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Abstract

Keywords slug test, radial two-layer aquifer, closed-form solution, partial penetration

The slug test is to suddenly remove/add a volume of water from/to a well, and the rate of 
fall/rise of the wellbore water level is simultaneously measured.  The aquifer parameters, the 
hydraulic conductivity and the storage coefficient, can then be estimated based on the measured 
data.  The slug test is widely used in aquifer site characterization because of the advantages of low 
cost, being easy and rapid to perform the test, and minor disturbances of the groundwater level and 
exiting contamination plume.  The aquifer characteristics near the well may become higher or 
lower than those of the formation due to the well drilling process or the field heterogeneity.  This 
may lead to over-estimate or under-estimate the slug-test results, if the aquifer well skin or 
heterogeneity is presented.  Besides, the test well or monitoring well is very likely to be partially 
penetrated in the real world.  The aquifer parameters obtained by analyzing the test data may also 
lead to significant errors while neglecting the effect of partial penetration.

In the first year of this study, we had derived a new closed-form solution for the change of 
water level by a slug test in a radial two-layer confined aquifer system.  The methods of Laplace 
transform and the Bromwich contour integration were employed to solve the two-layered 
groundwater flow equation.  In the near future, we will use this new analytical solution to generate 
a set of type curves for engineering application as well as to quantify the effects of different 
thickness of wellbore skin and aquifer characteristics on the hydraulic head distribution.

This year (the second year) we will derive the closed-form solution for a radial two-layer 
groundwater flow equation with considering the condition that the well is partially penetrated.  
The methods of Laplace transforms and finite cosine transforms may be employed to solve the 
two-layered groundwater flow equation with the appropriate initial and boundary conditions 
including the effect of the well partial penetration.  The derived solution will be employed to 
investigate the effects of the wellbore skin and the partial penetration on the water level distribution
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1. Introduction

Slug test is one of the well-test methods to investigate in-situ aquifer parameters.  
The test involves an instantaneous removal/injection of a small volume of water 
from/into a well (Butler, 1997).  An instantaneous head change is thus imposed 
within a well and the recovery/falloff of water level is continuously measured using a 
pressure transducer that connects to a data logger.  The aquifer parameters, e.g., 
transmissivity and storativity, can then be obtained if the slug-test data is analyzed.

Ferris and Knowles (1954) originally introduced the slug-test data analysis 
procedure in a ground-water literature.  They derived an approximated solution for 
describing the water level change of test well. The transmissivity is then estimated 
based on the straight line which represents residual head versus inverse of time. 
Bredehoeft et al. (1966), employing an electrical analog model of the well-aquifer 
system, demonstrated that Ferris and Knowles’ approximation is valid only for very 
late time of the test.  Later, Cooper et al. (1967) obtained a solution including the 
well storage from being analogous to a heat conduction problem provided by Carslaw 
and Jaeger (1959).  Cooper et al. (1967) applied their solution to a ground-water 
flow of aquifer and made a family of type curves.  They used a matching approach 
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for estimating aquifer parameters from the slug-test data. However, the aquifer 
parameters obtained by this technique may be very rough because the shape of type 
curve is rather insensitive to the value of aquifer storage S (Lohman, 1972), especially, 
when S is very small.  Kipp (1985) constructed a set of type curves that enables the 
well water level response data from slug tests to be analyzed if the inertial parameter 
is large.  Pandit and Miner (1986) provided an automatic fitting procedure to 
determine the aquifer parameters of transmissivity and storativity while analyzing the 
slug-test data obtained from a confined aquifer.  Marschall and Barczewski (1989) 
presented an analysis of slug tests in the frequency domain for evaluating the solution 
of Cooper et al. (1967).  The solution is in terms of the Kelvin functions, and the 
slug-test data is transformed by the numerical Fourier transforms to determine aquifer 
parameters.  Such an approach can avoid evaluating the integrand, which is an 
oscillatory function and difficult to evaluate.

