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Abstract

In this project, we intend to propose

methods for the following two significant
subjects in Ordinal Optimization Theory: (i)
Finding the better N samples and (ii)
Constrained Ordinal Optimization Problems.
In the first subject, we consider two
types of hard optimization problems. The
first type is for systems with structural
information and the second one is for the
lack of structura information system. Thus,
we intend to use two years to deal with these
two subjects. In the first year, we will
consider an example system that we are
familiar with and propose a heuristic method
to find the better N samples and then to find
a good enough solution, which will be better
than that can be found in the current Ordinal
Optimization method. In the second year, we
will combine the Ordina Optimization
method with an intelligent computing method
to find the better N samples for a lack of
structural  information  system’'s  hard
optimization problems and then to find a
better good enough solution. In the
meantimes, we will also propose a new
method to solve constrained ordinal
optimization problem and provide rigorous
theoretical support for the proposed method.
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Abstract

Reducing overkills is one of the main objectives in wafer testing process, however the major
mean to prevent overkills is retest. In this paper, we formulate the problem of reducing overkills and
retests as a stochastic optimization problem to determine optimal threshold values concerning the
number of good dies and the number of binsin alot and wafer to decide whether to go for aretest after
aregular wafer probing.

The considered stochastic optimization problem is an NP hard problem. We propose an Ordinal
Optimization theory based two-level method to solve the problem for good enough threshold values to
achieve lesser overkills and retests within a reasonable computational time. Applying to a case based
on the true mean of bins of areal semiconductor product, the threshold val ues we obtained are the best
among 1000 sets of randomly generated threshold values in the sense of lesser overkills under a
tolerable retest rate.

Keywords
Wafer testing, overkill, retest, stochastic optimization, ordinal optimization.

1. Introduction

The wafer fab process is a sequence of hundreds of different process steps, which results in an
unavoidable variability accumulated from the small variations of each process step. Thus, to avoid
incurring the significant expense of assembling and packaging chips that do not meet specifications, the
wafer probing in the manufacturing process becomes an essential step to identify flaws early.

Wafer probing establishes a temporary electrical contact between test equipment and each
individual chip on a wafer to determine the goodness of a chip. Although there exist techniques such as
the SPC [1] for monitoring the operations of the wafer probes, the probing errors may still occur in
many aspects and cause some good dies being over killed; consequently, the profit is diminished. Thus,
reducing the number of overkills is always one of the main objectives in wafer testing process. The
major mean for preventing overkills is retest. However, retest is an operation of high engineering cost
and a major factor for decreasing the throughput. Thus, the overkill and the retest possess inherent
conflicting factors, because reducing the former can gain more profit while increasing the latter will
degrade the throughput and increase the cost. What implies is that drawing a fine line for deciding
whether to go for aretest is an important research issue in the wafer testing process.

There may be different testing procedures in different chip manufacturers. But, no matter what
testing procedures are used, the decision for carrying out the retest should be based on whether the
number of good dies and the number of bins in a lot and wafer exceed the corresponding threshold
values. Thus, determining these threshold values so as to minimize the overkills and retests is the main
theme of our problem. Furthermore, since the goodness of a chip and the probing errors are of
stochastic nature, our problem becomes a stochastic optimization problem, which in genera is a
simulation oriented NP hard problem. It is well-known that to obtain an optimal solution of an NP hard
optimization problem is computationally intractable. To deal with this hard stochastic optimization
problem, we propose in this paper an Ordinal Optimization (OO) theory [2] based two-level approach
to solve for a good enough solution of the threshold values in the aspect of reducing overkills and
retests.



2. Problem Statement and M athematical For mulation

In this paper, we employ a typical testing procedures used in a semiconductor manufacturing
company in Taiwan, which is briefly described in the following.

