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ABSTRACT

The major threat of air attract are thought as missiles in the next decades.
Therefore, anti-missile systems are one of key points in the air defense task.

To detect the enemy targets with low height, image detection is an another
approach expected using detection radar. Due to weather variousness, infrared images
can be used to detect the enemy targets. First, the infrared images are analyzes in this
project such that the enemy targets can be separated from the background. It is
necessary to estimate the current location of the enemy target. We focus on the
automatic target recognition of infrared image and basic guidance law. In the last two
year, we calculate the position of multi-target, estimate and tracking of multi-target,
estimate the current location of the enemy target, predict the trajectories of moving
targets. In order to improve the result of the target detection, we try to use the
property of the difference between objects in the image to segment the target that we
need. In this year, we proposed another optical flow estimation method and then the
results are more efficiency in computation time and rate of success..

From engineering point of view, this project aims to provide a powerful and
effective methodology for direction of arrival (DOA) estimation and emitter
identification (EID) in electronic warfare (EW) applications, respectively. Capabilities
and performances of the proposed scheme have been verified and evaluated with other
methods by various examples. Simulation results show that the proposed networks

with associated algorithms are superior to other methods.
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Chapter 1

Introduction

1.1 Survey

In the recent years, tracking moving objects using an image sequence has been
very popular. It can be used for capturing and recognizing moving targets as well as
for analyzing object motions, so as to be applied to various applications such as
weapon systems, transportation systems, security systems and factory automation.
Digital image processing encompasses a broad range of hardware, software, and
theoretical underpinnings. The first step in the process is image acquisition-that is, to
acquire a digital image. To do so requires an imaging sensor and the capability to
digitize the signal produced by the sensor. After a digital image has been obtained, the
next step deals with preprocessing that image. The key function of preprocessing is to

improve the image in ways that increase the chances for success of the other

processed.
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The next stage deals with segmentation. Broadly defined, segmentation partitions
an input image into its constituent parts or objects. In general, preprocessing deals
with techniques for enhancing contrast, removing noise. For example, elementary
contours can be derived by using a gradient operator and Laplacian operator [1], and
the Hough transform [1] is a well-known method about global processing method, and
the image thresholding method, such as simple global thresholding [1] [2], optimal
thresholding based on boundary characteristics is often used.

The last stage involves recognition and interpretation. Recognition is the process
that assigns a label to an object based on the information provided by its descriptors.
When the targets are extracted, some noise will accompany the image. In order to
decrease the noise disturbance, the techniques for canceling noise will be used. There
are many researches about canceling noise, for example, lowpass filtering [1], median
filtering [1], [3], high-boost filtering, derivative filtering and others. These filtering
methods are discussed in spatial domain. Beside, the issue of canceling noise is also
discussed in frequency domain. The Fourier transform is extracted from the intensity
function of pixels in the time domain to generate the phase and the spectrum, which
are analyzed to cancel the noise. However, heavy computing tasks to handle complex
multiplication and additions are required. Then the method in spatial domain is
chosen in this system.

To detect and track the high-speed-low-height moving target, image detection is
another approach except using detection radar. And the weather is changing all the
time, so the light is an important key. Infrared images can be used to detect the enemy

targets. The infrared images can be separated from the background because of the
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target’s temperature.

In the surveillance and reconnaissance communities, the direction of arrival
(DOA, sometimes referred to as angle of arrival, AOA) information and emitter
identification (EID) capability are extremely important problems, especially in the
electronic warfare (EW) field. To cope with the drawbacks encountered in the
RBFN, while still keeping its advantages, a new DOA estimation algorithm with a

neural fuzzy network (NFN) is developed.

1.2 Organization of the Report

The following is a brief description of the organization of this report. In
Chapter 2, some image processing techniques including the image thresholding,
median filter, region growing and image difference. Furthermore, the optical flow
method is introduced. In order to improve the efficiency of the detection, we use
another method based on the velocity field in Chapter 3. Experiments and
discussions are given in Chapter 4. In Chapter 5 we discuss the direction of arrival
estimation based on phase differences using neural fuzzy network. Finally, the

conclusions are given in Chapter 6.
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Chapter 2

Image Processing Techniques

In this chapter, image processing techniques are introduced to obtain the feature
points of targets, such as image thresholding method [1] [2], and median filter [1], [4],
[3]. In this report, the image thresholding method is applied to extract the feature
points of the targets. In Section 2.1, image processing methods are introduced to find
the feature point of the target. Section 2.2 shows previous targets detection techniques.

Section 2.3 describes optical flow methods.

2.1 Image Processing Techniques

To derive these feature points, several image processing methods are employed
in this section. Image thresholding is introduced in Section 2.1.1. Section 2.1.2 then
expresses these concepts of median filter. Low pass filter is illustrated in Section 2.1.3.
Section 2.1.4 presents region growing by pixel aggregation. Finally, Section 2.1.5

introduces image difference.
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2.1.1 Image Thresholding

Image thresholding is one of the most important approaches to image
segmentation. Suppose that the gray-level histogram shown in Fig. 2.1. (a)
corresponds to an image, f (x, ), composed of light objects on a darkling background,
in such a way that objects and background pixels have gray levels grouped into two
dominant modes. One obvious way to extract the objects from the background is to
select a threshold T that separates these modes. Then, any point (x, y) for which f (x,
y)>T is called an object point; otherwise, the point is called a background point. Fig.
2.1. (b) shows a slightly more general case of this approach. Here, three dominant
modes characterize the image histogram (for example, two types of light objects on a
dark background). The same basic approach classifies a point (x, y) as belonging to
one object class T;< f (x, y) =73, to the other object class if f (x, y)> T, and to the
background if f(x, y) = 7.

Thresholding may be viewed as an operation that involves tests against a
function T of the form

T=T(xy.p(x ). f(x ) 2.1)
where f (x, y) is the gray level of point (x, y), and p(x, y) denotes some local property
of this point. A thresholded image g(x, y) is defined as

gk y)=1, iff(x, y)>T

g(x, y)=0, iff(x, ) =T
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(@ (b)
Fig. 2.1. Gray-level histograms that can be partitioned. (a) A single threshold. (b)
Multiple thresholds.

2.1.2 Median Filter

As indicated in Section 2.1.1, the image threshold method in a dynamic imaging
problem has the tendency to cancel all background regions, leaving only image
elements that correspond to noise and to the moving object. The noise problem can be
handled by a filtering approach [1]. As our objective is to achieve noise reduction
rather than blurring, median filters [1] are adopted. That is the gray level of each
pixel is replaced by the median of the gray levels in a neighborhood of that pixel,
instead of by the average. This method is particularly effective when the noise pattern
consists of strong, spikelike components and the characteristic to be preserved is edge

sharpness. The median m of a set of values is such that half the values in the set are



less than m and half are greater than m. In order to perform median filtering in
neighborhood of a pixel, we first sort the values of the pixels and its neighbors,
determine the median, and assign this value to the pixel. For example, in a 3x3
neighborhood the median is the 5th largest value, in a 5x5 neighborhood the 13th
largest value, and so on. When several values in a neighborhood are the same, all
equal values have to be grouped. For example, suppose that a 3x3 neighborhood has
values (10, 20, 20, 20, 15, 20, 20, 25, 100). These values are sorted as (10, 15, 20, 20,
20, 20, 20, 25, 100), which results in a median of 20. Thus the principal function of
median filtering is to force points with distinct intensities to be more like their
neighbors, actually eliminating intensity spikes that appear isolated in the area of the

filter mask. Fig. 2.2. (a) shows a original 3x3 neighborhood and Fig. 2.2. (b) shows

the results of median filtering.

10 20 20 10 20 20

20 15 20 ”U 20 20 20

20 25 100 20 25 100
(2) (b)

Fig. 2.2. Illustration of median filter method. (a) Original 3x3 neighborhood. (b)

Resulting 3 x 3 neighborhood.

2.1.3 Low Pass Filter

Another method to delete the noise is low pass filter, and to realize the shape of



the need of low pass filter, Fig. 2.3. shows all the parameter must be positive, and the
final response is the sum of the 3x 3 neighborhood. But it will make the value is too
large to be continue next steps, so we can let the value divide nine, like a mask, and

we will get the mean value, Fig. 2.3. (b) shows the result.

