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Abstract

Keywords : slug test, radial two-layer aquifer, closed-form solution, partial penetration

The slug test is to suddenly remove/add a volume of water from/to a well, and the rate of
fal/rise of the wellbore water level is ssimultaneously measured. The aquifer parameters, the
hydraulic conductivity and the storage coefficient, can then be estimated based on the measured
data. Thedug test iswidely used in aquifer site characterization because of the advantages of low
cost, being easy and rapid to perform the test, and minor disturbances of the groundwater level and
exiting contamination plume. The aquifer characteristics near the well may become higher or
lower than those of the formation due to the well drilling process or the field heterogeneity. This
may lead to over-estimate or under-estimate the slug-test results, if the aquifer well skin or
heterogeneity is presented. Besides, the test well or monitoring well is very likely to be partially
penetrated in the real world. The aquifer parameters obtained by analyzing the test data may also
lead to significant errors while neglecting the effect of partial penetration.

In the first year of this study, we had derived a new closed-form solution for the change of
water level by a slug test in a radial two-layer confined aquifer system. The methods of Laplace
transform and the Bromwich contour integration were employed to solve the two-layered
groundwater flow equation. In the near future, we will use this new analytical solution to generate
a set of type curves for engineering application as well as to quantify the effects of different
thickness of wellbore skin and aquifer characteristics on the hydraulic head distribution.

This year (the second year) we will derive the closed-form solution for a radial two-layer
groundwater flow equation with considering the condition that the well is partialy penetrated.
The methods of Laplace transforms and finite cosine transforms may be employed to solve the
two-layered groundwater flow equation with the appropriate initial and boundary conditions
including the effect of the well partial penetration. The derived solution will be employed to
investigate the effects of the wellbore skin and the partial penetration on the water level distribution
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1. Introduction

Slug test is one of the well-test methods to investigate in-situ aquifer parameters.
The test involves an instantaneous removal/injection of a smal volume of water
from/into a well (Butler, 1997). An instantaneous head change is thus imposed
within awell and the recovery/faloff of water level is continuously measured using a
pressure transducer that connects to a data logger. The aguifer parameters, e.g.,
transmissivity and storativity, can then be obtained if the slug-test datais anayzed.

Ferris and Knowles (1954) originally introduced the slug-test data analysis
procedure in a ground-water literature. They derived an approximated solution for
describing the water level change of test well. The transmissivity is then estimated
based on the straight line which represents residual head versus inverse of time.
Bredehoeft et al. (1966), employing an electrical analog model of the well-aquifer
system, demonstrated that Ferris and Knowles' approximation is valid only for very
late time of the test. Later, Cooper et a. (1967) obtained a solution including the
well storage from being analogous to a heat conduction problem provided by Carslaw
and Jaeger (1959). Cooper et a. (1967) applied their solution to a ground-water
flow of aguifer and made a family of type curves. They used a matching approach
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for estimating aquifer parameters from the slug-test data. However, the aquifer
parameters obtained by this technique may be very rough because the shape of type
curveisrather insensitive to the value of aquifer storage S(Lohman, 1972), especidly,
when Sisvery small. Kipp (1985) constructed a set of type curves that enables the
well water level response data from slug tests to be analyzed if the inertial parameter
is large. Pandit and Miner (1986) provided an automatic fitting procedure to
determine the aguifer parameters of transmissivity and storativity while analyzing the
dug-test data obtained from a confined aquifer. Marschall and Barczewski (1989)
presented an analysis of slug testsin the frequency domain for evaluating the solution
of Cooper et a. (1967). The solution is in terms of the Kelvin functions, and the
slug-test data is transformed by the numerical Fourier transforms to determine aquifer
parameters. Such an approach can avoid evaluating the integrand, which is an
oscillatory function and difficult to evaluate.