Using the infinitesimally thin skin concept, Ramey and Agarwal (1972) originally 
reported an analytical solution in terms of an inversion integral to the problem and its 
short-time and long-time approximating forms.  The skin effect describing the 
damage or improvement to the region surrounding the well is represented by a skin 
factor.  Ramey et al. (1975) presented the semilog and double-log type curves 
combined the effects of the well storage and the wellbore skin for analyzing the 
slug-test data.  They provided a new correlation of type curves, which the 
dimensionless storage constants and times were based on the effective well radius 
determined with the skin effect.  Their approach can overcome the difficulty in 
obtaining a unique solution when the skin presents.  Faust and Mercer (1984) 
provided an infinite-aquifer solution to investigate the effect of a finite-thickness skin 
on the response of slug tests.  They assumed that the skin has a much lower 
permeability than that of the adjacent formation.  Under this condition, the skin 
effect can lead to very low estimates of hydraulic conductivity when using the 
type-curve fitting method of Cooper et al. (1967).  Moench and Hsieh (1985) 
commented on the evaluation of slug tests in a finite-thickness skin by Faust and 
Mercer (1984).  They showed that when the specific storage of skin is negligibly 
small, the finite-thickness skin solution becomes equivalent to the infinitesimally thin 
skin solution.  Under a finite-thickness skin condition, the skin properties control the 
early time response, whereas the formation properties relate to the late time response.  
Further, Sageev (1986) investigated the effects of the well storage and the wellbore 
skin in a confined aquifer system.  He obtained a similar result of Moench and Hsieh
(1985).  Various models of slug tests are attempted to develop solutions by Karasaki 
et al. (1988) for the linear flow, radial flow with boundaries, two layer, and concentric 
composite systems.  They provided type curves for each solution and noted that slug 
tests suffer the problems of the non-uniqueness in matching the test data to type 
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curves.  Butler and Healey (1998) investigated the estimate of hydraulic 
conductivity obtained through pumping or slug tests.  They indicated that the 
hydraulic conductivity estimate from a pumping test is, on average, larger than that 
from a series of slug test in the same formation.

An aquifer is considered as a radial composite aquifer if the formation properties 
near the well are significantly changed due to the well drilling or development.  The 
well drilling makes the invasion of drilling mud into the aquifer and may produce a 
positive wellbore skin that has lower permeability than that of the original formation.  
On the other hand, the extensive well development and/or substantial spalling and 
fracturing of the borehole wall may increase the permeability of the adjacent 
formation around the well.  Under such circumstances, the disturbed formation is 
referred to as a negative wellbore skin.  Karasaki (1990) presented a 
Laplace-domain solution of the well response to a drillstem test with the presence of 
skin.  He used a convolution method to evaluate the solution numerically for 
converging the integration of functions.  The systematized procedure and analysis 
method were proposed for a drillstem test.  Recently, Yang and Gates (1997) 
constructed a numerical model in a confined aquifer considering the effect of a 
finite-thickness skin for slug test.  The wellbore skin effect on the slug-test results 
was analyzed by using a finite-element method.  They suggested that the effect of a 
wellbore skin on the estimates of hydraulic conductivity for low-permeability 
mediums could be minimized by the use of the late-time data.

The purpose of this paper is to derive a new closed-form solution in terms of 
hydraulic head distribution for slug tests performed in a radial confined composite 
aquifer.  The governing equation and the related boundary conditions modeling the 
distribution of hydraulic head are solved by the Laplace transforms.  This 
time-domain solution is expressed in terms of an integral that covers a range from 
zero to infinity and has an integrand consisting of complicate products terms of the 
Bessel functions.  The closed-form solution is evaluated by numerical approaches. 
Its values are compared with those of Cooper et al.’s single-layer solution (1967)
when the medium is uniform and the results of numerical inversion from the 
Laplace-domain solution. The derived solution for the hydraulic distribution can be 
used as a tool to investigate the effects of a finite-thickness skin, e.g., skin properties 
and skin thickness.
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2. Mathematical Der ivations

