
880 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 3, MARCH 2011

An Optimal Data Hiding Scheme With
Tree-Based Parity Check

Chung-Li Hou, ChangChun Lu, Shi-Chun Tsai, and
Wen-Guey Tzeng

Abstract—Reducing distortion between the cover object and the stego ob-
ject is an important issue for steganography. The tree-based parity check
method is very efficient for hiding a message on image data due to its sim-
plicity. Based on this approach, we propose a majority vote strategy that
results in least distortion for finding a stego object. The lower embedding
efficiency of our method is better than that of previous works when the
hidden message length is relatively large.

Index Terms—Image coding, image processing, information security.

I. INTRODUCTION

Stenography studies the scheme to hide secrets into the communica-
tion between the sender and the receiver such that no other people can
detect the existence of the secrets. A steganographic method consists of
an embedding algorithm and an extraction algorithm. The embedding
algorithm describes how to hide a message into the cover object and
the extraction algorithm illustrates how to extract the message from the
stego object. A commonly used strategy for steganography is to embed
the message by slightly distorting the cover object into the target stego
object. If the distortion is sufficiently small, the stego object will be
indistinguishable from the noisy cover object. Therefore, reducing dis-
tortion is a crucial issue for steganographic methods. In this paper, we
propose an efficient embedding scheme that uses the least number of
changes over the tree-based parity check model.

Crandall [4] first introduced the idea of matrix embedding, which
turned out to be very successful. Fridrich et al. [6] proposed a scheme,
called the wet paper code, for the situation that some positions in the
cover object are invariant. Fridrich and Soukal [8] discussed the sce-
nario when the relative payload (the ratio of the hidden message length
to the number of positions used for embedding in the cover object) is
relatively large. Matrix embedding uses ��� �� linear codes, which is
also called syndrome coding (this appears in [9] by Khatirinejad and
Lisonek) or coset encoding ([2] introduced by Cohen et al.). It embeds
and extracts a message by using the parity check matrix � of an ��� ��
linear code. Zhang and Li [13] generalized the idea of matrix embed-
ding and defined the codes with the matrix � as steganographic codes
(abbreviated stego-codes). For matrix embedding, finding the stego ob-
ject with least distortion is difficult in general. In some special cases,
there exist constructive and fast methods. Fridrich et al. [7] utilized LT
codes to improve the computational complexity of wet paper codes.
Westfeld [12] derived a hash function to efficiently obtain the stego
object. Li et al. [10] proposed a scheme called tree-based parity check
(TBPC) to reduce distortion on a cover object based on a tree structure.

Manuscript received May 27, 2010; revised August 09, 2010; accepted
August 19, 2010. Date of current version February 18, 2011. This work
was supported in part by the National Science Council of Taiwan under
Contracts NSC-97-2221-E-009-064-MY3, NSC-98-2221-E-009-078-MY3,
NSC-98-2218-E-009-020, and NSC-96-2628-E-009-011-MY3. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Min Wu.

The authors are with the Department of Computer Science, National Chiao
Tung University, Hsinchu, Taiwan 30050 (e-mail: clhou@csie.nctu.edu.tw;
topple.cs94g@nctu.edu.tw; sctsai@cs.nctu.edu.tw; wgtzeng@cs.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2010.2072513

Fig. 1. Master and toggle strings of a master tree with � � � for LSBs 0, 1, 1,
0, 1, 0, 1 of the cover object.

The TBPC method can be formulated as a matrix embedding method,
but is more efficient than those based on linear codes. Due to its sim-
plicity, the TBPC method provides very efficient embedding and ex-
traction algorithms. Recently, Zhang et al. [14] proposed a systematic
method to generate codes with an arbitrary small relative payload from
any code with a large relative payload. Since our method works natu-
rally with large relative payloads, the result of Zhang et al. [14] implies
that our method applies to small relative payloads as well.

We observe that the toggle criteria of a node in the TBPC method can
be relaxed by the strategy of majority vote. Our strategy inherits the ef-
ficiency of the TBPC method and produces a stego object with least dis-
tortion under the tree based parity check model. The time complexity
of our embedding (extraction as well) algorithm is asymptotically op-
timal, that is, it is linearly bounded by the hidden message length.