For every wafer in alot, a wafer probing is performed twice. A dieis considered to be good if itis
good in either test. Welet g, and g denote the number of good diesin lot j and wafer ; of lot

I, respectively, and let B, denote the number of bin k in wafer ; of lot /. Then, a three-stage
checking on the number of good dies is performed to determine the necessity of carrying out a retest.
Welet g, .. and g, . denotethe threshold values of the number of good diesto pass or hold the lot
and wafer, respectively; we let n,__, k=1..,K, denote the threshold valuesef#9n k in the hold
wafer to determine whether to perform aretest, where K denotes the number of the types of bin. The
mechanism of the three-stage checking can be summarized below. If 45 g, ., we pass the whole lot;
otherwise, we will check the number of good dies in each individual wafer of thislot. If g s g, ..

we pass wafer j; otherwise, we will hold this wafer and check its bins. For those hold wafers, if
Bjie® My » W€ will perform retests for bin kto check whether there are probing errors.

In the above testing procedures, although we may pass the lot or wafer when the threshold-value
test is a success, there may be overkills. In general, the percentage of overkills isprd®ortional to the
number of probed bad dies, that is, for smaller number of probed bad dies, there will be less overkills.
The relationship between them can be found empirically from the real manufacturing process. We let
p.(B): p,(B;) ad p,(B,) denote the functions of the percentage of the overkills in probed bad
diesin lot /,wafer j and bin k', denoted by B B, ad g, respectively. Defining v, v, and Ve
as the number of overkills in lot /, wafer j and bin K, respectively, we have v = p (8)" B,
v, = py(B) B, @ v, =p.(B,) B,-,-k-k: 1..., K. However, we assume that for any retested bin,

there will be no overkill because the dies had been probed three times. Thus, a flow chart of the
employed testing procedures after the initial two times of wafer probing is shown in Figure 1.
Based on these procedures, we see that if we increase g, .. and g, .~ whiledecreasing p,__ .

the number of overkills will decrease, however the number of retests will increase. Thus, to reduce both
overkills and retests, we will set minimizing the overkills as our objective function while keeping retest
rate under a satisfactory level. Furthermore, since the defects of binsin awafer occurred randomly with
a Poisson probability distribution, the testing procedures are of stochastic nature. Based on the above
analysis, our problem can be formulated as the following stochastic optimization problem:

min E[V]
subject to { stochastic wafer testing procedures},

E[REr,, D
where  x° (g, . gy Meme k=1,..., K] deNOtes the vector of threshold values; X denotes the
sample space of X; the random variables V and R denote the number of overkills and retests per
wafer, respectively, g.] denotes the expected value of [.]; the stochastic wafer testing proceduresis
described in Figure 1, which will be used to compute the values of Vand R for each wafer with
randomly generated bins; r, denotes the tolerable retest rate in units of number of retests per wafer.

Input
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Figure 1. Flow chart of the wafer testing procedures.

It should be noted that the value of r, is determined based on the economic environment. When
the chip demand is weak, the throughput, in general, is not a critical problem in the manufacturing
process. We can allow a higher retest rate, that islarger r,, so as to reduce more overkillsto gain more

profit; on the other hand, if the chip demand is strong, the throughput is more important, and we should
set the value of r. smaller. Thus, our stochastic optimization problem (1) is to find the optimal vector

of threshold values, X to minimize E[V], the expected number of overkills per wafer, subject to the
employed testing procedures and the constraint on E[ /], that is the expected number of retests per
wafer should be kept under atolerable level r, .

3. Ordinal Optimization Theory Based Two-L evel Algorithm
3.1Preliminaries

The stochastic optimization problem (1) is clearly an NP hard problem in two aspects. The first
oneisthe immense size of the sample space X', which is explained in the following. Considering a lot
containing 25 wafers, and each wafer consisting of, say, 2438 dies, the possible ranges of the integer
values g, ., and p, are [0, 60950], [0, 2438] and [0, 2438], respectively. Consequently

g Wmin,

for K=12, the size of X will be more than 10*. The second one is to compute the accurate
V] and ER] for a given X(=[g, . Gwmins Memac» K=1,.... K])» W€ need to complete a stochastic

simulation. That is to compute the values of v and R for more than 10000 wafers with randomly
generated bins based on Figure 1 then take their average values. This implies that we have to perform
at least 10% lengthy stochastic simulations to obtain the optimal solution x of (1). This is
computationally intractable.