2.1 Mathematical statement

Figure 1 shows the well and aquifer configurations for a two-layer confined 
aquifer system.  The assumptions made for the solution of hydraulic heads are: (1) 
the aquifer is homogeneous, isotropic, infinite-extent, and with a constant thickness, 
(2) the well is fully penetrating with a finite radius, (3) the initial head is constant and 
uniform throughout the whole aquifer, and (4) vertical flow gradients are negligible.  
Under these assumptions, the governing equations for the skin region and the 
undisturbed formation can be written as
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where the subscripts 1 and 2 respectively represent the wellbore skin and undisturbed 
formation, r is the radial distance from the centerline of the well, rw is the radius of 
the well, rs is the radius of the skin, t is the time from the start of the test, S is the
storage coefficient of the aquifer, T is the transmissivity of the aquifer, and h defined 
as the dimensionless hydraulic head is
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where H0 is the hydraulic head at ambient conditions, Hi is the head at time zero, and 
H(t) is the head at time t.

The dimensionless hydraulic head is initially assumed to be zero in both the skin 
and the undisturbed formation, that is
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The initial condition for the wellbore is

( ) 10,1 =wrh                             (5)
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Between the skin and the undisturbed formation the dimensionless hydraulic head is 
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continuous,
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and there is conservation of mass:
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2.2 Closed-form solution
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2
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2 /TpSq = , ç = S2 / S1, 22

2 / cw rrS=α , p is the Laplace 

variable (Spiegel, 1965), I0(u) and K0(u) are respectively the modified Bessel 
functions of the first and second kinds of order zero, and I1(u) and K1(u) are the 
modified Bessel functions of the first and second kinds of order first, respectively.  
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The closed-form solutions of (10) and (11) obtained by using Bromwich integral 
(Hildebrand, 1976, p.624) are
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where u is a dummy variable and 1221 / STSTk = .  Note that J0(u) and Y0(u) are 

respectively the Bessel functions of the first and second kinds of order zero; J1(u) and 
Y1(u) are respectively the Bessel functions of the first and second kinds of order first.  
Equations (14) and (15) are the closed-form solutions for hydraulic head distributions 
in the skin and formation zones, respectively.  Detailed derivations to obtain the 
solution of (14) are described in Appendix A.  The solution of (15) for hydraulic 
head distribution in the formation can be obtained in a similar manner.
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2.3 Dimensionless

Defining dimensionless variables
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where 1Dh  and 2Dh  represent the dimensionless hydraulical head in the Laplace 
domain, hD1 and hD2 represent the dimensionless hydraulical head in the time domain, 
β represents the dimensionless time parameter, ô represent the dimensionless time 
during the test, ζ represents the dimensionless transmissivity, ã represents the 
dimensionless storage coefficient, rD represents the dimensionless distance from the 
centerline of the well, rDc represents the dimensionless radius of the standpipe, and rDs

represents the dimensionless thickness of wellbore skin.
The solution in the Laplace domain derived from (10) and (11) can be expressed 

in dimensionless form as
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3. Ver ification of Solutions

The solutions of (10), (11), (25), and (26) can be verified by comparing to existing 
solutions for similar well testing problem.  The Laplace-domain solution of 
dimensionless hydraulic head in a uniform medium presented by Cooper et al. (1967) 
is
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For a uniform medium, (31) can also be obtained from (10) and (11) by setting T1 = T2

= T and S1 = S2 = S.  Similarly, the solution of (25) and (26) in the time domain can 
reduce to
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which is the solution obtained by Cooper et al. (1967) for a uniform medium.
Equations (21) and (22) is numerically inverted by using the modified Crump 

algorithm (de Hoog et al., 1982), which is based on the ε-algorithm to evaluate the 
corresponding diagonal Pade approximants (IMSL, 1987).  The closed-form solution 
for the dimensionless hydraulic head, (25) and (26), are evaluated using a numerical 
integration approach.  Comparisons between the closed-form solution of (21) and 
(22) and the results obtained from numerical inversion of (25) and (26) provide a 
cross check for the validity and accuracy of both solutions.  The values of 
dimensionless hydraulic head versus dimensionless time from 0.01 to 1000 evaluated 
by a numerical approach for (25) and the modified Crump algorithm for (21) are listed 
in Table 1 for a single-layer system.  Table 1 gives the values of dimensionless 
hydraulic head versus dimensionless time for rDc = 0.5, rD = 1, rDs = 10, and ζ = ç = 
1 when α = 10-1 or 10-5, that is, when the aquifer formation is under a single-layer 
condition.  The results obtained by numerical Laplace inversion agree well with 
those of the closed-form solution and Cooper et al. (1967).
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4. Discussions