1 1 1 1 1 1

I 1 1 e o | 1 1 1

1 1 1 1 1 1
@) (®)

Fig. 2.3. The mask is used to illustrate low pass filter method. (a) The sum of 3x3

neighborhood. (b) The result mean value of the 3 x 3 neighborhood sum.

2.1.4 Region Growing by Pixel Aggregation
Region growing, as named, is a procedure that groups pixels or subregions into
larger regions. The simplest of these approaches is pixel aggregation, which starts
with a set of “seed” points and from these grow regions by appending to each seed
point those neighboring pixels that have similar properties such as gray level,
texture, color. To illustrate this procedure let us consider Fig. 2.4. (a) where the
numbers inside the cells represent gray level values. Let the points with coordinates
(3,2) and (3,4) be used as seeds [7].
Using two starting points results in a segmentation consisting of, at most, two

regions: R1 associated with seed (3,2) and R2 associated with seed (3,4). The property
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to be used include a pixel in either region is that the absolute difference between the
gray level of that pixel and the gray level of the seed be less than a threshold 7. Any
pixel that satisfies this property simultaneously for both seeds is (arbitrarily) assigned
to region R1. Fig. 2.4. (b) shows the result obtained using 7=3. In this case, the
segmentation consists of two regions, where the points in R1 are denoted a’s and the
points in R2 by b’s. Note that any starting point in either of these two resulting
regions would yield the same result. However, choosing 7=8, would result in a single

region, as Fig. 2.4. (c) shows.

1 2 3 45 1 2 3 45
1{0 0 5 6 7] 1[a a b b b]
211 1 5 8 7 2(a a b b b
3101 6 7 7 3la a b b b
412 0 7 6 6 4la a b b b
5001 5 6 5] 5la a b b b

(@ (b)

1 2 3 45
1la a a a a]
2la a a a a
3la a a a a
4la a a a a
5|la a a a a]

(c)

Fig. 2.4. Example of region growing using known starting points. (a) Original image
array. (b) Segmentation result using an absolute difference of less than 3 between
intensity levels. R1 are denoted a’s and R2 are denoted b’s. (c) Result using an

absolute difference of less 8.



2.1.5 Image Difference
In this subsection, we assume that the camera is fixed, because our infrared

image is obtained from an immovable camera, the object must move fast then
background. It has more variation. So we can define the difference image Dif(x,y)
as,

Dif (x,y) =image2(x, y)—imagel(x, y),
where imagel(x,y) means the gray value of the former image, and image2(x,y)
means the gray value of the next image, then the image thresholding method can be
used to get a binary image. We can take that binary image to another processing to get
the what we need. Because we can observe the feature points in the result image easily,
image difference is the basic step in the process of the image sequence. If the camera
is fixed, we can use the image difference method to find the target. Because the
background is fixed and the target is the only moving object, after the image
difference method processing, we could find the target. Then we let this image2(x, y)
be a binary image. The methodology is -

If Dif(x,y) <20, then Dif(x,y)=0, else Dif(x,y)=255.
In other words, if the difference is too small, we could delete it and remain others.
After this, we can take it to multiply image2(x,y). The methodology is as the
follows :

Result (x, y)= image2 (x, y) x Dif (x, ),

if  Result(x, y) # 0, then Result(x, y)=255.
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In fact, the moving target can be detected from image Result (x, y). If the camera is

not fixed, it is necessary to improve this method or use other methods.

2.2 Previous Targets Detection Techniques

To detect the enemy targets with low height, image detection is another approach
except using detection radar. Due to weather constantly changing, infrared images can
be used to detect the enemy targets. The infrared images are analyzed in this section
such that the enemy targets can be separated from the background. Because the
camera is movable, the change of background may be more than the change of the
object. The method described before is not suit to be used in this situation.
Unfortunately, the camera is movable in the great part of the situation. So we propose
another method to solve this problem. It can be explained as the following steps :

1. Find the lightest point in the figure.
2. Region growing.

3. Reduce the searching range.

4. Decide the video section.

5. Target recognition.

2.2.1 Find the lightest point in the figure

Because of the images we used are infrared images, the object almost be the
lightest point. So we can search each pixel of the image in turn to find the largest gray

value be the center of the object. But because of the image convert, the radiant heat
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from the ground, the camera lens, the other noise, we forsake the figure edge. Our

searching range is defined,

20 < SRW <image width—20,
25 < SRH <image height —30,

where SRW is the width of the searching range, and SRH is the height of the

searching range.

2.2.2 Region growing

As its name implies, region growing is a procedure that groups pixels or
subregions into larger regions. The simplest of these approaches is pixel aggregation,
which starts with a set of “seed” points and from these grows regions by appending to
each seed point those neighboring pixels that have similar properties (such as gray
level, texture, color ). After finding the lightest point in the image, we must decide the
size of the object frame. Now we let the lightest point be the seed searching its
neighboring pixels. When we find the pixels which gray value is less 10 than the gray
value of the lightest point, they are defined as object frame edges. Because of
sometimes the object is not obviously and may have noise interference, the object

frame may be very large. We limit the range of the object frame not larger than 1600

pixels.

2.2.3 Reduce the searching range

In order to reduce the compute time and mistake, we can reduce the searching
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range. So when we get the position of the object by searching the lightest point in the
whole image, spread 20 pixels in all direction. Let the range be the searching range

next time. It is,
p_x—20<SSRW <p x+20,
p_y—20<SSRH<p y+20,

where (p _x,p__y)is the position of the object, SSRW is the width of the small

searching range and SSRH is the height of the small searching range.

2.2.4 Decide the video section

When reducing the searching range, we have two problems must be solved. First,
we have to know where is the video section. If the next image is not the same section,
the object may be not in the small range. Second, if the position is not the correct
pesition of the object, it will be wrong in the next time. When these two problems are
occurred, we have to change to use the whole searching. For the first problem, we can

use mean value to decide whether it is a broken point of the video section. It means:
1 height width

mean = ————— image(i, J),
height x width ZO ,Z; gelt-J)

if the mean of the image is differ from the mean of the next image larger than 5, we
decide it is the broken point of the video section. Fig. 2.5. shows that we do not know
it is a broken point of the video section, and Fig. 2.6. shows that we know it is a

broken point of the video section then change to use the whole image range.

2.2.5 Target Recognition
Sometimes object is not clearly and the noise may interference our algorithm. So
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sometimes it 1s not the correct position of the object. We have to judge whether it is
the object, otherwise it will be wrong in the next image. We obtain the series of
images from the original video sequence per 1/30 sec. we obtain two test videos,
respectively 10144 images and 1105 images. Fig. 2.7. and Fig.2.8. are shown some
images of the results of the experiment. By this method, the rate of the success is
higher than 98%. Because the target is not always the lightest point, this method is
easy to be influenced by brightness. So we will propose another method to improve

the rate of success in the next chapter.

Fig. 2.5. Only using the small range searching.

Fig. 2.6. Decide it is a broken point of the video section then change to use the whole

image range searching.
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(2) (b)

Fig. 2.7. Some final image results. (a) Original images. (b) Results using lightest point
method.
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Fig. 2.8. Some final image results. (a) Original images. (b) Results using lightest point
method.
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2.3 Optical Flow Methods

Optical flow implies floating fluid. The vector field formed by these motions is
caused by the orbit that all the pixels of images moving in the space-time. Since the
dynamic object that this report will discuss is not limited in some particular objects,
optical flow should be calculated to estimate the speed of images plane movement.
Section 2.3.1 introduces the gradient based constraint for optical estimation. Section
2.3.2 illustrates smoothness constraints. Section 2.3.3 describes gradient estimation.

Section 2.3.4 introduces minimization. Section 2.3.5 deals with choice of iterative

scheme.

2.3.1 The gradient based constraint for optical estimation

Optical flow is a velocity field associated with brightness changes in the image.
This suggests an assumption often made in methods for optical flow estimation, the
brightness conservation assumption, which states that brightness of an image of any
point on the object is invariant under motion. Optical flow suited in rigid body motion
analysis and nonrigid body motion analysis.