The embedding efficiency is defined to be the number of hidden mes-
sage bits per embedding modification. Higher embedding efficiency
implies better undetectability for steganographic methods. The lower
embedding efficiency is defined to be the ratio of the number of hidden
message bits to the maximum embedding modifications. The lower em-
bedding efficiency is related to undetectability in the worst case. It im-
plies steganographic security in the worst case. Thus, the lower embed-
ding efficiency is also an important security factor for a steganographic
system. In our method, it is �� ������, where � is the hidden mes-
sage length and ������ is a set of functions asymptotically bounded
both above and below by ���.

II. PRELIMINARY AND TBPC METHOD

Before embedding and extraction, a location finding method deter-
mines a sequence of locations that point to elements in the cover object.
The embedding algorithm modifies the elements in these locations to
hide the message and the extraction algorithm can recover the message
by inspecting the same sequence of locations.

The TBPC method is a least significant bit (LSB) steganographic
method. Only the LSBs of the elements pointed by the determined lo-
cations are used for embedding and extraction. The TBPC method con-
structs a complete � -ary tree, called the master tree, to represent the
LSBs of the cover object. Then it fills the nodes of the master tree with
the LSBs of the cover object level by level, from top to bottom and left
to right. Every node of the tree corresponds to an LSB in the cover ob-
ject. Denote the number of leaves of the master tree by �. The TBPC
embedding algorithm derives an �-bit binary string, called the master
string, by performing parity check on the master tree from the root to
the leaves (e.g., see Fig. 1.).

The embedding algorithm hides the message by modifying the bit
values of some nodes in the master tree. Assume that the length of the
message is also�. Performing the bitwise exclusive-or (XOR) operation
between the message and the master string, we obtain a toggle string

1057-7149/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 3, MARCH 2011 881

Fig. 2. Construction of a toggle tree with � � � for toggle string 0, 1, 1, 1.

Fig. 3. Modify the master tree into the stego tree by the toggle tree constructed
from the toggle string 0, 1, 1, 1.

(e.g., see Fig. 1). Then, the embedding algorithm constructs a new com-
plete � -ary tree, called the toggle tree in the bottom-up order and fills
the leaves with the bit values of the toggle string and the other nodes
with 0. Then, level by level, from the bottom to the root, each nonleaf
node together with its child nodes are flipped if all its child nodes have
bits 1 (e.g., see Fig. 2). The embedding algorithm obtains the stego tree
by performing XOR between the master tree and the toggle tree (e.g.,
see Fig. 3). The TBPC extraction algorithm is simple. We can extract
the message by performing parity check on each root-leaf path of the
stego tree from left to right.

III. MAJORITY VOTE STRATEGY

Two critical issues for a steganographic method are: 1) reducing dis-
tortion on cover objects and 2) better efficiency for embedding and ex-
traction. We give a majority vote strategy on building the toggle tree. It
uses the least number of 1’s under the TBPC model. Since the number
of 1’s in the toggle tree is the number of modifications on the master

tree (i.e., the cover object), the majority vote strategy can produce a
stego tree with least distortion on the master tree.

A. Algorithm

Hereafter, we use majority-vote parity check (MPC) to denote our
method due to its use of majority vote in deriving the parity check bit.
We construct the toggle tree with the minimum number of 1’s level by
level in the bottom-up order using the following algorithm.

