object and the camera is far greater than the object
size; the spatial transformation X'=MX between corresponding points X, X' in two
partially overlapped images can be described by affine transformation, consisting of

rotation, translation, scaling and shear, of the following form:

X my my m X
Vo|=\my my myly (12)
1 0 0 1 (1

Conventionally, at least three pairs of point correspondence are needed to solve the six
affine parameters. Instead, we will show that only two feature point correspondences
plus their individual principal orientations can also carry out this purpose. Thus, the

computational complexity for point matching can be reduced dramatically.
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As shown in Fig.5, considering given two pairs of point correspondence (j,,4,)

and (p,,g,) With their individual principal orientationse, e, ¢, ,é, » respectively. To

derive the relationship between principal orientations of two corresponding points

under affine transformation, let us first consider a new pairs of corresponding points
(p,,g,) intersected by the two principal orientations(z, ¢, ) and (e, .é,)- Then, the
directions of the two pairs of points (p,,,)and (p,,g,) can be written as Eq.(13) and
Eq.(14)

BB =d,, =|d,,[e (13)

Fig.5 two pairs of point correspondence (p»G,) and (p,,q,) with

their individual principal orientations e,.e,.é€,,€, intersected

at(p;,q;)
ql - q; = a‘ll‘h = Ia‘h‘h |é‘h (14)
Under affine transform, we can write
ql_[}-}:M(ﬁl_ﬁZv) (15)
Substituting Eq.(5) and (6) into (7)
‘gql% ‘é‘il = Mlgplpz ‘épl (16)
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(17)

So, we can write Eq.(7) as the following matrix form

18
€. my, m, m;jée, (18)
h €, |=|my my myle,

0 0 0 1 0

Thus, from Eq.(2) and Eq.(8), the two pairs of corresponding points and their

principal orientations form the following system of 8 linear equations.

[x, ¥y, 1 0 0 0 0 0 Im,] EA 19)
0 0 0 x, y, 1 0 0 | m, y;l
X, Y, 1 0 0 0 0 0 my, x;z
0 0 0 x, y, 1 0 0 | m, _ Var
ne Cn, 0 0 0 0 - €. 0 my 0
0 0 0 €, ©p, 0 - €, 0 My 0
€ ©p, 0 O 0 O 0 —e, | A 0
I 0 0 O € €p, 0 0 —eqzyj_ K| | 0]

The system of simultaneous linear equations can be solved to reveal the eight

unknowns m,,,m,, m,,m,,m,,,my,h k' using SVD. The solution M is called as 7.

3.1.2 Iterative Closest Matching Pairs (ICMP) algorithm
Let Q. be a set of N, points {g,,g,,~--,q, } in the sensed image, P. be a set of
N, points {p,p,,, Pu,} in the reference image. Starting from the initial estimate

of the transformation 7, described in section 3.1, the goal of iterative closest

matching pairs (ICMP) is to iteratively build the corresponding point pairs and refine
the transformation that best align the set of corresponding point. The algorithm

transforms each point g, € Q. to the reference image coordinate system and seeks for

a closest point p, eP, such that (g,p,) is a matching pair by similarity

measurement. Then, the matching pair(qg,,p;,) will be added to the corresponding

18



point set (CPS). The CPS is then used to compute the new transformation7, where k

1s iterative number. The steps will be iteratively executed to refine the transformation

7, until no new point is added to the corresponding set. The details of the algorithm

are as the follows:

Algorithm ICMP
Input:
1. Two point set 0.5 {91949, } and P ={p,,p,,--,py } With their feature
vectors.

2. The two selected matching pair (9,,p,)and (q,,p, ) with their principal

orientations (e, ,e, )and(e, ,e, ).
il A 2 J2

Output:
1. The corresponding point set CPSy
2. The transformation Ty

Initial: k=0; CPS,={(q,,p,).4,.P,)}

Begin
1. Determine the initial estimate of the transformation Ty computed by the two

selected matching pairs (q,,p,) and (9,,-p;,) plus their principal

orientations (e, ,e, )and(é, ,é, ) using Eq.(9).
i i 2 72

2. Repeat until CPS,UCPS, , =CPS,_,
a. Build up the set of corresponding points CPS,

cPs, =U¥(q,,CC(T,_(,),P.)

where CC(T,_,(q,),F.)=p,

if

. ; d
(a) n},fn,Tk—l(qi)_pj, WIth 1n—l(qi)—pj’3dk Where d;;:

0
2%

and S(q;,p;) > Threadshold

19



where S0, 17?] )= “;"_Hi;f_” with the vector factors 17‘1, , V,,j of q.p;
% 9i

(b) (e, 8, )ep, e ) = 0 (Convexity compatibility check)

b. Compute the new transformation T, using all pointsin CPS,

c. k=k+1

end
3. Iy=T,; CPSy= CPSk
End

3.2 Registration process

3.2.1 Learning stage (Off-line)

As described in the previous section, starting with the initial estimation of the
transformation by two pairs of matching points together with their principal
orientations, we can obtain the transformation by further applying the ICMP algorithm.
However, when given m feature points in the reference image, there are C;" possible
combinations of the two points. The full search is computational exhaustive.
Therefore, we will propose some search strategies to accelerate the search time. The

search strategies are planned using the following four priori-derived information. As a

result, the two selected points (p,,p;) used to estimate the initial transform

parameters 7, could be ranked for choosing in advance.