Let E(x, y, f) be the image brightness at the point x = (x, y) in the image plane at
time t and let # = (4, v) be a projection of velocity vector of this point. After o,

point x will move to a new position x + u & . Since the brightness of a particular point

in the pattern is constant, so that
E(x,y,t)= E(x+dx,y +y,t +&). (2.2)

By Taylor series expansion, we get
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O, 5 O

E(x+dx,y+6y,t+5t)=E(x,y,t)+5x—E+6y +5ta~E. (2.3)
Ox Oy ot

Assuming an infinitesimal time interval, we end up with the following equation

OF OBy, 2.4)

Ox oy ot

which is the major optical flow constraint. It involves two unknowns at each point of
the image plane: the optical flow components u and v. if we rewrite this equation
using the gradient notation

(VAY u+E,=0. 2.5)

It is obvious that the optical flow field cannot be found from this equation only, but

some additional assumptions have to be made, or determine both optical flow
components.

Gradient-based methods are generally relatively simple to implement, efficient to

compute, and can produce surprisingly accurate optical fields. We will discuss two

additional assumptions to determine both components of the optical flow field in the

other sections.

2.3.2 Smoothness constraints

In this case neighboring points on the object have similar velocities, their
velocities differing only slight almost everywhere. Horn and Schunck [41] were first
to make this assumption and exploit it for determining an optical flow. If every points
of the brightness pattern can move independently, there is little hope of recovering the
velocities.

One way to express the additional constraint is to limit the different between the



flow velocity at a point and the average velocity over a small neighborhood
containing the point. Equivalently can minimize the sum of the squares of the
Laplacians of the x-component and y-component of the flow. The Laplacians of u and
v are defined as

o’u 0’u v N ov

and Viy=

ax? oy’ xr oyt (26)

They transformed the optical flow estimation into an optimization problem
involving combination of the two criteria: the error in the image brightness changes
measurement

a,=Eu+EVv+E, (2.7)
and the quantity reflecting a non-smoothness of the velocity field
ou ov ov

22 %z 2, (GVi2 OV
4. =(5") +(ay) +(ax) +(ay)- 2.8)

2.3.3 Gradient estimation

It is important that the estimates of E ,E, and E, be consistent. They should
all refer to the same point in the image at the same time. We will use a set that gives
us estimate of E ,£, and E, at a point in the center of a cube formed by eight

measurements. The relationship in space and time between these measurements

Ex ~ 1/4{Ei,j+1,t - Ei,j,t + Ei+l,j+l,r - Ei+l,j,r + Ei,j+1,t+l _Ei,j,H-l + Ei+l,j+l,t+1 - Ei+1.j,t+1 }a

Ey ~ 1/4{Ei+l,j,t _Ei,j,t + Ei+l,j+l,t _Ei,j+l,t +Ei+1,j,r+l —Ei,j,t+l +Ei,+lj+l,t+] _Ei,j+1,t+l}’

and

E: z1/‘/'1{Ei,j,r+1 - Ei,j,t + Ei+l,j+l.t - Ei+1,j,! + Ei,j+1,z+1 "Ei,jn,r + Ei+l,j+1,t+] - Ei+1,j+l,t}
(2.9)
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is shown in Fig. 2.8. The unit of length is the grid spacing interval in each image

frame and the unit of time is the image frame sampling period.

It is difficult to solve the Laplacians of # and v. Horn and Schunck [41] used the

approximation defined by the 3x3 mask as shown in Fig. 2.9. yielding

Viumu—u and Vivav-—v, (2.10)

where the average values # and v are calculated using the following formulate:

- 1
Uijk = g {ui—l,j,k FU e T e T ui,j—l,k}

1
+— {ui—l,j~l,k tU T T ui+1,j-1,k}

12

and

1
Vijk = g {vi—l,j,k F Ve T Ve T Vi }

1
+E {vi—l,j—l,k Vi ek T Vi ek T Vien ok 3 (2.11)

i+1 —»

vd
L~ ¥t

1)

Fig. 2.8. The three derivatives of image brightness at the center of the cube are

each estimated from the average of first differences along four parallel edges of the

cube.
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Fig. 2.9. The Laplacian estimation mask

2.3.4 Minimization
Since the input image is corrupted by noise and quantization error, we expect &,
to be indentically zero. This quantity would have a magnitude proportional to the
noise in the measurement, therefore the weighting factor a’ in the sum should be
chosen equal to the estimate of the noise variance in the image.
Let the total error to be minimized be
el=a’el +¢;. (2.12)
The minimization is to be accomplished by finding suitable values for the optical flow
velocity (u, v). This yields two equations for each point of the image,
U= Z—EX[E,‘;+Ey1_z+E,]/(a’2 +EX+E?),
v=v-E[Bu+Eyv+E] /(@ + B2 4 E}), 2.13)
When the brightness gradient is zero, the velocity estimates will be simply

averaged of the neighboring velocity estimates as shown in Eq. (2.13).
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The minimization is accomplished by finding suitable values for the optical flow

velocity (u, v). Using the calculus of variation we obtain

a..z _
a"u =—2a"(u-u)+2(E,u+Ev+E,)E,,
adz _ 2 1200

= a“(v-v)+2(Eu+EV+E)E,.

Using the approximation of Laplacian, we obtain

(a” +EN)u+E.Ev=(a"u~EE,), (2.14)

E.Eu+(a” +E)v=(a"v-E,E,). (2.15)
Egs. (2.14) and (2.15) can be rewritten as the following form,

(@ +E} +E)u-u)=—E [E,u+Ev+E,], (2.16)

(@7 +E*+ E2)(v-v)=—E, [E.u+E,v+E,]. (2.17)
Dividing both sides of Egs. (2.16) and (2.17) by (a'* + E} + E.), we obtain

u=u—E [Eu+E v+E)/a” +E} +E)), (2.18)

v=v—E,[Eu+E,v+E,2]la” +E +E?). (2.19)

2.3.5 Choice of iterative scheme

How the iterations are to be interlaced with the time steps. On the other hand, it
could iterate until the solution has stabilized before advancing to the next image frame.
On the other hand, if the optical flow found for the previous frame was used as the
initial estimate, a sufficiently precise optical flow estimate for the next frame was
obtained may need only little iterations per time-step. Number of iterations depending

on close the initial estimate was to the correct optical flow.
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Chapter 3

Target Detection

From Chapter 2, we can find the target that we need from infrared image
sequence, and from this chapter, another algorithm will be proposed to detect the
target based on the velocity estimation. This algorithm would be more efficient and
practical in target detection. In this chapter, we present gradient based constraint and
two principle methods for optical flow estimation and the thus describe the
multiresolution optical. Section 3.1 deals with basic definitions of optical flow.
Section 3.2 covers optical flow estimation. Section 3.3 shows long image sequence
analysis. Section 3.4 introduces mutiresolution optical flow estimation. Section 3.5

illustrates detection of the target. Finally, Section 3.6 gives a summarization.

3.1 Basic Definitions of Optical Flow
Motion field is a 3D field of object velocities at each point of space. The 3D

motion of objects in a time varying scene is completely defined by the motion field.
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One of the aims of the motion recovery process is to reconstruct the motion field of
the scene.

Image flow is the visible portion of the 2D projection of the motion field on an
image plane. We maybe obtain an image flow as an intermediate result in the
3D-motion estimation process, and then try to recover the 3D-motion field from this
2D projection. However, this seems to be impossible without a priori knowledge on
the motion field. Instead, we extract an optical flow, which is a 2D field of velocities
associated with the variation of brightness pattern of the image.

The following two examples help us to understand the difference between an
image flow and an optical flow. The first one is a uniformly painted ball rotating
around its center in some way. In this case the image flow is nonzero for every point
of every point of the ball projection on the image plane, while the optical flow is zero,
since the image brightness does not change at all. The second example is a stationary
scene with moving light source. Here the situation is exactly opposite; the optical flow
is non-zero due to intensity changes in the images, whereas absence of motion causes
zero image flow. For motion recovery, it is usually assumed that the optical flow and
the image flow are close enough to be used interchangeably. In most situations this
approximation is quite reasonable, but one should remember the optical flow are

significantly different to the image flow [56].