Algorithm MPC:

Input:a toggle string of length �;

1. Index the nodes of the initial toggle tree;

2. Set the leaves of the toggle tree from left to right and bit by bit with
the toggle string and the other nodes 0;

3. for � � � to �

for each internal node on level � do

if the majority of its unmarked child nodes holds 1

then flip the bit values of this node and its child nodes;

else if the numbers of 0 and 1 in its unmarked child nodes are
the same

then mark this internal node;

4. if � is even then

for � � � � � for 1

for each marked internal node holding 1 on level � do

flip the bit values of this node and its child nodes;

First, index all nodes of a complete � -ary tree with � leaves from
top to bottom and left to right. Set the �-bit toggle string bit by bit
into the � leaves from left to right and the other nodes 0. Assume that
the level of the tree is �. Traverse all nonleaf nodes from level 1 to �.
A nonleaf node and its child nodes form a simple complete subtree.
For each simple complete subtree, if the majority of the child nodes
hold 1, then flip the bit values of all nodes in this subtree. Since the
construction is bottom-up, the bit values of the child nodes in every
simple complete subtree are set after step 3. Note that marking a node
at step 4 applies only for � being even. When � is even, after step 3,
there may exist a two-level simple complete subtree with ��� 1’s in
the child nodes and 1 in its root. In this case, flipping the bit values in
this simple complete subtree results in one fewer node holding 1 and
keeps the result of related root-leaf path parity check unchanged. Step
4 takes care of this when the condition applies, and it is done level by
level from top to bottom. Also note that for the root of the whole toggle
tree, the bit value is always 0 when half of its child nodes hold 1. Thus,
after step 4, the bit values of the child nodes in each simple complete
subtree are determined.

The number of 1’s in the toggle tree is the number of modifications.
When constructing the toggle tree, the original TBPC method flips a
simple complete subtree only if all of child nodes have 1. We prove
that the majority vote strategy actually obtains toggle trees with the
least number of 1’s.

We call a toggle tree with the least number of 1’s corresponding to
a toggle string an optimal toggle tree. We say that a toggle tree is in
majority form if for each internal node at least half of its child nodes
have bit value 0 and the internal node holds 0 when exactly half of
its child nodes holding 1. The output of the algorithm is a toggle tree
in majority form. The majority vote guarantees that at least half child
nodes of an internal node hold 0. Note that every optimal toggle tree can

882 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 3, MARCH 2011

be transformed into majority form. It is obvious when� is even. When
� is odd, we can check each 2-level simple complete subtree level by
level in the top-down order and flip the bit values of the root node and its
� child nodes if exactly ������� of the child nodes hold 1. Note that,
when this situation applies, the root node must hold 0 before flipping,
otherwise the toggle tree is not optimal. This rearrangement does not
introduce an extra 1 and the result of each root-leaf path parity check
is not affected.

Theorem III.1: Algorithm MPC generates an optimal toggle tree
with the least number of 1’s under the tree based parity check model.

Proof: Let �� be the � -ary toggle tree obtained by MPC and
���� (in majority form) be an optimal � -ary toggle tree, which pro-
duces the same message bits as that of �� by doing root-leaf path
parity check. Let � denote the tree level of ���� and �� . We prove by
induction on � and show that both trees have the same number of nodes
holding 1 and both roots have the same bit value.

For � � �, it is obvious that ���� and �� have the same distributing
0–1 values to the nodes, because they are both in both in majority form
and generate the same message.

Assume our claim is true up to � � �, that is, for any optimal toggle
tree ���� of � levels, Algorithm MPC generates a toggle tree that has
the same number of nodes as in ���� holding 1 and produces the same
message bits. For � � � � �, assume ���� have � � � levels. Let � be
its root and ��� � � � � �� be the child nodes of �. Similarly, we let �� and
���’s be the corresponding nodes of �� .

Let � be the message produced by �� and ����, where � can be
partitioned into ��� � � � � �� , and �� can be obtained via the subtree
rooted at ��. If the bit value of � is 0, then the subtree rooted at �� of
���� is an optimal toggle tree that produces the message��; else it is an
optimal toggle tree producing ���, which is the complimentary string
of ��. Since the subtrees rooted at ��’s have � levels, by induction
hypothesis, each �� can also be obtained by a �-level tree rooted at
��� from MPC. The subtrees rooted at �� and ��� have the same number
of nodes holding 1 and both roots have the same bit value. If � has bit
value 0, then by making a majority vote over the bit values of ���’s, we
obtain an optimal toggle tree from MPC. If � has 1, then it needs more
works to prove the correctness.

