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Abstract

This study intends to

build the global optimum for

generaL

3. Operate remote computah without
downloading the software;
4. Support distributed computation;

5. Integrate with heuristic methods to

enhance the computational efficiency;
6. Display the solution process and results

graphically.
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anonlinear programming problem;

2. Allow anonlinear programming problem
to include non-positive variables;
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Currently, there are three commonly

used approaches for solvisgnomial

programming problems The first approach

based on various starting points. For
instance, for solving the wéknown pressure
vessel problem (Sandgren, 1990, Li and
Chen, 1994) to obtain a global optimum at
confidence level of 98%, it requires to
solve 240 highly nonlinear programs.

(i) Generalized Geometric Programming
Technique (GGPT) could solve asignomial
programming problem when all variables in

are positive. By utilizitagarithmic/
exponential transformations employed i
geometric progamming (Beightler et al.,
1979), the initial signomial program can be
reduced to a problem where both the
objective and constraints are decomposed
into the difference of two convex functions.

A global optimum can then be reduced
through thb successive refinement of a
convex relaxation and the subsequent
solution of a des of nonlinear convex
optimization problems. A major difficulty of
applying GGPT in solving signomial
programming problemis that the lower
bounds on the variables are ot permitted to

be zero.

(iii) Reformulation Linearization Technique
(RLT) developed by Sherali (1998), and
Sherali and Tuncbilek (1992) derived a
generic algorithm to solve a signomial
program. h&ir algoritlesm generate

is Multilevel Single Linkage Tech@iqunonlinear implied constraints by tdng the

(MSLT) (Rinnooy and Timmer, 1987, Li and
Chou, 1994);

Generalized Geometric

products of bounding terms in

Technique (GGPT) (Maranas and Floudas, py defining new variables, one for each

1996); and the third
Reformulation Linearization
(RLT) (Sherali, 1998, Sherali and Tunchilek,

approa

( C;5blynb$nial term appearing in the problem.
Techniquey incorporating appropriate bound factor

1992). The features of these methods areemploying a suitable partitioning technique,

briefly reviewed as follows.

(i) Multilevel Single Linkage Technique pas

(MSLT) is a stodastic method for reaching

products in their RLT scheme, and
a convergent branch and bound algorithm
been developed. Although RLT

algorithm is very promising in solving a

a global optimum of a nonlinear program. signomial programming problem, a major

Utilizing MSLT method, Li and Chou (1994)

difficulty of RLT method ishat it might

solved a design optimization problem by generate a huge amount of new constraints.
first generate enough starting points to

search for most local optima within the
feasible region. A global optimum is then &, FHFEHE

found at a prespecifiedufficiently high

the
the second approach chstraints set to a suitable order. The
Programmipggylting problem is subsequently linearized

confidence level. The difficulty of MSLT
approach is thatit requires to solve a huge
amount of nonlinear optimization problems

This project addresses a Signomial
Programming (SP) problem which seeks a
global optimum to a signomial objective



function subject to a set of signomial
constraint functions. Such optimization
problems occur quite frequently in various
engineering design, location-allocation,
chemical process and management problems
(Beightler et al. 1976, Sandgren 1990, and
Fu et a., 1991). The mathematical
formulation of this problem is given below.

SP:

TO
Minimize Z(X) =) c,z,
p

Tg
subject to >’ hw,, <1, (for each
q

congtraint k), k=12,...,K,

o

Zy =% "X X

n

ﬁkql ﬁqu ﬁkqn
n ’

Zig =% XX

where x, <x <X (xand x are
respectively the lower and upper bounds of
variables x) ¢,, a,, hy, B, |, are
constants which are unrestricted in sign.

Suppose C,, hy, l are nonnegative
constants, then SP is called a Posynomial
Program (Bazara, 1993). If «,;, By are
positive integersand ¢, >0, h, >0,

[, =0, then SPiscalled a Polynomial

Program (Sherali and Tunchbilek, 1992).
Three strategies used in solving a signomial
program are discussed below:

(1) Strategies of treating non-positive
variables:

Consider the signomial terms

z, =Xfmxgpz,..x:pn in SPwhere 0< x <X.

If there exists x =0 for ie{12..n}
then z,=0;if x >¢ foral
ie{1,2,..n} where ¢ isasmall
noticeable positive value (as ¢ =107°) then
z, canberepresented asnz, = Y a, X .