3.2 Optical Flow Estimation
Optical flow is the apparent velocities of movement of brightness patterns in an

image. Optical flow can arise from relative motion of objects and the viewer.
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Discontinuities in the optical flow are important cues for image segmentation to
obtain motion objects with different velocities.

The gradient-based approach we introduced in section 2.3 assumes brightness
conservation under motion, with the formula

E(x,y,t)= E(x+dx,y +dy,t + ), 3.1)
where E(x, ), #) be the image brightness at the point x =(x, y) in the image plane at
time ¢, after & ,point x will move to a new position (x + dx, y + &p).

This motion equation provides one constraint for the unknown local components
of the velocity vector. The velocity field at each image pixel has x-coordinate and
y-coordinate components while the change in image brightness at a point in the image
plane due to motion. The optical flow cannot be computed without introducing
additionial constraints. The additional assumptions are made in order to obtain a
well-determined system of equations to yield both components of the velocity vector
at each location on the image. The general assumptions for estimating optical flow
include one of the following:

a. Optical flow is smooth almost everywhere.

b. Optical flow is constant over an entire segment in the image.

c. Optical flow is the result of restricted motion; for example, planar motion.
Horn and Schunck [41] assumed that the apparent velocity of the brightness
pattern varies smoothly almost everywhere in the image. An iterative method for

solving the resulting equation was developed as
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W =u' —E[Eu" +EV +E,]/(a®+E? +E?)
and

v =v" —E [Eu" +ENV' +E,](a® +E? + E?), (3.2)
where n denotes the iteration number, #° and v° denote initial velocity estimates,
and ¥ and v denote neighborhood average of «" and v", E_,E , and E,
are three partial derivatives of image brightness, a is a weighting factor.

To avoid variations in brightness due to shading effects, they initially assumed

that the surface is flat. They further assumed that the incident illumination is
uniformly across the surface, assumed initially the reflectance varies smoothly, and

has no spatial discontinuities. A needle diagram is then provided visual confirmation

of confirmation of the solution.

3.3 Long Image Sequence Analysis

Using more than two Frames to estimate optical flow may improves the accuracy
of the computed optical flow. Methods for estimating local image velocities with
large temporal regions have been proposed. These methods assume that motion
should remain uniform in the analysis sequence. The major difficulty in increasing the
size of the spatial region for analysis is the possibility that larger regions will include
more than one single motion. Thus the method almost assumes motion constancy over
several successive frames in the analyzed sequence.

In generally, the sources of error generated in most flow methods are:
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a. Noise sensitivity, which will generate false matches.

b. Quantization, which contributes significantly to the errors, generated as
analysis of the flow information proceeds.

Kenner and Pong [61] discussed much evidence to support the validity of the use
of optical flow as a basis for many computational vision tasks. However, optical flow
estimation methods are problematic due to inherent errors in the computational
methods involved in the processing. Many of the problems associated with the
analysis of image flow can be alleviated if information extracted from a long
sequence of images is utilized as a basis for the derivation of the flow information,
rather then simple between frame processing. Combine features from several
sequential images, with each pair of successive separated by a short time interval.
Features are then associated according to the object feature that generated hem, and
the resulting point lists are then analyzed to determine the long sequence flow
information. Since the long sequence flow overcomes many of the effects of noise

and quantization errors.

3.4 Multiresolution Optical Flow Estimation

Due to the different nature of optical flow, standard modeling does not hold for
large displacements. To circumvent the problem, we consider an increment estimation
of the flow field captured by the optical flow multiresolution setup. The
multiresolution framework involves a pyramidal decomposition of the image data.
Pyramid is built by using multiple copies of image. Each level in the pyramid is 1/4
size of previous level. We shall assume to work at a given resolution structure.
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However, one has to keep in mind that the expression and computations are meant to
reproduce at each resolution level according to a coarse to fine strategy shown in Fig.
3.1. Embedded into a multiresolution coarse-to-fine strategy, this incremental
approach allows estimating large velocities. This method includes three steps:

Step 1. Coarsen the original image as shown in Fig. 3.2.

Step 2. Optical flow estimation started in the low-resolution level image.

Step 3. The optical flow found for the previous level was used as the initial

estimate shown in Fig. 3.3.

Fig. 3.1. Multiresolution structure.
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Fig. 3.2. Four pixels are averaged into one pixel.

Previous level

M
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Fig. 3.3. Optical flow found in the previous level.

3.4.1 Performance comparison from theory

Compare Hom-Schunck methods used image pyramid with original methods
from the theory. From Eq. (3.2), we can know it has 13 x#x’multiplications and
38x n? additions with image size nxn. After using image multiresolution, it have
3.5xn”> multiplications and 41/4x n” additions. Form Table 3.1, it is obvious that
used image multiresolution spent less time.

From previous SSD correlation-based approach, we assume search window w;
size 5x5, 4x4 and 3x3. A window w, of size 3x3. Table 3.2 shows the number of
multiplications and additions with SSD method. Hence, the proposed method has

better performance in computation time. Table 3.3 shows the number of pixels
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processed in proposed method and SSD method.

Table 3.1 The number of multiplication and addition.

-

Hom-Schunck method

Hom-Schunck method with multiresolution

additions

The number of 13xn® 3.5xn°
multiplications
The number of 38xn’ 41/4xn’

Table 3.2 The number of multiplications and additions with SSD method.

—

w, (with size 3x3) w, (with size 4x4) w, (with size 5x5)
The number of 81xn’ 144xn* 225xn’
multiplications
The number of 162xn’ 288xn’ 450xn®
additions

Table 3.3 The number of pixels processed.
The SSD method The proposed method
The number of pixels n’ 0.25xn’
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3.4.2 Performance comparison from experiment

This section test the relative error and time of Horn-Schunck method for
single-resolution and multiresolution strategies with image size 640x480. Fig. 3.4. is
an artificial image in which the whole image translates with (u, v)=(1, 1).

The process time and relative error of Horn-Schunck method with single
resolution strategies are compared in Table 3.4. The differences are more obvious with

more iterations. It is apparent that the multiresolution has better performance than the

single resolution.

Fig. 3.4. An artificial image(640x480).

3.5 Detection Of The Target

Fig. 3.5. is shown some images of the series video. From above statements, we
can calculate velocity field of the image by gradient-based approach method. And we

can get lots of information from the velocity field. So we propose this method to solve
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Table 3.4 Process time and relative error of Horn-Schunck method for

single-resolution and multiresolution strategies.

The number of

Single resolution

Multiresolution

iterations Relative error Time (sec) Relative error Time (sec)
10 25.1500 4.72 17 4.01
20 5.80 83 4.45 6.57
40 0.8966 16.21 0.69 10.67
60 0.2480 29.48 0.21 19.53
80 0.1482 40.60 0.132 31.50
100 4.476E-02 51.65 4.24E-02 38.37

this problem, it can be explained as the following steps -

1. Get the image intensity.

2. Preprocessing.

3. Compute velocity field.

4. Find the target from velocity field.

5. Check the computing range.

6. Decide the target is real or not.

Section 3.5.1 introduces image intensity. Section 3.5.2 illustrates the preprocessing
techniques pyramidal image analysis. Section 3.5.3 deals with velocity field. Section

3.5.4 shows computing range. Finally, Section 3.5.5 covers target recognition,
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according one decision rule to recognize the target.

3.5.1 Image intensity

The images from this infrared sequence are RGB level, and we must get the pixel
value to find the correlation between the first image and the second image, so the first
step is to get the image intensity. Then in order to make this method wok with
real-time, it is very important to decide the correlation area to make this method more

efficiently. The intensity can be expressed as follows :

Intensity(x,y) = %[image(x, y)+image(x+1,y)+image(x+2,y)]. (3.3)
3.5.2 Image pyramid

The preprocessing techniques include pyramidal image analysis and the median
filter operation. An image pyramid is one kind of multiple resolution which can
observe the same image with different resolutions. Therefore, Multiple resolution
processing has been proved very efficient in the application of image analysis such as
region segmentation and edge detection. The multiple resolution analysis transforms
an image into a sequence of images of pyramidal structure, denoted by £,k =0, 1,--,
n. F,,, is four times the size of F,. f; (i, /) is the gray value of the point (i, j) of

F, and is produced by four near points f, (i, j) around F,,,, thatis

[l )= U 202))+ [ (20,27 +1)+

Ffun@i+12))+ fo,,@i+1,2j+1)]x0.25. (3.4)
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Fig. 3.5. Some images in video.
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Fig. 3.6. Mapping from one pyramid level to the next level.