Using the infinitesimally thin skin concept, Ramey and Agarwal (1972) originaly
reported an analytical solution in terms of an inversion integral to the problem and its
short-time and long-time approximating forms. The skin effect describing the
damage or improvement to the region surrounding the well is represented by a skin
factor. Ramey et al. (1975) presented the semilog and double-log type curves
combined the effects of the well storage and the wellbore skin for anayzing the
dug-test data. They provided a new correlation of type curves, which the
dimensionless storage constants and times were based on the effective well radius
determined with the skin effect. Their approach can overcome the difficulty in
obtaining a unique solution when the skin presents. Faust and Mercer (1984)
provided an infinite-aquifer solution to investigate the effect of a finite-thickness skin
on the response of slug tests. They assumed that the skin has a much lower
permeability than that of the adjacent formation. Under this condition, the skin
effect can lead to very low estimates of hydraulic conductivity when using the
type-curve fitting method of Cooper et a. (1967). Moench and Hsieh (1985)
commented on the evaluation of slug tests in a finite-thickness skin by Faust and
Mercer (1984). They showed that when the specific storage of skin is negligibly
small, the finite-thickness skin solution becomes equivalent to the infinitesimally thin
skin solution. Under a finite-thickness skin condition, the skin properties control the
early time response, whereas the formation properties relate to the late time response.
Further, Sageev (1986) investigated the effects of the well storage and the wellbore
skin in a confined aquifer system. He obtained a similar result of Moench and Hsieh
(1985). Various models of slug tests are attempted to develop solutions by Karasaki
et al. (1988) for the linear flow, radial flow with boundaries, two layer, and concentric
composite systems. They provided type curves for each solution and noted that slug
tests suffer the problems of the non-uniqueness in matching the test data to type
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curves.  Butler and Healey (1998) investigated the estimate of hydraulic
conductivity obtained through pumping or slug tests. They indicated that the
hydraulic conductivity estimate from a pumping test is, on average, larger than that
from a series of slug test in the same formation.

An aquifer is considered as a radial composite aquifer if the formation properties
near the well are significantly changed due to the well drilling or development. The
well drilling makes the invasion of drilling mud into the aquifer and may produce a
positive wellbore skin that has lower permeability than that of the original formation.
On the other hand, the extensive well development and/or substantial spalling and
fracturing of the borehole wall may increase the permeability of the adjacent
formation around the well. Under such circumstances, the disturbed formation is
referred to as a negative wellbore skin. Karasaki (1990) presented a
Laplace-domain solution of the well response to a drillstem test with the presence of
skin. He used a convolution method to evaluate the solution numerically for
converging the integration of functions. The systematized procedure and anaysis
method were proposed for a drillstem test. Recently, Yang and Gates (1997)
constructed a numerical model in a confined aquifer considering the effect of a
finite-thickness skin for slug test. The wellbore skin effect on the slug-test results
was analyzed by using a finite-element method. They suggested that the effect of a
wellbore skin on the estimates of hydraulic conductivity for low-permeability
mediums could be minimized by the use of the late-time data.

The purpose of this paper is to derive a new closed-form solution in terms of
hydraulic head distribution for slug tests performed in a radial confined composite
aquifer. The governing equation and the related boundary conditions modeling the
distribution of hydraulic head are solved by the Laplace transforms. This
time-domain solution is expressed in terms of an integra that covers a range from
zero to infinity and has an integrand consisting of complicate products terms of the
Bessel functions. The closed-form solution is evaluated by numerical approaches.
Its values are compared with those of Cooper et a.’s single-layer solution (1967)
when the medium is uniform and the results of numerical inversion from the
Laplace-domain solution. The derived solution for the hydraulic distribution can be
used as a tool to investigate the effects of a finite-thickness skin, e.g., skin properties
and skin thickness.