Here we use a set of inequalities to express
z,, described by the proposition below:

Proposition 1:

A signomial term cx;* X52... X",
where c,a,,a,,...,a, arereal valuesand
0<x <X , canbereplaced by term
cz,z,x and x should satisfy following
inequalities:

(10<z<zA (forc>0) or
0>-z>-2z4 (forc<0)

(i)z(A-)+y<z<y(forc>0) or
Z(1-2)-y>-z>-y(forc<0)

(i) eA <x, <X 4 fori=1,2,..., n

(iv) 0<A<A fori=1,2,..., n

v) 1> Zn:Ai -n+1

i=1
(Vi) X +% (4 —D) <X <X +X (1:4)
(vii) 1ny=zn:ozi1nxi
i=1
(viiil) x >¢
where Z isaconstant, Zz=Max z, ¢

is a positive noticeable small value, 1, are
0-1 variables.

Proof:

If for any i€{1,2,...n}, then from (iii)
and (iv) to know 4, = 2 =0, which resultsin
z=0 based on (i).

If x>¢ foralie{l,2,..n} then
from (iii) (iv) and (v) to know A =4 =1.
Wethenhave x =x and
z=y=X"X2...x," baseon (ii), (vi) and
(vii).

Both cases imply that
CX* X52... X" =czl

(2) Strategies of piecewise linearization:
Hereby we discuss some propositions



of formulating a non-zero signomial term by
a piecewise linear function as follows:

Proposition 2:

Let f(x) bethe piecewise linear
function of X, asdepicted in Figure 1,
where a, i=12,...,n arethe break points

of f(x),and s, i=12,...,n arethe
slopes of line segments between a and
a_,. f(x) canbeexpressed as the sum of
absolute terms:

f(x)=a1+sl(><—ai)+_n2%dx—al+x—a)

Figure 1

f(x)

(sy-s)(x-2))

s,(x-a,)

This proposition can be examined as
follows:

(i) If x=a, then f(x)=f(a).
(i) If x<a, then

(0= fla) 0 B (a)
=f(a)+s(x-a)

(iii) If x<a, then
FO)=f(a)+s(x-a)+s,(x-a)

= f(a)+s(x-a)-s(x-a,)+s,(x-a,)

S35
2 (|

= f(a)+s(x-a)+ X—ay| +X-8a,).

A posynomial term z= X" X;?..X."

where x (i =12,...,n) arepositive
variables, O<a, <X <a,,, canbe
approximately expressed as 2 below

Z:eb1+sl(2ailn§<i —b)+

Z ‘l<1lzlla Ing —b,

j=2

+Za Ink —b,)

where b;,b,,....b,, arethebreak points of
thefunction Inz, s; arethe slopesof line

segments between b, and b, ;;and Ink

j+17
isthe linear approximation of Inx;,
expressed as

In)A(i = Ina’il+ti1(xi _a'il)+

4 ti| _til—l
. X
S (x

2

1=2

—ay|+% —ay)

inwhich a,,a,,...a, arethebrex
points of the function, and t, are slopes of
line segments between a, and a ;.

(3) Strategies of convexification:

For signomial terms with specific features,
there are some more computationally
efficient convexification strategies. To
simplify the expression, here we take a
signomial term with three variables for
instance to illustrate the convexification
techniques. Consider the following
propositions:

Proposition 3:

A twice-differentiable function
f(X)=cx*x32x5* isaconvex function in
one of the following conditions.
(i) >0, a,,a,,a,<0, and o, areeven
numbers for corresponding x <0, i=1, 2, 3.
(i.e, if x <0,then «, haveto beaneven

number. Otherwise, ¢, can be an odd or
even number.)

3
(i) c<0, 0<ay,0,,a;<1, D o; <1,and

i=1



X, Xy X3 20 .

(i) ¢<0, a;,a,,a, <0, and odd number
of «, areodd for corresponding x <O,
i=1, 2, 3. (Referring to Tsal et al., 2002)
Proof:

Denote H(X) asthe Hessian matrix
of f(X),anddenote H, astheith
principal minor of aHessian matrix H(X)
of f(X).Thedeterminant of H, can be
expressed as

detH, = (-1’ (IL[Cajxij“i’z)(l—Zi:aj) for
j=1 j=1
i=123.