3.5.3 Velocity field

From the above Eq. (3.2), we can find the velocity estimation after several times
iteration, but we still can’t know where the target we need. Therefore we still have to
calculate the velocity field to segment what we need. Based on the property that the
velocities of the target and background are different, we can define the target by its
maximum velocity difference with others in the image.

After finishing the calculation of the velocity field, we can find the mean
velocity of the area we set. Finally we are able to find the maximum difference with
the mean velocity, and that is the target we need.

diff = Zl: Zl:[U(x +i,y+ j)—mean x]* +[V(x+i,y+ j)—mean y]*, (3.5)
i—1j=1
where U(x, y) is the velocity in X direction of I, (x, y);V(x, y) is the velocity in ¥

direction, and mean _x is the mean velocity in X direction; mean _y is the mean
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velocity in Y direction. Fig. 3.7. shows the velocity fields of some images.

3.5.4 Computing range

In order to let this method can realize with real-time, not only downsampling the
information but also checking the computing range of the image are necessary steps.
About downsaping the information, we select M =3, it means the downsampling
factor is 3, to decrease the computing quantity. And about checking the computing
wind range this way, we set that the center is /,(x,y), it is the target position, and
one 5x5 region to find the velocity field in the next image. So the iteration numbers

of the next image will be decreased to 25 times, i.e., And we can decide the search

range from Eq. (3.6). Some velocity fields shows in Fig. 3.7.

ul=x-35,

{u2=x+5

v2=y+5 (3.6)
vl=y-5.

3.5.5 Target recognition

Although we constrain the loop times 25 times in every image, that is our
assumption that the target motion is continuous in the image sequence. For this
problem, building one decision rule is necessary. And we discover that the difference
of the target and the mean velocities, it denotes diff, will be greater than 1, in the

situation that the target is real. To the contrary, if the diff value is smaller than 1, we
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couldn’t decrease the iteration numbers to 25, and we must restart the whole image

again to make sure the result correctness.

3.6 Summarization

In this chapter, we proposed an algorithm that detect the target based on the
velocity estimation. After using image pyramid mutiresolution illustrated in Section
3.4 and reduce the search region introduced in Section 3.5.4, this algorithm is more
efficient in computation time and practical in target detection. In next chapter, we will

use the algorithm introduced in Section 3.5.1 ~ 3.5.5 to get a better performance.
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Fig. 3.7. The velocity fields of some test images in video.
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Fig. 3.7. (Continued)



Chapter 4

Experiments and Discussions

In this chapter, several experiments of optical flow estimation are performed on
real sequences. The multi-target tracking experiment is evaluated. We also bring
several discussions finally. Section 4.1 introduces experimental environments. Section

4.2 illustrates the experimental results. Finally, Section 4.3 deals with discussions.

4.1 Experimental Environments

Our experimental platform is an Intel-based PC with Pentium IV 2.4G CPU, 128
RAMs and run in Windows 2000 operating system. The computed optical flow is
represented by a needle diagram. The estimated flow velocities are depicted as short
line, showing the apparent displacement during one time step. In this section, we give
experimental results of the proposed method this year and last year for optical flow
estimation. We obtain these images per 1/30 second one image. In all of this sequence,

we obtain 9 single target images and 2 multi-target images. The image sequences we
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used are real sequences.

Two real test image sequences will be used to target detection. One is the single
target sequences, we obtain these images per 1/30 second one image. In all of this
sequence, we obtain 11249 images. There are 9 section of test image sequences shown
in Fig. 4.1. to Fig. 4.9 respectively. The other one is multi-target sequences, shown in
Fig. 4.10. and Fig. 4.11. In this Hamburg taxi video, there were three moving objects:
1. the taxi turning the comer; 2. a car in the lower left, driving from left to right; 3. a

van in the lower right driving right to left. In this Hall sequences, there were two

moving people.

4.2 The Experimental Results

The experiment is divided into two parts. The results of estimating the single

moving target is discussed in Section 4.2.1. The results of tracking multi-targets are

discussed in Section 4.2.2.

4.2.1 The results of estimating the single moving target

In this section, we use the method proposed in chapter 3 to detect the target, and
Fig. 4.1. to Fig. 4.9. have 9 section of single target test images respectively. We obtain
these images per 1/30 second one image. The first section of test images shown as Fig.
4.1 has 1755 images. The second section of test images shown as Fig. 4.2 has 874
images. The third section of test images shown as Fig. 4.3 has 943 images. The 4th

section of test images shown as Fig. 4.4 has 1256 images. The 5th section of test
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images shown as Fig. 4.5 has 1406 images. The 6th section of test images shown as
Fig. 4.6 has 623 images. The 7th section of test images shown as Fig. 4.7 has 986
images. The 8th section of test images shown as Fig. 4.8 has 1520 images. The 9th
section of test images shown as Fig. 4.9 has 1886 images. All of these image
sequences are single moving target. Some of these image sequences have simple
background and some of these image sequences have complex background.

Both situations, the some results of experiment are shown in Fig. 4.12. It shows
some results by proposed method, because it is based on the velocity field, if the
target velocity is different from the background velocity, even the target is not the
lightest pixel in the image, we still can find out the target in the most case. Because of
we use image pyramid that introduced in Section 3.4 and reduce search region that
introduced in Section 3.5 4, the computation time and rate of success have better
performance. Even if the iteration number reaches the upper bound, we still can detect
the target in one second. Table 4.1 to Table 4.9 show the rate of success and the

computation time. So the detection of the target is workable by proposed method.

Fig. 4.1. The flight is moving from left to right with simple background.



Fig. 4.2. The flight is moving from left to right with complex background.

(@)

Fig. 4.3. (a) The helicopter is moving from right to left with simple background. (b)

The helicopter is moving from top to ground with complex background.
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Fig. 4.3. (Continued)

Fig. 4.4. The helicopter is moving from left to right with simple background.
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Fig. 4.5. The flight is moving from right to left.

Fig. 4.6. The flight is moving right to left with high speed.

Fig. 4.7. The flight is moving from ground to sky.
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Fig.4.8. The flight is moving from left to right .

Fig. 4.9. The flight is moving from left to right.



Fig. 4.10. Hamburg taxi.

Fig. 4.11 The hall sequences.
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Table 4.1 Experiment result of target tracking, test images shown as Fig. 4.1.

Proposed method SSD method
The number of frames 1755 1755
The rate of success 100% 100%
The computation time (one 0.031 sec 0.033 sec
frame)

Table 4.2 Experiment result of target tracking, test images shown as Fig. 4.2.

Proposed method SSD method
The number of frames 874 . 874
The rate of success 99.5% 99.2%
The computation time (one 0.032 sec 0.034 sec
frame)

Table 4.3 Experiment result of target tracking, test images shown as Fig. 4.3.

Proposed method SSD method
The number of frames 943 943
The rate of success 95.3% 92.8%
The computation time (one 0.034 sec 0.037 sec
frame)




Table 4.4 Experiment result of target tracking, test images shown as Fig. 4.4.

Proposed method SSD method
The number of frames 1256 1256
The rate of success 98.4% 98.2%
The computation time (one 0.032 sec 0.036 sec
frame)

Table 4.5 Experiment result of target tracking, test images shown as Fig. 4.5.

Proposed method SSD method
The number of frames 1406 1406
The rate of success 99.5% 99.1%
The computation time (one 0.031 sec 0.033 sec
frame)

Table 4.6 Experiment result of target tracking, test images shown as Fig. 4.6.