Observe that if for any two optimal toggle trees that produces two
messages that are complimentary to each other, then the difference on
the number of nodes holding 1 in both trees is at most 1, since we can
always get a complimentary message by flipping the bit value of the
root node. When � has bit value 1, there are more child nodes of �
holding 0 and the optimal subtree rooted at ��� from MPC, by induction
hypothesis, actually produces ���. Note that �� and ��� have the same
bit value, for 	 � �� � � � � � . If we flip the bit of ���, then the toggle tree
rooted at ��� will produce�� but it may not be an optimal one for��. By
the above observation, we know if ��� had 1 before flipping, then after
flipping it, the tree rooted at ��� becomes optimal for ��. On the other
hand, if ��� had 0 before flipping, then after flipping it, the tree rooted at
��� may have one more node holding 1 than an optimal toggle tree that
produces ��. Thus, there will be more than half of ���’s flipped from
0 to 1. Then by taking a majority vote over flipped ���’s, we flip them
back and have a new root, ��, holding 1. Therefore, the total number of
nodes holding 1 is the same as ����, and it can be obtained by MPC.
This completes the proof.

B. Binary Linear Stego-Code

Before showing that our method is actually a special binary linear
stego-code, we briefly review the definition of linear stego-codes. With
matrix embedding, given any message � �

�����
� and any cover

object
 � �
� , the problem is to find a vector � � �

� and an �������
matrix over � such that����� is as small as possible and
� � �,
where
� �
 � � and ����� is the Hamming weight of �. Zhang and
Li [13] generalized this idea and defined the stego-coding matrix and
the linear stego-code as follows.

Definition III.1: An ��� ���� matrix over �� ��� is called an
��� � � �� �� stego-coding matrix if, for any given � � �� ��������,
there exists a vector � � ������ such that ����� � � and � � �.

Definition III.2: Let be an ��� ���� �� stego-coding matrix. For
all � � �� ��������, let �	 � �� 	 � � �� � � �������. An
��� � � �� �� linear stego-code is defined by � � ��	 	 �	 �� ��.

In comparison with matrix embedding, � is the distortion � and �
is � �
, where � is the message and
 is the cover object. An
��� �� �� �� linear stego-code guarantees that the distortion is at most
� bits for any given message and cover object.

In practice, the sender and the receiver agree on a matrix in ad-
vance. The cover object is represented as a binary vector
 (e.g., for
an image, take the LSBs of all pixels) and the message is also a bi-
nary vector �. For embedding, the sender identifies a vector
� such
that
� � �. For extraction, the receiver extracts the hidden mes-
sage � from the stego object
� by computing
� � �. Finding
�

with least distortion is to solve � � � �
 such that ����� is
minimum. Finding � with least weight is the well known coset leader
problem [9]. It is equivalent to the nearest codeword problem (NCP)
for binary linear codes (see Section 2.4 in [11] by Roth). NCP is to find
a codeword � such that ���� � �� is minimum, given a � � � matrix
� over �� ��� and a vector � � ������. Arora et al. [1] have proved
that even approximating NCP within any constant factor is NP-hard.
In general, NCP is extremely difficult. However under the tree-based
structure, we can efficiently solve it.

Hiding a message with the tree-based parity check structure can be
treated as a kind of linear binary stego-codes. The parity check opera-
tions on a tree can be formulated as a matrix operation. More specifi-
cally, consider a complete � -ary complete tree with � nodes, � levels
and � � �
 leaves. There are � paths and each with � � � nodes.
Enumerate the paths from left to right. For path 	, we define an �-di-
mensional binary vector ��, where the �-th entry is 1 if and only if path
	 has a node with index �. Define to be the �� � matrix, where the
	-th row is ��, 	 � �� �� � � � � �. Use the �-dimensional binary vector

to represent the cover object, where
� is associated with the node of
the master tree with index 	. Therefore,
 has the result of tree-based
parity check. In other words, the TBPC method is simply a special case
of linear binary stego-codes.

Theorem III.2: Given a cover object
 of length �, a message �
with length � and an � -ary toggle tree, the tree based parity check
steganographic method with majority vote strategy is equivalent to an
����� �� � ����� linear stego-code.