(i) Since ¢>0, a,,a,,0,<0, and ¢,
are even numbers for corresponding x, <0
(i=1, 2, 3), wecanget detH, >0,

detH, >0, and detH, >0. Hence, f(X)
IS convex.

(if) Since ¢<0, O0<oy,a,,0,<1,

3
Doy <1,and X, X%, X% >0 ,wecanhave
i=1

detH, >0, detH,>0,and detH,>0.
Hence, f(X) isconvex.

(iii) 1f odd number of «, areodd for
corresponding x, <0 (i=1, 2, 3), then
X1X2x5* <0.Since ¢<0, aj,a,,0,<0,
and x*X3?X3* <0, wecanhave detH, >0,
detH, >0, and detH, >0. Therefore,
f(X) isconvex.

For agiven signomial term z, if z
can be converted into a set of convex terms
satisfying Proposition 3, then the whole
solution process is more computationally
efficient. Under such a condition, z is
unnecessary to do exponential-based
decomposition.

Remark 1:

For asignomial term z=cx*X;2X;*,

c>0, oy,0,,0,<0, X, <0, X,,%X;,>0,if
o, iseven, thenz is convex. Otherwise, z
can be expressed as

Z=CX; Xo? Xg® 4 CX3 X5 2 X5

(% <%y <0, 0< X, < %) where

Qa:

CX3 X5?X3* IS CONVEX.

For instance, z=x'x,°x;* with

-5<x <5 0<X%,,% <5 canbe
expressed as Z= X, XX + Xp X0 K
(-5<x,<0, 0<x, <5) wheretheterm
X, %,°X;" isaconvex term and need no
transformation, and theterm  x;'x;°x;* can

be transform into some proper forms
solvable by Floudas’ methods.

Remark 2:

For asignomial term z=cx*x;2X;°,
c<0, a,0,,a;<0, X <0, X,,%X, >0, if
o, isodd, thenz is convex. Otherwise,

Z = CX} X5 X5 % 4 CXy X532 X5
(% <%y <0, 0< X, < %) where

a:

CX i X% X3® isaconvex term.

For instance, z=-x'x°x;' with
-5<x <5, 0<x%,,%<5 canbe
expressed as Z= —X; %% — X5 X X
(-5<x%,<0, 0<x, <5)where
— X, %%t isaconvex term and need no
transformation, and — x;;X;°x;* can be

transform into some proper forms solvable
by Floudas’ methods.

Following the above discussion, here
we take asignomial term with three
variables for instance to describe the
strategy of convexification. The strategy can
also be extended to convexify asignomial
term containing n variables.

Consider asignomial term ¢x x x;



composed of three variables, x, X, X;, can
be convexified by the following rules:

Rule1.If ¢>0,thenlet
CXf Xf X:;; zcealnx1+/3lnx2+ylnx3 .

Rule2.1f ¢<0, a,B,y>0,and
a+B+y <l then cx'xix; isdreadya

convex term following Proposition 3. No
convexification is required.

Rule3.1f ¢<0, 0<a,f <1, y 20,
a+pf<l,and a+p+y>1,thenlet

Y
By? — B\ a-p _ -
fo X2 Xg _fo Xz Y3 ¢ and YS - Xsl ’

[crDZ2HE | BEE ||,'H“”‘7
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V142 5vz2=8;
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Figure 2 Transformation process

where oxxfy:“ isregard as a convex
term.

Rule4.If ¢<0, «a,B,y>0,and
a+ B +y>1,thenlet

B b4

fo Xé? Xé/ - Cyix+/£+y éer/H»y ;+/ﬁ+y Wl.-ere
_ g atBty _ o+p+y oy atBty
yl_Xl ' yZ_XZ ! y3_X3 '

a B b4

Cyy Ty Y is aconvex term.
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This project is athree-year project and
mainly to design a global optimization
software and to develop the techniques for
solving asignomial programming problem.

Current optimization methods of
nonlinear programming problems have been
reviewed and some optimization strategies
such as strategies of treating non-positive
variables, strategies of piecewise
linearization, and strategies of
convexification are developed. The proposed
methods guarantee to obtain a global
optimum within the tolerance. The system
prototype is also done.

For solving a large scale optimization
problem, we will emphasize on designing
distributed computation algorithms and

integrating heuristic methods in the next step.

Furthermore, we will enhance the proposed
algorithms for solving various optimization
problems to find a global solution. The
system has been announced and provided for
testing and system stability and reliability
are improved gradually.
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