Proposed method SSD method
The number of frames 623 623
The rate of success 98.2% 98%
The computation time (one 0.033 sec 0.035 sec
frame)
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Table 4.7 Experiment result of target tracking, test images shown as Fig. 4.7.

Proposed method SSD method
The number of frames 986 986
The rate of success 99% 99.3%
The computation time (one 0.034 sec 0.036 sec
frame)

Table 4.8 Experiment result of target tracking, test images shown as Fig. 4.8.

Proposed method SSD method
The number of frames 1520 1520
The rate of success 97.8% 96.5%
The computation time (one 0.032 sec 0.036 sec
frame)

Table 4.9 Experiment result of target tracking, test images shown as Fig. 4.9.

Proposed method SSD method
The number of frames 1886 1886
The rate of success 95.9% 93.6%
The computation time (one 0.031 sec 0.034 sec
frame)




4.2.2 The results of tracking multi-targets

Because multi-targets tracking in real world occurs frequently, the proposed
method must have good performance in multi-targets tracking. To evaluate the
performance and efficacy of multi-target tracking method, the experiments are
established. These test images are shown in Fig. 4.10. and Fig. 4.11. We obtain these
images per %O second one image. Fig. 4.14. is shown the velocity field of the
Hamburg taxi image and the Hall image. Fig. 4.15. is shown some results of
multi-target tracking. The results of experiment are shown in Table 4.10 and Table
4.11, the proposed method can deal with multi-target detection and use less
computation time than SSD method. To find lightest point method just can deal with

single target, it is shown in Table 4.10 and Table 4.11.

Table 4.10 Experiment result of Hamburg taxi sequences.

Proposed method SSD method Lightest point
method
Number of frames 300 360 300
Number of targets 3 3 1
The computation time 0.037 sec 0.063 sec 0.028 sec
(one frame)
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Table 4.11 Experiment result of the hall sequences.

Proposed method SSD method Lightest point
method
Number of frames 240 240 240
Number of targets 2 2 1
The computation time 0.035 sec 0.058 sec 0.029 sec
(one frame)

4.3 Discussions

For single target tracking, the rate of success and computation time of proposed
method and previous method are compared in Table 4.1 to Table 4.9 respectively.
From the Table 4.1 to Table 4.9, we find that the method we proposed has better
performance than the previous method. The test images are shown as Fig. 4.1, the
results have best performance, because the target is all the lightest point in image and
have a singular background. Test images are shown as In Fig. 4.3, the results are worst,
because the frames have much noise, complex background and the target is not the
lightest point in image. The results in Table 4.9 are not good enough, because the
target is too small. It is sensitive to noise, so the target is hard to recognize from
background. As a result, the target size and complexity of background have much
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influence to the method we proposed. When the target is consist of 20 ~ 50 pixels and
target 1s the lightest point in image, the results of tracking are best.

One of the main problems we find with the SSD-based matching techniques is
their ability to estimate sub-pixel displacements, as shown in Fig. 4.13. With image
translation and higher speeds they appear to perform well, but when the motion field
involves small velocities with a significant dilational component the estimated
displacements are often poor. In these cases it appears that SSD-based estimates of
displacements are more accurate with integer displacements than subpixel velocities.

An 1mage pyramid is one kind of multiple resolution manifestation which can
observe the same 1mage with different resolution. Therefore, multiple resolutions can
easily abstract some important features from images. We used the image pyramid to
reduce the amount of data used in the optical flow calculation. In the optical flow
estimation, the image pyramid strategy is utilized to speed up the process at the same
time we reduce the searching range that can reduce the computation time and mistake.
Hence make our system being suitable for per%0 second one image. So we have
better performance in process time than previous methods.

From Table 4.9 and Table 4.10, the results illustrate that proposed method can
deal with multi-target. The lightest point method assumes the target is the lightest
point in image, so it just can deal with single target. It failed when the target is not the
lightest point in image. The correlation-based SSD approach needs much computation
time. The method we proposed has less computation time and can deal with
multi-target. In the future, the algorithm should be more robust in complex

background and increases the number of targets.
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(a) )

Fig. 4.12. Some final results of single target. (a) Original images. (b) Results using

proposed method.
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(a)

Fig. 4.12. (Continued)
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Fig. 4.12. (Continued)



Fig. 4.12. (Continued)
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(a) ®)

Fig. 4.13. The experimental results. (a) The method we proposed. (b) The previous
method.
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Fig. 4.14. The velocity field. (a) Hamburg taxi. (b) The Hall sequences.
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(b)

Fig. 4.15. The final results of multi-target. (a) Hamburg taxi. (b) The Hall sequences.
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Chapter 5

Direction of Arrival Estimation
Based on Phase Differences Using
Neural Fuzzy Network

This report aims to provide a powerful and effective methodology for direction
of arrival (DOA) estimation and emitter identification (EID) in electronic warfare
(EW) applications, respectively. At first, we propose a six-layered neural fuzzy
network (NFN) with supervised learning algorithm to perform direction of arrival
(DOA) estimation instead of the conventional DOA estimation methods, such as
MUSIC and MLE, which are computationally intensive and difficult to implement in
real time. The input feature for DOA estimation is phase difference (PD). The trained
NFN can always find itself an economical network size in fast learning process.
Second, we also propose an a three-layer vector neural network (VNN) with a

supervised learning algorithm suitable for emitter identification (EID). The VNN can
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accept interval-value input data as well as scalar input data. The input features of the
EID problems include the radio frequency (RF), pulse width (PW), and pulse
repetition interval (PRI) of a received emitter signal. A suitable new vector-type
backpropagation (NVTBP) learning algorithm is also derived. The algorithm can tune
the weights of VNN optimally to approximate the nonlinear mapping between a given
training set of feature intervals and the corresponding set of desired emitter types.
Above constructing networks including the NFN and VNN are verified by emulating
examples with/without noise conditions through computer simulations. The proposed
networks are also compared to other methods by the same examples. In summary,
each one of the aforementioned networks (either NFN or VNN) has high

accuracy/high correction rate in the DOA estimation and in the EID, respectively.

5.1 The Introduction of Direction of Arrival
Estimation Based on Phase Differences

In the surveillance and reconnaissance communities, the direction of arrival
(DOA, sometimes referred to as angle of arrival, AOA) information and emitter
identification (EID) capability are extremely important problems, especially in the
electronic warfare (EW) field [62]. The relationship DOA information with radar is
illustrated as shown in Fig. 5.1. Many conventional DOA estimation methods have
been proposed, including the multiple signal classification (MUSIC) method of
Schmidt [63], and the maximum likelihood (ML) technique [64, 65]. However, these

methods are computationally intensive and difficult to implement in real time [66].
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Figure. 5.1. The relationship DOA information with radar.

Neural networks have recently drawn a great deal of attention in many practical
signal processing problems [67, 68] for the sake of their massive parallelism and
global connectivity. The DOA estimation problem can be considered as a mapping
problem. Park and Sandberg proved the radial basis function network (RBFN) with
one hidden layer was capable of universal approximation [69]. Thus, a RBFN was
proposed to approximate the unknown mapping function such that whenever the
available phase differences were fed into the network, the estimated DOA could be
obtained from the output of the network [70]. Although the RBFN can overcome the
large computation and high cost problems in the conventional DOA estimation
methods, a large number of parameters (network weights) need to be tuned in order to

reach good performance of estimation because all of input variables are fully
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connected to its hidden nodes. To cope with the drawbacks encountered in the RBFN,
while still keeping its advantages, a new DOA estimation algorithm with a neural
fuzzy network (NFN) is developed.

While, in military operations, an electronic support measures (ESM) system such
as radar warning receiver (RWR) is needed to intercept, identify, analyze, and locate
the existence of emitter signals. The primary function of the RWR is emitter
identification (EID), which is used to warn the crew of an immediate threat with
enough information to take evasive action. Many conventional signal recognition
techniques are computationally intensive and require a key man to validate and verify
the analysis [71].They often fail to identify signals under high signal density
environment, especially, in ncar real time.