Proof: Let be the � � � matrix corresponding to the tree
based structure, and
� be the �-dimensional vector corresponding to
the stego tree. Therefore, �
� � �. According to the definition of
linear stego-codes, the remaining is to analyze the distortion between

 and
�. The distortion is the number of 1’s in the toggle tree. Since
the construction of the toggle tree is in the bottom-up order, only leaf
nodes hold 1 initially. For even � , the majority vote always reduces
the number of 1’s in the toggle tree while flipping. Therefore, the worst
case for even� is that all the simple complete subtrees with leaf nodes
as child nodes have��� child nodes holding 1. The maximum number
of 1’s in the toggle tree for even � is ���������� � ���. When
� is odd, every simple complete subtree of the toggle tree in majority
form has at most 	���
 child nodes holding 1. Let � � 	���
. The
worst case for odd � is that the root holds 1 and � child nodes of
every simple complete subtree hold 1. The maximum number of 1’s in
the toggle tree for odd � is

� �

���	 ����

�
�

� �� �� ��
��� ��

�� � ��
�

��� ��

�
�

Therefore, the distortion is at most �������. This completes the proof
of the theorem.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 3, MARCH 2011 883

IV. ANALYSIS AND EXPERIMENTAL RESULTS

A. Average Modifications per Hidden Bit

It is easy to construct a method that achieves the expected embedding
modifications per hidden bit of 0.5. In other words, if we try to embed
an �-bit message into the cover object, ��� � modifications will occur
on average. We use

������� �
	�

�
(1)

to denote the expected embedding modifications per hidden bit, where
	� is the average number of embedding modifications for an �-bit
message.

Recall that the MPC method performs majority vote on every simple
complete subtree to construct the toggle tree in the bottom-up order.
Therefore, we are going to calculate the expected reduced number of
1’s for every simple complete subtree and sum up the expected reduced
number of 1’s for all simple complete subtrees.

For convenience, we use
-level tree to denote a complete� -ary tree
of
 levels. An
-level tree consists of one root and� �
���-level trees.
An
-level simple complete subtree is a two-level tree containing a node
� at level
 and all its child nodes.

For an -level toggle tree, the level of the root is and the level of a
leaf is 0. Let � �
� be the probability that the root of an
-level simple
complete subtree holds 1 after performing majority vote. For the leaf
nodes, � ��� is ��� because the leaf nodes are uniformly filled with
0 or 1. For every
-level simple complete subtree, � �
� is the same by
symmetry. Let ����� � � . Since the toggle tree is an� -ary complete
tree constructed by the majority vote strategy, � �
� can be expressed
as follows:

� �
� �

�

�����

�

�
� �
� ��� ��� � �
� ��	��� � (2)

Let ���� be the reduced number of 1’s after flipping the bit values
of a simple complete subtree that holds � �’s. Therefore, ���� � � �
��
 �� �� � ���� � �. The expected reduced number of 1’s for
an
-level simple complete subtree is as follows:

��
� �

�

�����

����
�

�
� �
� ��� ��� � �
� ��	���� (3)

For an �-bit toggle string, the expected number of 1’s in the toggle
string is ��� �. In the first step for the toggle tree construction, we
fill each leaf with one bit of the toggle string. Before majority vote,
the number of 1’s in the toggle tree is ��� �. After majority vote, the
number of 1’s in the toggle tree is ��� � � �

���
������
�. Since

the number of modifications is the number of 1’s in the toggle tree, we
finally have the following equation:

������� � ����
�

�

�

���

������
�� (4)

If � � ��
 � is an odd integer, (3) can be further simplified as

��
� �

�

�����

����
�

�

�

�

�

(5)

since

�

���

�

�
�

�

�����

�

�
� ����

� �
� �

�

�����

�

�

�

�

�

�
�

�
�

TABLE I
COMPARISON OF EMBEDDING TIME FOR THE MPC METHOD AND THE SIMPLEX

CODE-BASED METHOD UNDER THE SAME RELATIVE PAYLOAD �

The pToggle of the TBPC method is

��������
� � ��������
� ���
� � �

��
���
�
(6)

where ��
� is the number of leaves and ��
� is the number of possible
0–1 configurations in leaves for an
-level tree.