Thus, to deal with this NP hard optimization problem (1), we will employ a recently developed
optimization technique called Ordinal Optimization (OO) [2] to solve for a good enough solution with
high probability instead of searching the best solution x* for sure.

There are two basic tenets of the OO theory [2]. The first one is that of order versus value in
decision making. Of course, determining whether J(qg,) < J(q,) is much more easier than determining
J(q,) - J(g,) =7?: considering the intuitive example of determining which of the two melons in two

hands is heavier versus identifying how heavier one is than the other. The second tenet is the goal

8



softening. Instead of asking the best for sure in optimization, it settles for the good enough with high
probability. What softening of the goal buys is on easing of the computational burden. It is much easier
to get something in the top n% than it is to get the best. Thus what OO theory concluded is the
following: Suppose we simultaneously evaluate a large set of alternatives very approximately and order
them according to the approximate evaluation. Then there is high probability that we can find the actual
good alternativesif we limit ourselves to the top n% of the observed good choices. Thus, firstly, we use
only a very rough model to “order” the goodness of a solution relying on the robustness of ORDER
against noise and model error to separate the good solutions from the bad solutions. Secondly, we
soften the goal of the problem and look for a good enough solution, which is among the top n% of the
search space with high probability. These two steps will greatly reduce the computational burden for
the NP hard problem (1).

3.2 A Two-Level OO Approach

3.2.1 Motivation

The current OO theory based approach [2-5] is carried out in the following three steps. (i)
Uniformly select N, say 1000, samples from the sample space X of the vectors of threshold values.
(i) Using arough model of the considered problem to select the top s, say 35, samples from the N, that
is the ESTIMATED top 3.5% samples among the N. (iii) Use the exact model of the considered
problem to evaluate the s samples aobtained in (ii); then the top k, say 1, sample should be the actual
good enough, actual top 3.5% among the N, solution with high probability (3 0.95) as guaranteed by
the OO theory [3].

However, according to [4], the top 3.5% of the uniformly selected N samples will be a top 5%
sample of the sample space X with a very high probability (2 0.99). Thus, for X with size of
10%, atop 5% sample is a sample among the top 5~ 10 samples. This certainly not seems to be a
good enough solution in the sense of practical optimization. The factor causing this non-satisfactory
result is that the N samples are uniformly selected from X'. Thus to overcome this defect, we propose
a two-level OO approach. In the first level, we will use a rough but efficient and effective model
instead of uniform selection to obtain excellent N samples from X to replace step (i) of the regular
OO approach as indicated above. Then, in the second level, we will proceed with steps (ii) and (iii).
Before the detailed description of our two-level approach, we need to convert (1) into an unconstrained
problem first.

3.2.2 Converting (1) to the Unconstrained Problem

In general, the constrained OO problem is typicaly harder than the unconstrained one [5].
However, since our constraint on the retest rate shown in (1) is a soft-constraint in a sense. Therefore,
we can use a penalty function to relax that constraint and transform (1) into the following
unconstrained stochastic optimization problem:

min AV]+AER- ) ER- 1)

subject to { the stochastic testing procedures} 2
where P(E[R]- r,) denotes a continuous penalty function of FR- r, such that

P(E[R - r;)>0if F[R>r,,and P(E R - r;)=0, otherwise.
3.2.3 TheFirst-Level Approach

As indicated in the OO theory [2], “order” of the samples is likely preserved even with a rough
model. Thus, to select N excellent samples from X without taking much computation time, we need
to construct a rough but efficient and effective model to evaluate the objective value of (2) for agiven
sample X, i.e. a vector of threshold values, and use an efficient scheme to select excellent samples.
Our model is constructed based on two Artificial Neural Networks (ANNS), and our selection scheme
isthe Genetic Algorithm (GA).
3.2.3.1 TheArtificial Neural Network (ANN) Based M odel