In addition, the EID problem is also considered as a nonlinear mapping problem.
The input features, including RF, PW, and PRI, are extracted from pulse descriptor
words (PDWs). Since the values of these features vary in interval ranges in
accordance with a specific radar emitter, a vector neural network (VNN) is proposed
to process interval-value input data. To train the VNN, a suitable learning algorithm
should be developed. Most existing learning methods in neural networks are designed
for processing numerical data [71]-[77]. Ishibuchi and his colleagues extended a
normal (scalar-type) backpropagation (BP) learning algorithm to the one which can
train a feedforward neural network with fuzzy input and fuzzy output [78]. Similar to

their approach, we derive the conventional vector-type BP (CVTBP) and new
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vector-type BP (NVTBP) algorithms for training the proposed VNN. The
effectiveness of the NVTBP learning algorithm are demonstrated on several EID
problems, including the two-emitter and three-emitter identification problems
with/without additive noise. The rest of this report is organized as follows. Section
5.2 gives the problem statements. In Section 5.3, the basic structure and function of
the NFN is briefly introduced. Some simulation results are also presented. In Section
5.4, the basic architecture of a vector neural network is presented. The associated
parameter learning algorithm with vector feature is also derived based on different
error function. In addition, some concluding remarks are given in Section 5.5. Also

the extension of the report and future research are described.

5.2 Problem Statements

For DOA estimation problem, We assume that a plane wave is coming in at
incident angle & from the boresight. Then the phase differences between a signal in

the reference sensor and signals in the other sensors with additive noise can be

well-expressed by

¥y = 2wp1y sin @ + 0. (5.1)
1id ,

Py =52 % J =234, (5.2)
“di=1

where

w,; and Jy, are the phase difference and phase error (noise) between the first



sensor and the jth sensor, respectively;
p,; is the normalized physical spacing between the first sensor and the jth sensor,
where the normalization is made with respect to the wavelength at the operating
frequency;
-+ The adjacent sensor spacings (normalized to half-wavelengths at the operating
frequency) are 71 between sensors 1 and 2, 72 between sensors 2 and 3, and
73 between sensors 3 and 4;

¢ is angle of arrival.

i Pulsc
| parameters

Step-1 —» Step - 2

: RF % _
Emitter video : . Vector Emitter type
. Ej Deinterleaving | PRI % | Neural > ¥
Signals ( Sorting ) PW ¥ Network -
3
» (VNN)

fi(x,%,x)-2y

Figure. 5.2. The flow chart of emitter signal classification.
The phase differences are measured from Eq. (5.1), then the DOA can be determined
through the complex hardware circuits with DOA processing algorithm. From a
different point of view, the DOA estimation problem can be considered as a mapping
from the space of DOA ( #) to the space of phase difference (x) as x = f( ¢). Then

the DOA can be obtained via the inverse of this mapping directly, i.e.,, & = g(x)



= f'(x). The objective of learning is to minimize the error function
1 Nt 5
E(w) :EZ(d,, -y,)% (5.3)
p=1

where the subscript p indicates the pth training pair, N¢ is the total number of training
pairs, d,is the desired output, and y , is the actual output.

On the other hand, the problem of emitter signal classification is performed in a
two-step process as illustrated in Fig. 5.2. In this report, the EID problem is
considered as a nonlinear mapping problem, the mapping from the space of feature
vectors of emitter signals to the space of emitter types. The three parameters, RF(x1),
PRI(x2), and PW(x3), are used to form the feature vector [x1, x2, x3] in this problem.
Such a nonlinear mapping function can be approximated by a suitable neural network
[71, 72]. To endow a neural network with the interval-value processing ability, we
propose a vector neural network (VNN) which can accept either interval-value or
scalar-value input and produce scalar output. In the training phase, the VNN is trained
to form a functional mapping from the space of interval-value features to the space of
emitter types based on Nt samples of training pairs (X,;d,) for the EID problem,
where p = 1, . . . Nt indicating the pth training pair, ¥,= [X,,,X,,,X,;]. The

input-output relationship of the VNN is denoted by

y,=f(X,), (5.4)
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where y ,is a m-dimensional vector indicating the actual output of the VNN, and f
represents the approximated function formed by the VNN. More clearly, the VNN is

trained to represent the EID mapping problem in the following if-then form:

IF rpy & [1{,‘1.1‘51] and - and apn € [1',[,‘,,. .15,,]

THEN xp = [2p1.- - . 2pn) belongs to Cy.

(5.5)

where ¢, denotes the kth emitter type. The objective of learning is to obtain an
approximated model f' (+) for the mapping in Eq. (5.4) and Eq. (5.5) such that the error
function indicating the difference between d,and y,, p =1 2, ... N4 is
minimized. Two di.erent error functions are used in this paper, one is the common
root-mean-square error function, and the other is

N
[y = —Z {dpluyp + (1 —dp)In(1 —yp)}.
pm1 (5.6)

5.3 DOA Estimation Using a Neural Fuzzy
Network

The structure of the NFN is shown in Fig. 5.3. This 6-layered network realizes a

fuzzy model of the following form

Rule ¢ : IF 2y is A% and - - - and ap, is AL

THEN y is m§ + n;.;'rj 4 -
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where Aj. is the fuzzy set of the ith linguistic term of input variable xj , m is the
center of a symmetric membership function on y, and aj. is a consequent parameter.
We shall next describe the functions of the nodes in each of the six layers of the NFN.

Layer 1 : No computation is done in this layer. Each node in this layer, only

transmits input values to the next layer directly. That is,

f=u" and oV =f (5.7)
From the above equation, the link weight in layer one (w") is unity.
Layer 2 : Each node in this layer corresponds to one linguistic label (low, high, etc.)
of one of the input variables in Layer 1. The membership value specifies the degree to
which an input value belongs to a fuzzy set is calculated in Layer 2. With the choice

of Gaussian membership function, the operation performed in this layer is

(2) _ 2
Fa) =S g a0y =, 58)

. O_ij

where m; and o, are, respectively, the center (or mean) and the width (or
variance) of the Gaussian membership function of the jth partition for the ith input

variable ui. Hence, the link weight in this layer can be interpreted as m,; .



Layer 6
(output linguistic nodcs) |

Layer 5
(output term nodes)

Layer 4
(nonmnalized nodcs)

Layer 3
(rulc nodcs)

Layer 2
(input term nodes) |

Layer 1
(input linguistic nodes) |

Figure. 5.3. Structure of the NFN.

Layer 3 : A node in this layer represents one fuzzy logic rule and performs

precondition matching of a rule. Here, we use the following AND operation for each
Layer-3 node,

q9 .
F@®) = J[u® = o DiemlT (De-ma]

i=1

a®(f)=f, 5.9

where g is the number of Layer-2 nodes participating in the IF Di = diag(1/ cil, 1/ o
2, + + -+, 1/cin), and mi = (mil,mi2, - - -,min)T . The connection
weights in Layer 3 (w”) have the value of one. The output f of a Layer-3 node

represents the .ring strength of the corresponding fuzzy rule.
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Layer 4 : The number of nodes in this layer is equal to that in Layer 3, and the .ring

strength calculated in Layer 3 is normalized in this layer by

r

f(ug’l)) Z :11(4) and (1(4)(]') = ll£4)/f. (5.10)
i=1

where 7 is the number of rule nodes in Layer 3. Like Layer 3, the link weight (w(*)

in this layer is unity, too.

Layer 5 : This layer is called the consequent layer. Two types of nodes are used in
this layer, and they are denoted as blank and shaded circles in Fig. 5.3, respectively.
The node denoted by a blank circle (blank node) is the essential node representing a
fuzzy set (described by a Gaussian membership function) of the output variable.
Different nodes in Layer 4 may be connected to a same blank node in Layer 5,
meaning that the same consequent fuzzy set is specified for different rules. The

function of the blank node is
g (5 s
i Z Wi and a®(f) — f - af. (5.11)
i=1

where s is the number of nodes in Layer 4, and a; =m, is the center of a Gaussian

membership function. As to the shaded node, it is generated only when necessary.
Each node in Layer 4 has its own corresponding shaded node in Layer 5. One of the

inputs to a shaded node is the output delivered from Layer 4, and the other possible
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inputs (terms) are the input variables from Layer 1. The shaded node function is

n
f == Zn x5 and a® )H", . f~u,§.5). {5,121

j=1

where the summation is over the significant terms only connected to the shaded node,
and aj. is the corresponding parameter. Combining these two types of nodes in

Layer 5, we obtain the whole function performed by this layer as
fl(5\l‘)—-(Zu Xy /10;1 . (5.13)

Layer 6 : Each node in this layer corresponds to one output variable. The node

integrates all the actions recommended by I.ayer 5 and acts as a defuzzifier with

t "
_./'(“,(6)) = ans) and o© 1) = f. HNEY
i=1

where ¢ is the number of nodes in Layer 5. Two types of learning, structure and
parameter learning, are used concurrently for constructing the NFN. A detailed

description of the overall learning algorithms can be found in [79].