B. Time Complexity of MPC

For embedding of the MPC method, the construction of an �-bit
master string from a master tree is to perform parity check on � simple
root-leaf paths. The number of parity check operations for each simple
root-leaf path is the number of edges in this path. Since we perform
parity check once for every edge, the total number of parity check op-
erations is the number of edges in the master tree. Since the number of
nodes in the master tree is

��� �

���

� � �
���� ��

�� � ��
� �

��� ��

�� � ��

the time complexity to obtain a master string is ����. The time com-
plexity to obtain the toggle string is ���� since the toggle string is
derived by performing bitwise exclusive-or between the �-bit message
and the �-bit master string. Thus, the total time complexity of the em-
bedding algorithm is ����. For the extraction algorithm, we perform
parity check on � simple root-leaf paths in the stego tree. Thus, the
complexity of the extraction algorithm is also ����.

C. Comparison for Large Payloads

Fridrich and Soukal [8] proposed two matrix embedding methods
based on random linear codes and simplex codes. The time complexity
of embedding algorithms for matrix embedding is bounded by the com-
plexity of the decoding algorithms for codes, i.e., the complexity of
finding the coset leader. The decoding algorithms for ��� �� random
linear codes and ��� �� simplex codes in [8] have time complexity
������ and ��� ����, respectively, where � is the code length and
� is the dimension of the code. Both methods have the hidden message
length � � �. The time complexity ���� � ���� �� of our method
is much better.

Table I describes the experimental embedding time for our method
and the method based on simplex codes. For a fixed relative payload,
we compare the embedding time (in nanoseconds) per hidden message
bit. Our method is at least three times faster than the method based
on simplex codes. The experiment was run on a Windows XP system
with Athlon 2.21 GHz CPU, 1 GB RAM and implemented in JAVA.
Under the same experimental environment, we simulated embedding
for a 1280� 1024 image. The comparison of embedding time with a
similar block length and relative payload is in Table II. The embedding
time of the MPC method is better. Fridrich and Soukal [8] simulated
embedding for a 1280� 1024 image using ��� �� random codes with
block length � � ��� and � � ��� ��, and 14. The experiment run
by Fridrich and Soukal [8] was on a Linux system with Pentium IV

884 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 3, MARCH 2011

TABLE II
COMPARISON OF EMBEDDING TIME FOR A 1280� 1024 IMAGE

WITH A SIMILAR RELATIVE PAYLOAD � AND BLOCK LENGTH

3.4-GHz CPU, 1-GB RAM and implemented in���. The embedding
time for � � ��� ��, and 14 is 0.82, 2.42, and 8.65 s, respectively. The
embedding time for the MPC method even implemented in JAVA is
better than the random code-based method implemented in C.

For extraction algorithms, both of simplex code-based and random
code-based methods need to calculate��, where� is the parity check
matrix and � is the stego object. The number of 1’s in � dominates the
time complexity for extraction algorithms. For ��� �� simplex codes
(the dual of hamming codes), the generator matrix ���� consists of
all possible nonzero �-dimension column vectors. The number of 1’s
in ���� is ����. Since the generator matrix ���� can be rearranged
in systematic form, say ���� � 	�����	
, the parity check matrix
�������� is 		� �������������
, where 	� is the transpose of 	.
Therefore, the number of 1’s in � is ����� � � ��� �� � ���� �
����. The time complexity of extraction algorithms based on simplex
codes is
����� � � � ���. For random linear codes, the number
of 1’s in the parity check matrix, � � 	��������������
, depends
on the distribution of the random source. Therefore, for random linear
codes, its time complexity is
��� � � ��� on average and for MPC
its time complexity is simply bounded by the hidden message length,

��� �
�� � ��.