4.1 Effect of Skin Type

Figure 2 displays the curves of dimensionless hydraulic head versus dimensionless 
distance for rDs = 5, á = 10-5, and â ranging from 10-4 to 10 when (a) æ = 0.1, (b) æ = 1, 
and (c) æ = 10.  For the case without a skin zone, the dimensionless hydraulic head 
gradually decreases when increasing radial distance and time as shown in Figure 2b.  
If a finite-thickness skin presents, both Figures 2a and 2c demonstrate that the relation 
of dimensionless hydraulic head versus dimensionless distance exhibits two curves 
with different slope joined at the interface (rDs = 5).  A negative skin, which has a 
higher transmissivity than the formation, has a curve with relative mild slope in the 
skin zone and with steeper slope in the formation zone.  In contrast, a positive skin 
has a very steep slope in the skin zone due to the lower transmissivity and a relative 
flat slope in the formation zone.  The dimensionless hydraulic head always decreases 
with increasing dimensionless time (â); on the other hand, the dimensionless 
hydraulic head in the formation zone increases for a period of time, and then 
decreases at large time (say, â > 1 or 10) as indicated in the figures.  In addition, the 
dimensionless hydraulic head of a negative skin more quickly stabilizes than that of a 
positive skin.  Obviously, the dimensionless hydraulic head distributions are 
significantly effected by the properties of skin.

4.2 Effect of finite thickness skin

Figures 3a and 3b show a plot of dimensionless hydraulic head versus 
dimensionless time for rDc = 0.5, rD = 1, rDs = 10, ç = 1, and ζ = 0.1 or 10 while α
= 10-1 to 10-5.  The formation has a negative skin while ζ = 0.1 and a positive skin 
when ζ =10.  The dimensionless hydraulic head values obtained by the numerical 
Laplace inversion agree well with that of the closed-form solution.  This indicates 
that the closed-form solution yields accurate results for the presence of a wellbore 
skin when estimated by the proposed numerical approach.  Figures 4a and 4b show 
that the curve representing the dimensionless hydraulic head for the undisturbed 
(single-layer) formation is quite different from that with a positive or negative 
wellbore skin.  If a positive wellbore skin exists, the dimensionless hydraulic head is 
smaller than that when a negative wellbore skin exists at the same dimensionless time.  
A smaller dimensionless hydraulic head reflects the result of lower hydraulic 
conductivity of the positive skin.  Conversely, a larger dimensionless hydraulic head 
is considered to reflect the increase of formation conductivity and storage effects in 
the presence of a negative wellbore skin.
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4.3 Effect of different skin thickness

To investigate the influence of skin thickness, Figures 5a and 5b show two sets of 
type curves for rDc = 0.5, rD = 1, α = 10-5, ç = 1 and ζ = 0.1 or 10 while rDs = 5, 
10, 50, or 100.  The results show that the skin thickness effects the dimensionless 
hydraulic head at early time, as β  ranged from 10-1 to 10.  However, the 
dimensionless hydraulic head diminishes to zero at a large dimensionless time.  For a 
positive wellbore skin condition, the dimensionless hydraulic head decreases with 
increasing skin thickness.  Conversely, the dimensionless hydraulic head increases 
with increasing skin thickness in the presence of a negative wellbore skin.