1. Choose the points from the size of clusters as small as possible:
Usually there are many points in the sensed image that are highly similar with the
selected point in the reference image. This will result in the higher matching
ambiguity, and thus reduce the matching performance. The merit of the clustering
process is to group the points with highly similarity into clusters. As a result, we
can use the size of clusters to adjust the distinctness of the selected points.

For the clustering process, we first compute the similarity measurement,

20



defined as the normalized cross correlation computed by their feature vectors

(Eq.10), between any two points p, andp,.

L. vV .V
SW, V)=t b (20)

P’ p; 17

A graph is constructed based on the similarity measurement. The graph node is

the point label and the node (p,,p,) are jointed by an edge if
N4 S I7pj) >Threshold . Then, all the cliques are searched in the graph. The nodes

in each clique belong to a cluster.

Suppose we have clustered the feature point set { D; bi=1.2,...m Into K clusters

associated cluster size in ascending order. Moreover, in the case of the same size

of cluster, the rank is determined by the between class distances. Let O ¢, be

the rank index for point p, .

The efficacy of the triangle formed by the two points and their principal
orientations:

The points (p,,p,) and their principal orientations (e,.e, ) can form a

triangle with area size 4, , as shown by solid line in Fig.6. Since the

farer-separation of the three vertex points can determine the better accuracy of the
transform parameters, we will provide a mechanism to measure the efficacy of the
triangle.

The equilateral triangle gives a good point separation with equally distance of
the three side lengths. To measure the degree of similarity of the formed triangle

with the equilateral triangle, we can simulate a equilateral triangle with the three

21



equally side length [ _ that is the longest side length of the original triangle, as

shown by dash line in Fig.6. The area of the simulated equilateral triangle can be

NG

computed as 4, =Tlmx2. Then, the degree of similarity S, of the original

triangle with the simulated equilateral triangle is defined as the ratio of the area

between the two triangles.

Fig. 6 The triangle formed by(p,,p,), (e,.e,) with area 4, and

the simulated equilateral triangle with area 4,, .

The equilateral triangle similarity S, embeds the information of the relative size

of the area of the triangle. The analogous triangles with different scale have the

same S, . As a result, we further need to consider the area of the triangle. However,

if the two principal orientations e, and e, are nearly parallel, this will result in

a huge area 4, and a tinyS,. When A, multiplied byS, , the result is not

preferred. Therefore, instead of using the area, the metric of the appearance of the

triangle is defined as multiplying the side length by S,, as the follows.

T4,=5,|p, B,
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We rank the combinations of the two selected points by 74, in descending order.

Let OI _a; be the rank index for the pair of point p, andp,.

3. The stableness of the principal orientation:
Due to the triangle mentioned above is determined by the positions of the two
feature points and their principal orientations, the accuracy of the principal
orientations will acutely affect the determination of initial transformation7}. The
principal orientations are determined by finding the maximum absolute filter
response among a bank of filter output. If the filter response at the principal
orientation is farer discriminate from the others, the determined principal
orientation is more stable. The discriminate capability can be measured by the
normalized absolute difference of the filter response at the principal orientation

with the two side neighbors.

_ R’f'd"

pe [ -RLR
2R

where R“ means the filter response of point P computed at principal

orientation /,.

We rank the point by DC in descending order. Let OI _o, be the rank index

for point P.

4. The energy value
The main factor resulted in the feature points do not appear in both of the two
images is that the energy value is in the critical range of the threshold value
defined in the feature detection process. Due to the points with higher energy will
have the higher probability to appear in both of the two images, those points are
preferred to have the priori order. We rank the points by the energy value in
descending order with OI _e, represent the rank index for pointF.
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We combine the above four order indexes into a single order index for the two
selected points F, and P,.
Ol;, =w(OI _¢,x0I _¢;)+w,0I _a; +w,(OI _0,x0I _o,)+w, (Ol _e,;xOI _e))
where w;,w,,w, and w, are the weights.

We rank OI; in a descending order and build a linking list, in which the entries store

the pairs of points.

3.2.2 Registering stage(On-line)

In the registering process, we take a pair of points from the link list one by one to

perform the initial estimate of the transformation 7, and the ICMP to determine the

CPS and the transformation T. The size of CPS and the RMS (Root Mean Square) of
the distances of the points in CPS between their transformed versions will be used to
measure the quality of the determined transformation. The searching is ended when it

exceeds a suitable threshold. The algorithm of the registering process is the follows:

Algorithm registering process
Begin
While (size of CPS; < thresholdcps) or ( RMS; > thresholdpuys)
1. Select the entry e, from the link list. Assume the entry e, corresponding to the
point pair p,,p,.
2. To search the matching points in the sensed image by computing the
correlation equation defined in Eq.10 using their feature vectors, assume the
result shows that q,,q, are matching with p,,p,.
3. Check the concavity compatibility of the matching pairs (p,.q,) and

(pl’qn)'
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(e, -¢,)e, -e)z0
where e, e, .e, ,e, are the principal orientations at p,,p,.,q,.q, -
If the compatibility check passes, go to step.4, otherwise, go to step 6.
4. Apply p,.p,.q,.9, and &, .e,.e, ,é, to perform the initial estimation of

the transformation T, and the ICMP algorithm described in Section.2 for

determining the CPS; and the transformation T..

5. Compute the RMS; of the CPS;

N, 2
RMS, = \/NI_ 2”1’/ ~T,(q, )” where p,,q, areamatching pair.

=
6. i=i+1
End
CPSpna= CPS;
Thnar = T;

End
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(u,v)eW

(5)E# % 48 Bf (Normalized Cross Correlation: NCC)

21 (u,v) I (x+u,y+v)
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