Fridrich and Soukal [8] also considered the relative payload �
�������� where � is the number of hidden message bits and ������ is
the number of positions (e.g., pixels for an image) used for embedding
in the cover object. Let � � � be integer. The relative payloads for
methods based on an ��� �� random linear code and a practical ��� �
�� �� simplex code of dimension � and code length ���� are �������
and ��������������� � ����������, respectively. The relative
payload for MPC is

 �
�

���	
��	

� ��
�� �

��� �
� ��

�� � �

��
	 � �
�

Recall that�� is the average number of modifications for embedding
� bits. The embedding efficiency is defined as

� �
�

��

�
�

�������
�

By experiments, we observed that the embedding efficiency of the MPC
method is slightly smaller (within 0.5 when � ���) than those of
Fridrich and Soukal [8]. There is a tradeoff between time complexity
and embedding efficiency. Our method has lower time complexity with
slight sacrifice on embedding efficiency. Fig. 4 shows the relation be-
tween embedding efficiency and the relative payloads for MPC and the
two methods of Fridrich and Soukal [8]. For simplex codes, we choose
augmented simplex code (adding an all 1’s row vector to the gener-
ator matrix) for � � � �� � � � � ��. For random linear codes, we only
consider the codes with � � � and the relative payloads which are
close to simplex codes for � � � �� �. For MPC, we calculate em-
bedding efficiency for fixing � � 3 and 10 with the relative payloads

Fig. 4. Embedding efficiency versus relative payload.

TABLE III
COMPARISON OF EMBEDDING EFFICIENCY � AND THE HIDDEN MESSAGE

LENGTH � FOR THE MPC METHOD AND THE AUGMENTED SIMPLEX

CODE-BASED METHOD UNDER SIMILAR EMBEDDING TIME �

�����������
	���, where� � �� � � � � � ��. Table III describes
the comparison of embedding efficiency under similar embedding time.
Recall that the hidden message length is � for the MPC method and
�� � �� ��� �� for the augmented simplex code-based method. Our
method embeds more bits with slight sacrifice on embedding efficiency
under similar embedding time.

The embedding efficiency focuses on the average modifications. On
the other hand, the lower embedding efficiency � concerns about the
maximum modifications. It is defined as

� �
�

�

where � is the maximum modifications for embedding � bits. The
covering radius of the codes used for matrix embedding determines the
maximum modifications. For ��� � �� �� simplex codes, the covering
radius is ���	�� (see [3, Appendix B] proposed by Cohen et al.). The
lower embedding efficiency is

��� � �� ��

����	 � ��
� ���

����

�
�

By Theorem III.2, MPC is equivalent to an ����� �� � ����� linear
stego-code. The maximum embedding modifications for MPC is ���
����. The lower embedding efficiency for MPC is

���� ��

�
�

�� �

��� ��
� ���

�

�
� ���

�

�

when � ����� �. Note that � � ������ is better than
� � ���������, when � is relatively large.

Our method is a natural stego-code with a large relative payload.
For � -ary trees with � � �, the relative payload of our method is
� � �� � ����
	 � �, larger than 0.5. Recently, Zhang et al. [14]
gave a construction (called the ZZW construction) to generate a family
of codes with arbitrary small relative payloads from any code with

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 3, MARCH 2011 885

TABLE IV
SUMMARY OF COMPARISON

Fig. 5. pToggle comparison of MPC and TBPC with different N and about
15000 leaf nodes.

TABLE V
EXPERIMENTAL RESULTS OF PTOGGLE

a large relative payload. Fridrich [5] proved that the embedding effi-
ciency of the family of codes generated by the ZZW construction fol-
lows the upper bound on embedding efficiency. By applying the ZZW
construction, we can generate codes with small relative payloads and
good embedding efficiency. Table IV summarizes the comparison of
our ��� �� stego-codes and the methods based on ��� �� simplex codes
and ��� �� random linear code.

D. Experimental Results for MPC and TBPC

We implemented our MPC method and the TBPC method for a com-
parison between their pToggle values. We constructed � -ary toggle
trees with more than 15000 leaf nodes for � � �� �� � � � � ��. For each
� , we randomly generated 200 distinct toggle strings. The results are
shown in Fig. 5 and Table V. The results show that MPC is always
better than TBPC for � � �. When � � �, they are the same.