The ANN can be trained to implement a given mapping between the inputs and outputs.
Considering the inputs as the samples xI X, then we can use two ANNSs to implement the mapping
from the inputs to the outputs of E[V] and E[ ], respectively. Once these two ANNSs are trained by

agiven set of training data, we can input any sample X to the two ANNS to obtain the corresponding
EV] and F R, which will be used to calculate the objective value of (2). This forms our effective

and efficient model to calculate the objective value of (2) for agiven sample X.
The ANN we employed in our approach is the two-layer feed-forward back propagation neural

9



network. We obtain the set of training data by the following two steps. (a) Narrow down the sample
space X by excluding the irrational threshold values and denote the reduced sample space by X. (b)
Uniformly sdect 1N samples from % and compute the corresponding A V] and E K] using a shorter

stochastic simulation, that is to perform the simulations of the testing procedures shown in Figure 1 for
300 wafers with randomly generated bins and take the average of thevaluesof V and R.

Denoting the Nsamples by x,i=1..,n, the N corresponding EV] by v,i=1,..,n, and the
n corresponding AR by r,i=1..n. Then, the training problems for these two ANNSs to
determine their branch weights are:

min, &1V, - A0 W (3)
i=1

and

min, &1 - £,00 W) @)

i=1
where W and I, denote the vectors of the branch weights of the two ANNS, £ (x |u) and
f,(x | w,) denote the actual outputs of the two ANNSs for the EF[V] and A A when the input is

X; and the vectors of branch weightsare W and W, , respectively. To speed up the convergence of

the training, (3) and (4) are best solved by the Levenberg-Marquardt algorithm [6,7] and Scaled
Conjugate Gradient algorithm [8,9], respectively.
3.2.3.2 The Genetic Algorithm (GA)

With the above effective and efficient objective value (or the so-called fitness value in GA
terminology) evaluation model, we can then efficiently select the excellent N samples from X using
GA, which is briefly described as follows. Assuming an initial random population produced and
evaluated, genetic evolution takes place by means of three basic genetic operators: (a) parent selection;
(b) crossover; (c) mutation. The population in GA terminology represents a sample X, i.e. a vector of
threshold values, in our problem, and each population is encoded by a string of Osand 1s. The string
is called a chromosome. Parent selection is a simple procedure whereby two chromosomes are selected
from the parent population based on their fitness values. Solutions with high fitness values have a high
probability of contributing new offspring to the next generation. The selection rule we used in our
approach is a simple roulette-wheel selection [10]. Crossover is an extremely important operator for the
GA. It is responsible for the structure recombination (information exchange between mating
chromosomes) and the convergence speed of the GA and is usually applied with high probability (0.7).
The chromosomes of the two parents selected are combined to form new chromosomes that inherit
segments of information stored in parent chromosomes. There are many crossover scheme, we employ
the single-point crossover [10] in our approach. While crossover is the main genetic operator exploring
the information included in the current generation, it does not produce new information. Mutation isthe
operator responsible for the injection of new information. With a small probability, random hits of the
offspring chromosomes flip from 0 to 1 and vice versa and give new characteristics that do not exist in
the parent population. In our approach, the mutation operator is applied with a relatively small
probability (0.02) to every bit of the chromosome.

There are two criteria for the convergence of GA. One is when the fithess value of the best
population does not improve from the previous generation, and the other is when evolving enough
generations.

We start from 10000 randomly selected samples from X as our initial populations. After the
applied GA converges, we rank the final generation of populations based on their fitness values and
pick the top 1000 populations to serve as the N samples in the second-level OO approach.

3.2.4 The Second—L evel Approach

In the second-level, starting from the N samples obtained in the first level, we will proceed with
step (ii) by evaluating each sample using a rough model, which is a shorter stochastic simulation based
on Figure 1 as described previoudly, for evaluating the objective value of (2). We will then order the N
samples based on the obtained objective values and choose the top s (=35) samples. Then in step (iii),
we will evaluate each of the s samples using an exact model. The exact model we employed here for
each sample is to calculate the objective value of (2) based on a longer stochastic simulation. That is
replacing the 300 wafers with randomly generated bins in shorter stochastic simulations by 10000
wafers. Then the sample associated with the least objective value of (2) is the solution that we are
looking for.
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3.3 The OO Theory Based Two-Level Algorithm

Now, our OO theory based two-level algorithm can be stated as follows.
Step 0: Narrow down the sample space X by excluding the irrational values of g, .,

and n,__ . k=1,.., K,and denote the reduced sample space by X.