2. Mathematical Derivations
2.1 Mathematical statement

Figure 1 shows the well and aquifer configurations for a two-layer confined
aquifer system. The assumptions made for the solution of hydraulic heads are: (1)
the aguifer is homogeneous, isotropic, infinite-extent, and with a constant thickness,
(2) the well isfully penetrating with a finite radius, (3) the initial head is constant and
uniform throughout the whole aquifer, and (4) vertical flow gradients are negligible.
Under these assumptions, the governing equations for the skin region and the
undisturbed formation can be written as

‘"2—/}+£Mzim, r,Erfr, Q)

Gr rqr T 9t

and

Th 190 _ S Th

mw> rqr T, Mt
where the subscripts 1 and 2 respectively represent the wellbore skin and undisturbed
formation, r is the radia distance from the centerline of the well, r,, is the radius of
the well, rsis the radius of the skin, ¢ is the time from the start of the test, Sis the
storage coefficient of the aquifer, Tis the transmissivity of the aquifer, and h defined
as the dimensionless hydraulic head is

r,Er£¥ (2

_Hqo- Hy

h=—00 "1
H,- H,

©)
where Hj is the hydraulic head at ambient conditions, H; is the head at time zero, and
Hy isthe head at time t.

The dimensionless hydraulic head is initially assumed to be zero in both the skin
and the undisturbed formation, that is

h(r,0)=h(r0)=0, r>r, (4)
Theinitial condition for the wellboreis
h(r,,0)=1 (5)
The dimensionless hydraulic head tendsto zero, as r ® ¥, thatis
h(¥,t)=0 6)
The conservation of mass requires that
AH(t)o Ah o
prefl00_ o 7N g (7)
e 1t o efra.,

Between the skin and the undisturbed formation the dimensionless hydraulic head is
8



continuous,

h(r.t)=h(r.t) t>0 (8)
and there is conservation of mass:
Th(r,t) _ - Th(r,t)
P S A ©

2.2 Closed-form solution

The dimensionless hydraulic head in the Laplace domain for the skin
and the undisturbed formation can be obtained by using Laplace transform

for (1) —(9). The results for A and h, are respectively expressed as

/_11: Horwszg N f1¢/o(q1r)+f2¢Ko(q1r) 8(10)
Tq A ¢ ¢
1 8[' hqlrwlo(qlrw)+2al1(qlrw)]f1 +[hq1er0(q1rw)+ZaKl(qlrw)]fz H
and
h = Horwszg Ko(qzr) 8(1]_)

2

quzfs g[_ hqlrwlo(qlrw) + 2all(qlrw)]flq:dl- [hqlrWKO (qlrw) + zaKl(qlrw)]fZ(]:El

where ¢ =pS/T,, ¢o=pSIT,, ¢ =S/ S, a=Sr’/r?, pis the Laplace

variable (Spiegel, 1965), lo() and Ko(u) are respectively the modified Bessel
functions of the first and second kinds of order zero, and /1(u) and Ki(u) are the
modified Bessel functions of the first and second kinds of order first, respectively.

Variables flq and fz(t are respectively defined as

ST

f1¢: - Kl(qlrs)KO (qzrs)"' ?Ko(qlrs)Kl(qus) (12)
and
£.8= 1,(qur)Ky (or,) + %/o(qlrgm(qzrs) (13)

The closed-form solutions of (10) and (11) obtained by using Bromwich integral
(Hildebrand, 1976, p.624) are



2H 1, ¥ 5t AlW)B(U)+ AlU)B(Y)
S BBl o
and
_AHhr, ¥ et J (rku)B,(u)- Y, (rku)B,(u) du
e 00 T geEw v
with
A1) = (¥ (roke) I () - (¥ (ke ¥y )
- Rl () (k] o
A()=[4, (r )01k 1)~ (0,3 1, ) o )]
Lkl (e k)] &)
;,[Jl(ru) (r kum )~ (1. (roke) 1, )]
)=l T (k) (k) )
! ST IO(18)
k() () ()
'23;;- - R ekl () ()b )];
and
()W (k) ) - (¥ (ke (]
Bl=hA ST (kv vk, (ral