4.4 Effect of Contrast of Transmissivity

A plot of dimensionless well water level versus dimensionless time for rDs = 10 
and á = 10-5 when æ = 0.1, 0.5, 1, 5, or 10 is displayed in Figure 6.  In this figure, the 
dimensionless well water level curves for the system with a negative skin are 
presented by æ = 0.1 and 0.5, without skin by æ = 1, and with a positive skin by æ = 5 
and 10.  The dimensionless well water level increases with α values under the 
same dimensionless time and is significantly affected by the positive skin than by the 
negative skin.  Lower transmissivity of the positive skin produces lower flow rate 
toward the formation and results in higher dimensionless well water level.  On the 
other hand, larger transmissivity of the negative skin yields larger flow rate across the 
wellbore and results in smaller dimensionless well water level.  The dimensionless 
well water levels are larger for the system with a positive wellbore skin than those 
without wellbore skin at the same dimensionless time.  From Figure 6, the 
differences of dimensionless well water level between the two-layer and uniform 
medium systems are negligible at small- and large-dimensionless times (i.e., β < 
10-1, β > 103).  On the other hand, the observed differences of dimensionless well 
water level are quite large at intermediate-dimensionless time.
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5. Conclusions

A closed-form solution for a two-layer confined ground-water system has been 
developed for slug test in a well with the presence of a wellborn skin.  This solution 
was derived using Laplace transform and a contour integral method.  In a 
single-layer aquifer system, comparisons of the dimensionless hydraulic head 
computed from the closed-form solution and the Laplace-domain solution with the 
dimensionless hydraulic head given by Cooper et al. (1967) agree to four decimal 
places.  Under a two-layer condition, i.e., in the presence of a positive or negative 
wellbore skin, the results of the closed-form solution agree with those of the 
Laplace-domain solution to five decimal places.  This provides a double check for 
the correctness of the closed-form solution.

The dimensionless hydraulic head decreases rapidly with increasing dimensionless 
time at early stage of the slug test and asymptotically approaches a constant value for 
a long test period.  For small times the differences between the dimensionless 
hydraulic head in an aquifer with a positive or negative wellbore skin and an aquifer 
without a wellbore skin are large.  In addition, the effect of a negative wellbore skin 
on the dimensionless hydraulic head is larger than that of a positive wellbore skin.  
Obviously, the magnitude of the dimensionless hydraulic head strongly depends on 
the hydraulic properties of both the formation and the wellbore skin.
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Table 1. Dimensionless hydraulic head versus dimensionless time (â) estimated by the 
closed-form solution, the numerical inversion from the Laplace-domain solution, and 
the one given in Cooper et al. (1967) for rDc = 0.5, rD = 1, rDs = 10, and ζ = ç = 1
when α = 10-1 or 10-5.

á = 10-1 á = 10-5
â

NS CS Cooper NS CS Cooper
0.01 0.92385 0.92384 0.9238 0.99417 0.99417 0.9942
0.02 0.89036 0.89036 0.98942 0.98942
0.03 0.86425 0.86425 0.98496 0.98496
0.04 0.84208 0.84208 0.98069 0.98069
0.05 0.82249 0.82249 0.97654 0.97654
0.06 0.80477 0.80477 0.97251 0.9725
0.07 0.78850 0.78850 0.96855 0.96855
0.08 0.77339 0.77339 0.96467 0.96467
0.09 0.75926 0.75926 0.96086 0.96086
0.1 0.74595 0.74595 0.7460 0.95710 0.95710 0.9572
0.2 0.64182 0.64182 0.92183 0.92183
0.3 0.56751 0.56751 0.88953 0.88953
0.4 0.50954 0.50954 0.85936 0.85936
0.5 0.46229 0.46229 0.83091 0.83091
0.6 0.42273 0.42273 0.80394 0.80394
0.7 0.38897 0.38897 0.77827 0.77827
0.8 0.35976 0.35976 0.75378 0.75378
0.9 0.33421 0.33421 0.73036 0.73036
1 0.31166 0.31166 0.3117 0.70794 0.70794 0.7080
2 0.17856 0.17856 0.52628 0.52628
3 0.11957 0.11957 0.39920 0.39920
4 0.08761 0.08761 0.30754 0.30754
5 0.06814 0.06814 0.24017 0.24017
6 0.05527 0.05527 0.18995 0.18995
7 0.04625 0.04625 0.04625 0.15208 0.15208 0.1521
8 0.03963 0.03963 0.12322 0.12322
9 0.03459 0.03459 0.10102 0.10102