Step 1: Uniformly select 300 samples from X as inputs and perform a shorter stochastic
simulation based on Figure 1 to obtain the corresponding approximate A\/] and FA]. Training two

ANNSs to implement the mapping between the inputs and the corresponding two sets of outputs.

Step 2: Randomly produce 10000 samples from % asthe initia populations. Apply GA to these
populations using the efficient and effective fitness-value evaluation model based on the two ANNs
trained in Step 1. After the algorithm converges, we rank all the final populations based on their fitness
values and select the top N (=1000) populations.

Step 3: Run a shorter stochastic ssimulation for each of the N samples obtained in Step 2 to
evaluate the corresponding objective value of (2). Ranking the N samples based on their objective
values and select the top s (=35 ) samples.

Step 4: Run alonger stochastic simulation for each of the s samples to eval uate the corresponding
objective value of (2). The sample, i.e. the vector of threshold values, with the least objective value of
(2) isthe good enough solution that we are looking for.

g Wmin

4. Simulation Results

Our simulation is based on the following data obtained from certain product of afoundry. Each lot
contains 25 wafers, and the total number of diesin awafer and alot are 2438 and 60950, respectively.
There are 12 bins, and their means m,k=1..12, are

11.6,13.4,27.3,0.3,20.5,1.2,1.4,59.5,34.0,6.6,2.5,and 0.2. The yield rate is around 92.67%. The
functions of the percentage of the overkills in probed bad dies, p,(B). p,(B;,) ad p,(5,) We

employed here are

Pwc(B) =001 (LO+3.0° Bu” My,
m
p(B)) =001 (10+30" 2= My, and
my
. &
p,(B)=001" (LO+3.0° B"T'n)’ where =3 m
k=1

and m =25m,. We used the sigmoid-type function as our pendty function P(E[R]- r;) in(2). We
set the tolerable retest rate  r,. =50.
In Step O of our algorithm, the narrowed ranges we use for the g, . and g, . are [30000,

60950] and [1200, 2438], respectively, while the range for the n, . is[1, 3mM], k=1,...,12. We

uniformly select 300 samples from this reduced sample space %. In Step 1, the shorter stochastic
simulation for each vector of threshold values is performed by processing 300 wafers through the
testing procedures with randomly generated bins based on a Poisson probability distribution with
parameters of m, k=1,..12. In Step 2, the convergence criteria we employed for our GA is when the

evolving number of generations exceed 50. In Step 3, the shorter stochastic simulation for each vector
of threshold valuesis carried out in the same way asin Step 1, so does the longer stochastic simulation
in Step 4 except for replacing 300 by 10000 wafers.

The good enough vector of threshold values we obtainedis g, ... =56525, g,,,., =2261, and
(n n,. . )=(31,2110,2,8,34,6312,201,3). The AV] and EF R resulted from these

Imax 1°**1 712 max
good enough threshold values are shown in Figure 2 by the o point. In the same figure where the
V] and AR shown by the * points are resulted from 1000 randomly selected vectors of

threshold values. We see that for the retest rate under 50, the expected number of overkills per wafer
resulted by our vector of threshold values is the best among al the randomly selected vectors of
threshold values.
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Legend:

o — the (E[V],E[R]) resulted from the
good enough vector of threshold values
determined by our algorithm.

* —the (E[V],E[R]) resulted from the
1000 randomly generated vectors of
threshold value.

Figure 2: Performance comparison of the randomly generated threshold values and the threshold
values determined by our algorithm.

5. Conclusions

In this paper, we have proposed a novel formulation to reduce the overkills and retests by
determining a good enough vector of threshold values in a wafer testing process of three-stage check.
Our formulation provides a flexibility for practical applications by taking various economic conditions
into account. In addition, the presented OO theory based two-level agorithm will not only work
successfully in the stochastic optimization problem considered in this paper but also be useful for other
semiconductor manufacturing related optimization problems.
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