i ST,
[ (ru) Yo (rek) Y () - Y () Yo (k) g, (r, )]

e laleaeirtea- el

P(19)
u

|
i ST,
where visadummy variableand k=,/T,S,/T,S, . Notethat b(4) and Yo(u) are

respectively the Bessel functions of the first and second kinds of order zero; 4(u) and
Yi(u) are respectively the Bessel functions of the first and second kinds of order first.
Equations (14) and (15) are the closed-form solutions for hydraulic head distributions
in the skin and formation zones, respectively. Detailed derivations to obtain the
solution of (14) are described in Appendix A. The solution of (15) for hydraulic
head distribution in the formation can be obtained in a similar manner.
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2.3 Dimensionless

Defining dimensionless variables

T T T

b:E t:gz th

2’ a Sr

Z:E , g:i:l

A S h
(20)

—_ _rC _rS

rD_r_W’ rDc_r_W’ rDS_I'_W

where h,, and h,, represent the dimensionless hydraulical head in the Laplace
domain, hp; and hp, represent the dimensionless hydraulical head in the time domain,
B represents the dimensionless time parameter, drepresent the dimensionless time
during the test, ¢ represents the dimensionless transmissivity, & represents the
dimensionless storage coefficient, rp represents the dimensionless distance from the
centerline of the well, rp. represents the dimensionless radius of the standpipe, and rps
represents the dimensionless thickness of wellbore skin.
The solution in the Laplace domain derived from (10) and (11) can be expressed

in dimensionless form as

E é f /o(qm )+f02Ko(qoer) 3 (21)
E[ Zp/ (qD1)+ 2‘aQDl (q )]f D1 [ZpKO (qD1)+ zanlKl(qDl)]f D2 0
and
- :ig Ko(qozro) 3 (22)
o2 rDs E[_ Zp/O(qDl)+ zanl ll(qDl)]f D1 + [ZpKO (qDl) + ZanlKl(qDl)]f D2 0
where g7, =zgp, g5, = p.and
fD:L =- qDlKl(qDers)KO(qDZrDs)+ZqD2KO(qD1rD5)K1(qD2rDS) (23)
and
fD2 = qDlll(qDers)KO(qDZrDs)+ZqD2IO(qDers)Kl(qDZrDs) (24)
Accordingly (14) and (15) may be expressed in dimensionless form as
2h ¥ - A(WB(W)+ A (W)B, (W)
h,=—qQe aw (25
" p© B; (w)+ B; (w)
and
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_ 4 ¥ o J(rokw)B,(w)- Yo (rokw)B(w) diw
.9 BWrEl W @
where
A= e ek, ] o
b1 )- 3 ]
A 0 =L r) rrh,r, ) "
b0 Y )]
o k) Kbl
UL T M A A L

o} 1o k)Y () - ¥ (1) (1K), ()]
N7 BA (R0 SA G014 0O R A (AR MA (W) M][V)

and
k) Yl
S B F A M mﬁ;

[t

k8 b))
R A S R S

- 2a
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3. Verification of Solutions

The solutions of (10), (11), (25), and (26) can be verified by comparing to existing
solutions for similar well testing problem. The Laplace-domain solution of
dimensionless hydraulic head in a uniform medium presented by Cooper et a. (1967)
is

Hor,SK,(ar)
Tdar,Ko(ar,) + 2aK,(ar, )
For a uniform medium, (31) can aso be obtained from (10) and (11) by setting 7. = 7>
=Tand §=5=8 Smilarly, the solution of (25) and (26) in the time domain can
reduce to

=2 & g Jolrol ()= 22X (W] (ro wludy()- 220 (),

p [wd,(w)- 2ad, (W) +[wY,(w)- 2a Y, (W)
which is the solution obtained by Cooper et a. (1967) for a uniform medium.