10 0.03065 0.03065 0.03065 0.08378 0.08378 0.08378
20 0.01408 0.01408 0.02256 0.02256
30 0.00907 0.00907 0.009070 0.01169 0.01169 0.01169
40 0.00668 0.00668 0.00790 0.00790
50 0.00528 0.00528 0.00599 0.00599
60 0.00437 0.00437 0.00483 0.00483
70 0.00372 0.00372 0.003722 0.00405 0.00405 0.004046
80 0.00324 0.00324 0.00348 0.00348
90 0.00287 0.00287 0.00306 0.00306

100 0.00258 0.00258 0.002577 0.00272 0.00272 0.002725
200 0.00127 0.00127 0.00131 0.00131
300 0.00084 0.00084 0.00086 0.00086
400 0.00063 0.00063 0.00064 0.00064
500 0.00050 0.00050 0.00051 0.00051
600 0.00042 0.00042 0.00042 0.00042
700 0.00036 0.00036 0.00036 0.00036
800 0.00031 0.00031 0.00032 0.00032
900 0.00028 0.00028 0.00028 0.00028

1000 0.00025 0.00025 0.00025 0.00025
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Figure 1.  Schematic diagram of the well and aquifer configurations.
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Figure 2a.  Plots of dimensionless hydraulic head versus dimensionless time for rDs = 
5, á = 10-5, and â = 10-4 to 10 when æ = 0.1.
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Figure 2c.  Plots of dimensionless hydraulic head versus dimensionless time for rDs = 
5, á = 10-5, and â = 10-4 to 10 when æ = 10.
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Figure 3a.  A plot of dimensionless hydraulic head versus dimensionless time for rDc

= 0.5, rD = 1, rDs = 10, ç = 1 and ζ = 0.1 when α ranged from 10-1 to 10-5.
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Appendix A:  Der ivation of (14)

The inverse Laplace transforms of (10) in the time domain can be obtained using 
the Laplace inversion integral (Hildebrand, 1976) as

dphe
i

h
i

i

pt
11 2

1
∫

∞+

∞−
=

ξ

ξπ
                         (A1)

where p = complex variable; i = imaginary unit; and î = large, real, and positive 
constant, so that all the poles lie to the left of line (î- i∞,î+ i∞).

A single branch point with no singularity (pole) at p = 0 exists in the integrand of 
(10).  Thus, this integration may require using the Bromwich integral for the Laplace 
inversion.  The closed contour of integrand is shown in Figure A with a cut of p
plane along a negative real axis, where ä is taken sufficiently small to exclude all 
poles from the circle about the origin.  The closed contour consists of the part AB of 
the Bromwich line from minus infinity to infinity, semicircles BCD and GHA of 
radius R, lines DE and FG parallel to the real axis, and a circle EF of radius ä about a 
origin.  The integration along the small circle EF around a origin as ä approaches 
zero is carried out using the Cauchy integral and the value of the integration is equal 
to zero.  The integrals taken along BCD and GHA tend to zero as R approaches 
infinity.  Consequently, (10) can be superseded by the sum of integrals along DE and 
FG.  In other words, the integral can be written as
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For the first term on the right-hand-side (RHS) of (A2) along DE, we introduce 
the new variable 11

2 / STeup iπ−=  and use the formulas (Carslaw and Jaeger, 1959, 
p.490)
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where v = 0, 1, 2, . . ..  The first term on the RHS of (A2) then leads to
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Likewise, introducing 11
2 / STeup iπ= , the integral along FG gives minus the 

conjugate of (A5) as
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The closed-form solution of (14) can then be obtained by combining (A5) and (A6).
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Figure A.  A plot of the closed contour integration of h for the Bromwich integral 
(Hildebrand, 1976).
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