To make it clear, we define the percentage of reduced modifications
as follows:

���	
�� �
��

��

where �� is the reduced number of 1’s in the toggle tree and �� is
the number of 1’s in the toggle string. The pReduce values of both
methods are shown in Fig. 6 and Table VI. The results show that the
MPC method significantly improves previous TBPC results.

Fig. 6. Comparison of pReduce.

TABLE VI
EXPERIMENTAL RESULTS OF PREDUCE

E. Applications

Our method is based on an � -ary complete tree structure. Fixed the
level of the tree, given a larger� we can hide more message bits and the
relative payload is larger. Like the previous works proposed by Fridrich
and Soukal [8], our method can be applied to the situation that the rel-
ative payload is large. On the other hand, since our method is asymp-
totically optimal, the embedding and extraction algorithms are efficient
and can be used on online communications.

V. CONCLUSION

By introducing the majority vote strategy, we effectively construct
the stego object with least distortion under the tree structure model.
We also show that our method yields a binary linear stego-code. In
comparison with the TBPC method, our method significantly reduces
the number of modifications on average.

REFERENCES

[1] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of ap-
proximate optima in lattices, codes, and systems of linear equations,”
J. Comput. Syst. Sci., vol. 54, no. 2, pp. 317–331, 1997.

[2] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes.
Amsterdam, The Netherlands: North-Holland, 1997.

[3] G. Cohen, M. Karpovsky, H. Mattson, and J. Schatz, “Covering radius-
survey and recent results,” IEEE Trans. Inf. Theory, vol. IT-31, no. 3,
pp. 328–343, May 1985.

[4] R. Crandall, “Some Notes on Steganography, Posted on Steganography
Mailing List,” 1998 [Online]. Available: http://os.inf.tu-dresden.de/
westfeld/crandall.pdf

[5] J. Fridrich, “Asymptotic behavior of the ZZW embedding construc-
tion,” IEEE Trans. Inf. Forensics Security, vol. 4, no. 1, pp. 151–154,
Mar. 2009.

[6] J. Fridrich, M. Goljan, P. Lisonek, and D. Soukal, “Writing on wet
paper,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3923–3935,
Oct. 2005.

886 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 3, MARCH 2011

[7] J. Fridrich, M. Goljan, and D. Soukal, “Efficient wet paper codes,” in
Proc. 7th Int. Workshop Inf. Hiding (IHW 05), Lecture Notes in Com-
puter Science, 2005, vol. 3727, pp. 204–218.

[8] J. Fridrich and D. Soukal, “Matrix embedding for large payloads,”
IEEE Trans. Inf. Forensics Security, vol. 1, no. 3, pp. 390–395, Sep.
2006.

[9] M. Khatirinejad and P. Lisonek, “Linear codes for high payload
steganography,” Discrete Applied Math., vol. 157, no. 5, pp. 971–981,
2009.

[10] R. Y. M. Li, O. C. Au, K. K. Lai, C. K. Yuk, and S.-Y. Lam, “Data
hiding with tree based parity check,” in Proc. IEEE Int. Conf. Multi-
media and Expo (ICME 07), 2007, pp. 635–638.

[11] R. M. Roth, Introduction to Coding Theory. Cambridge, U.K.: Cam-
bridge Univ. Press, 2006.

[12] A. Westfeld, “F5: A steganographic algorithm, high capacity despite
better steganalysis,” in Proc. 4th Int. Workshop Inf. Hiding,, 2001, vol.
LNCS 2137, pp. 289–302.

[13] W. Zhang and S. Li, “A coding problem in steganography,” Designs,
Codes Cryptogr., vol. 46, no. 1, pp. 68–81, 2008.

[14] W. Zhang, X. Zhang, and S. Wang, “Maximizing steganographic em-
bedding efficiency by combining hamming codes and wet paper codes,”
in Proc. Int. Workshop Inf. Hiding (IH 08), 2008, vol. LNCS 5284, pp.
60–71.