Equations (21) and (22) is numerically inverted by using the modified Crump
algorithm (de Hoog et al., 1982), which is based on the e-agorithm to evauate the
corresponding diagonal Pade approximants (IMSL, 1987). The closed-form solution
for the dimensionless hydraulic head, (25) and (26), are evaluated using a numerical
integration approach. Comparisons between the closed-form solution of (21) and
(22) and the results obtained from numerica inversion of (25) and (26) provide a
cross check for the validity and accuracy of both solutions. The vaues of
dimensionless hydraulic head versus dimensionless time from 0.01 to 1000 evaluated
by a numerical approach for (25) and the modified Crump algorithm for (21) are listed
in Table 1 for a single-layer system. Table 1 gives the values of dimensionless
hydraulic head versus dimensionlesstime for rp.=0.5, rp=1, rps=10,and ¢ =¢=
1when a = 10" or 10°, that is, when the aquifer formation is under a single-layer
condition. The results obtained by numerical Laplace inversion agree well with
those of the closed-form solution and Cooper et al. (1967).

h=

(31)
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4. Discussions
4.1 Effect of Skin Type

Figure 2 displays the curves of dimensionless hydraulic head versus dimensionless
distance for rps=5, 4= 10", and & ranging from 10" to 10 when (a) & 0.1, (b) & 1,
and (c) &= 10. For the case without a skin zone, the dimensionless hydraulic head
gradually decreases when increasing radial distance and time as shown in Figure 2b.
If afinite-thickness skin presents, both Figures 2a and 2c demonstrate that the relation
of dimensionless hydraulic head versus dimensionless distance exhibits two curves
with different slope joined at the interface (rps = 5). A negative skin, which has a
higher transmissivity than the formation, has a curve with relative mild slope in the
skin zone and with steeper slope in the formation zone. In contrast, a positive skin
has a very steep slope in the skin zone due to the lower transmissivity and a relative
flat Slopein the formation zone. The dimensionless hydraulic head aways decreases
with increasing dimensionless time (4); on the other hand, the dimensionless
hydraulic head in the formation zone increases for a period of time, and then
decreases at large time (say, > 1 or 10) as indicated in the figures. In addition, the
dimensionless hydraulic head of a negative skin more quickly stabilizes than that of a
positive skin.  Obvioudly, the dimensionless hydraulic head distributions are
significantly effected by the properties of skin.

4.2 Effect of finitethickness skin

Figures 3a and 3b show a plot of dimensionless hydraulic head versus
dimensionlesstimefor rpc=0.5,rp=1, rps=10, ¢=1,and ¢ =0.1or 10 while «
=101 t0 10°. The formation has a negative skin while ¢ = 0.1 and a positive skin
when ¢ =10. The dimensionless hydraulic head values obtained by the numerical
Laplace inversion agree well with that of the closed-form solution. This indicates
that the closed-form solution yields accurate results for the presence of a wellbore
skin when estimated by the proposed numerical approach. Figures 4a and 4b show
that the curve representing the dimensionless hydraulic head for the undisturbed
(single-layer) formation is quite different from that with a positive or negative
wellbore skin.  If a positive wellbore skin exists, the dimensionless hydraulic head is
smaller than that when a negative wellbore skin exists at the same dimensionless time.
A smaller dimensionless hydraulic head reflects the result of lower hydraulic
conductivity of the positive skin. Conversely, alarger dimensionless hydraulic head
is considered to reflect the increase of formation conductivity and storage effects in
the presence of a negative wellbore skin.
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4.3 Effect of different skin thickness

To investigate the influence of skin thickness, Figures 5a and 5b show two sets of
type curves for roc= 0.5, rp=1, @ =10° ¢=1and ¢ =0.1o0r 10 while rps= 5,
10, 50, or 100. The results show that the skin thickness effects the dimensionless
hydraulic head at early time, as 8 ranged from 10 to 10. However, the
dimensionless hydraulic head diminishes to zero at alarge dimensionlesstime. For a
positive wellbore skin condition, the dimensionless hydraulic head decreases with
increasing skin thickness. Conversely, the dimensionless hydraulic head increases
with increasing skin thickness in the presence of a negative wellbore skin.

4.4 Effect of Contrast of Transmissivity

A plot of dimensionless well water level versus dimensionless time for rps = 10
and & = 10° when a= 0.1, 0.5, 1, 5, or 10 is displayed in Figure 6. In thisfigure, the
dimensionless well water level curves for the system with a negative skin are
presented by a&= 0.1 and 0.5, without skin by a&= 1, and with a positive skin by a&= 5
and 10. The dimensionless well water level increases with « values under the
same dimensionless time and is significantly affected by the positive skin than by the
negative skin. Lower transmissivity of the positive skin produces lower flow rate
toward the formation and results in higher dimensionless well water level. On the
other hand, larger transmissivity of the negative skin yields larger flow rate across the
wellbore and results in smaller dimensionless well water level. The dimensionless
well water levels are larger for the system with a positive wellbore skin than those
without wellbore skin at the same dimensionless time. From Figure 6, the
differences of dimensionless well water level between the two-layer and uniform
medium systems are negligible at small- and large-dimensionless times (i.e, 8 <
10%, B >10%. On the other hand, the observed differences of dimensionless well
water level are quite large at intermediate-dimensionless time.
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5. Conclusions

A closed-form solution for a two-layer confined ground-water system has been
developed for slug test in awell with the presence of a wellborn skin.  This solution
was derived using Laplace transform and a contour integra method. In a
single-layer aguifer system, comparisons of the dimensionless hydraulic head
computed from the closed-form solution and the Laplace-domain solution with the
dimensionless hydraulic head given by Cooper et a. (1967) agree to four decimal
places. Under a two-layer condition, i.e., in the presence of a postive or negative
wellbore skin, the results of the closed-form solution agree with those of the
Laplace-domain solution to five decimal places. This provides a double check for
the correctness of the closed-form solution.

The dimensionless hydraulic head decreases rapidly with increasing dimensionless
time at early stage of the slug test and asymptotically approaches a constant value for
a long test period. For small times the differences between the dimensionless
hydraulic head in an aquifer with a positive or negative wellbore skin and an aquifer
without a wellbore skin are large.  In addition, the effect of a negative wellbore skin
on the dimensionless hydraulic head is larger than that of a positive wellbore skin.
Obvioudly, the magnitude of the dimensionless hydraulic head strongly depends on
the hydraulic properties of both the formation and the wellbore skin.
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Table 1. Dimensionless hydraulic head versus dimensionless time (4) estimated by the
closed-form solution, the numerical inversion from the Laplace-domain solution, and
the one given in Cooper et a. (1967) for rpc =05, rp=1, rps=10,and ¢ =¢=1
when a =107 or 10°.

4 a=10" 4=10°
NS CS Cooper NS CS Cooper
0.01 0.92385 0.92384 0.9238 0.99417 0.99417 0.9942
0.02 0.89036 0.89036 0.98942 0.98942
0.03 0.86425 0.86425 0.98496 0.98496
0.04 0.84208 0.84208 0.98069 0.98069
0.05 0.82249 0.82249 0.97654 0.97654
0.06 0.80477 0.80477 0.97251 0.9725
0.07 0.78850 0.78850 0.96855 0.96855
0.08 0.77339 0.77339 0.96467 0.96467
0.09 0.75926 0.75926 0.96086 0.96086
0.1 0.74595 0.74595 0.7460 0.95710 0.95710 0.9572
0.2 0.64182 0.64182 0.92183 0.92183
0.3 0.56751 0.56751 0.88953 0.88953
0.4 0.50954 0.50954 0.85936 0.85936
0.5 0.46229 0.46229 0.83091 0.83091
0.6 0.42273 0.42273 0.80394 0.80394
0.7 0.38897 0.38897 0.77827 0.77827
0.8 0.35976 0.35976 0.75378 0.75378
0.9 0.33421 0.33421 0.73036 0.73036
1 0.31166 0.31166 0.3117 0.70794 0.70794 0.7080
2 0.17856 0.17856 0.52628 0.52628
3 0.11957 0.11957 0.39920 0.39920
4 0.08761 0.08761 0.30754 0.30754
5 0.06814 0.06814 0.24017 0.24017
6 0.05527 0.05527 0.18995 0.18995
7 0.04625 0.04625 0.04625 0.15208 0.15208 0.1521
8 0.03963 0.03963 0.12322 0.12322
9 0.03459 0.03459 0.10102 0.10102
10 0.03065 0.03065 0.03065 0.08378 0.08378 0.08378
20 0.01408 0.01408 0.02256 0.02256
30 0.00907 0.00907 0.009070 0.01169 0.01169 0.01169
40 0.00668 0.00668 0.00790 0.00790
50 0.00528 0.00528 0.00599 0.00599
60 0.00437 0.00437 0.00483 0.00483
70 0.00372 0.00372 0.003722 0.00405 0.00405 0.004046
80 0.00324 0.00324 0.00348 0.00348
90 0.00287 0.00287 0.00306 0.00306
100 0.00258 0.00258 0.002577 0.00272 0.00272 0.002725
200 0.00127 0.00127 0.00131 0.00131
300 0.00084 0.00084 0.00086 0.00086
400 0.00063 0.00063 0.00064 0.00064
500 0.00050 0.00050 0.00051 0.00051
600 0.00042 0.00042 0.00042 0.00042
700 0.00036 0.00036 0.00036 0.00036
800 0.00031 0.00031 0.00032 0.00032
900 0.00028 0.00028 0.00028 0.00028
1000 0.00025 0.00025 0.00025 0.00025
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Appendix A: Derivation of (14)

The inverse Laplace transforms of (10) in the time domain can be obtained using

the Laplace inversion integral (Hildebrand, 1976) as

h=5 G, &R (A1)
where p = complex variable; / = imaginary unit; and T = large, rea, and positive
constant, so that all the poleslie to the left of line (- A ,T+ i¥).

A single branch point with no singularity (pole) at p = 0 exists in the integrand of
(20). Thus, thisintegration may require using the Bromwich integral for the Laplace
inversion. The closed contour of integrand is shown in Figure A with a cut of p
plane along a negative rea axis, where & is taken sufficiently small to exclude al
poles from the circle about the origin.  The closed contour consists of the part AB of
the Bromwich line from minus infinity to infinity, semicircles BCD and GHA of
radius R, lines DE and FG paralld to the real axis, and acircle EF of radius & about a
origin. The integration along the small circle EF around a origin as & approaches
zero is carried out using the Cauchy integral and the value of the integration is equal
to zero. The integrals taken aong BCD and GHA tend to zero as R approaches
infinity. Consequently, (10) can be superseded by the sum of integrals along DE and
FG. Inother words, theintegral can be written as

h = Ilm—@ge”’hldp+ Qe’”hldp (A2)

0 2

For the first term on the right-hand-side (RHS) of (A2) aong DE, we introduce
the new variable p=1/¢”T/§ and use the formulas (Carslaw and Jaeger, 1959,
p.490)

. 1
Kéeze‘zp' 2=+ 1pie 2" J(22iv,(2] (A3)
g 2
and
1.4 1 .
16267 2= 2" 5 (2) (Ad)
@
wherev=0,1, 2,.... Thefirst term on the RHS of (A2) then leadsto
rhH, ¥ 5% [AW)- A)
=- £ = al A5
Mo pi 9° [B.(u)+iB,(u) y (A3)

Likewise, introducing p=(’¢'T/ S, the integral along FG gives minus the
conjugate of (A5) as
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_npHy ¥ 5wt [A(Y) +/Az ul
hes pi Qe [Bl )] u (A6)

The closed-form solution of (14) can then be obtained by combining (A5) and (A6).
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