5.3.1 Simulation Results

The procedure of DOA estimation using NFN based on phase differences
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obtained from Interferometer is shown in Fig. 5.4. The system performance is verified
for input signal with frequency 2.702 GHz.

(1) Performance of DOA Estimation without Noise

The phase differences between a signal in the reference sensor and signals in the other

sensors without additive noise can be well-expressed by

P15 = 27p15sin 0, (5.15)
112 |
p1j—’§Z'}',-. §= 2.3, (5.16)
=1
. Training/testing
True Phase differences Data

A

Four-sensor Phase g

v v
Input : - i i
P B Comparison Systerm) M) Pre-processing 4 Neural Fuzzy ) cstimate of
Uit Unit 2 Network Unit DOA

X
( Interferometer ) (Functional Model) ~ ( SONFIN))

Figure. 5.4. Flow chart of DOA estimation using the NFN.

First, the training data are generated as follows. We divide the range of DOA values,
-45 to +45, equally into 180 intervals, with each interval being 0.5 degree. As a result,
we have 181 DOA values in the set {-45.0,-44.5,..., +44.5, +45}. With the same

procedure, we can obtain 301 testing patterns by dividing the range of DOA values,
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-45 to +45, into 0.3-degree intervals. Simulation results show that the convergence
rate of the NFN is much higher than that of the RBFN in the training phase. Also, a
detailed performance comparisons are listed in Table 5.1.

(2) Performance of DOA Estimation with Noise

In this simulation, the training was performed with 181 data sets derived from Egs.

(5.15) and (5.16) (assuming the absence of noise), whereas the testing was performed

Table 5.1 Performance comparison of the NFN and RBFN estimators on the DOA

estimation problem.

RBFN
Methods SONFIN
Nr=79 Nr=99 Nr=119
Estimation
Accuracy 0.0801 27159 0.4559 0.0823
(degree)
Number of
57 86 106 126

nodes
Number of

¢ 41 1027 1287 1547
parameters

with 301 data sets contaminated with uniformly distributed phase errors derived from
Egs. (5.1) and (5.2) to simulate real measurements. In Eq. (5.1), the additive noise

term is given by
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L a
Sy — 5‘*{ =230, (5.17)
VLT
180°
Te = = {5.15)
/T\’.S_‘\ !

where SNR is in terms of power. The above additive noise term is given by references
[62 ,80]. For comparison, the DOA estimation errors obtained from the NFN and

those from the RBFN with additive phase errors at different signal-to-noise ratio

values are plotted in Fig. 5.5.

4.8432

—4— RBFN
—Ji— SONFIN

2.7282
21612

RMS error in DOA (deg)
w
| ]

-5 0 S 10 15 20 25

Signal-to-Noise ratio (dB)

Figure. 5.5. RMS error in DOA of the NFN and RBFN (Nr = 119) under the additive

phase error conditions with different signal-to-noise ratios.
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3.4 Structure of Vector Neural Network (VNN)
We shall introduce the structure and function of the vector neural network (VNN)
which can process interval-value as well as scalar-value data. The general structure of
VNN is shown in Fig. 5.6, where the solid lines show the forward propagation of
signals, and the dashed lines show the backward propagation of errors. The

input-output relation of each node of VNN is explicitly calculated as follows, where

~ L U
Xpi = [Xpi0%,
Input nodes: Each input node just passes the external input, X, =[x;,,x,,],

[ =

1, ..., n, forward to the hidden nodes.
d, l d, l d, l
yl yk ym

IL 000 IL eeo IL Layer 3 : Qutput node

Figure. 5.6. The three-layer architecture of the proposed VNN.
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Hidden nodes:

: LU ¢ L - ; |5 . - N
“pj - l'pj"})jl V‘.“”pj#f""”pjﬂ- VR HR L)
~ ~ W
L )L . U = o
netps = Z Uy gyt Z i Tp; + 8;. (H.20)
1'1:)1 i=1
1) (¢}
u]l =0 v, <0
~ =W
i M w ML y
net s = Z U W Z wy; gy + 05 (5.21)
i=1 i=
u;: | w;:' <0
Output nodes:
iipk [fin'fﬁk).fiﬂf?ﬁk}h AN D m. {5.22)
l (2) ‘ (2)
L AL @.v v e
nelpe = 3w gt Y Y4 gy (5.23)
j=1 j=1
w{,‘y =0 wﬁ.i) <0
i - I )
(2t L4 L 59
1 pk Z i owi ! Z "kj'xuj*ﬂA (5.24)
ji _(];)-1
A2
w 0 w <0

where the weights w(’,w(’ and the biases &j , Zk are real parameters and the
outputs Z, and Y, are intervals. It is noted that the VNN can also process
scalar-value input data by setting xﬁi = x;/i = X ,;, Where isx , the scalar-value input.

Correspondingly, the VNN can produce scalar output, y ; = y;’,. =X
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5.4.1 Supervised Learning Algorithms for VNN

In this section, we shall derive a new vector-type backpropagation (NVTBP)
learning algorithm for the proposed VNN with interval-value input data. A normal
cost function in the conventional vector-type backpropagation (CVTBP) algorithm,
E, , is first considered using the interval output. Vo =1 yﬁk, y[‘,/k] and the

corresponding desired output dpk for the pth input pattern, as

3V

{ pk !/Il,'k ‘2 i dp;‘. 1

{(H.25)

; U2 A
l"Ipl\- R i n'p;‘. - 1)

for the case of an interval-value input vector and a crisp desired output, where the
subscript pk represents the pth input pattern and kth output node. However, to
enhance the identification power of VNN for emitter identification, we propose a
NVTBP algorithm, which uses a new error cost function instead of the squares of the
differences between the actual interval output ¥, and the corresponding desired

output dpk as in Eq. (5.25).
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Figure. 5.7. lllustration of backpropagation learning rule for the VNN.

The new error cost function is defined as

—idpge In y;‘k — 1+ dpg) In(1 — y,l;k).z ok = 1
F ok {5.26)

T N R
—ddp 0 ;/f,k — 1+ dpiInil = f'f,b,k.)~""pk 0

The learning objective is to minimize the error function in Eq. (5.26). The weight
updating rules for the VNN are illustrated in Fig. 5.7. To show the learning rules, we
shall calculate the computation of O, /0w layer by layer along the dashed lines in
Fig. 5.6, and start the derivation from the output nodes.

Layer 3 : Using Egs. (5.22)-(5.24) to calculate OF, / 8w,§.2) for various values of

the weights and desired output.
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Layer 2 : Using Egs. (5.19)«(5.21) to calculate E . /ow') for different values of

the weights and desired output. Notice that, the notations &,; and &/ are defined

as follows:

gL o ILept { h ) {5.27]
Upk 4 L — \fpk — Upt) - (9,27}
dnel
pk
oy (.)F;. ,
UL ok U PR
“pk (C)I?EtUk (dpk Ypt! - (5H.28)
ok

A detailed description of quantitative analysis can be found in [81].

5.4.2 Simulation Results

All reference data of the simulated emitters are given by references [71, 72], and
[82]. Two problems are examined to demonstrate the identification capability of the
proposed VNN in this section.

(1) Performance Evaluation without Measurement Error

Experiment 1: For the two-emitter identification problem, we employ a VNN with 3
input nodes, 5 hidden nodes and 2 output nodes (denoted by 3-5-2 network). In the
training phase, we use 10 input-output training pairs (5 pairs for each type) to train
the VNN using the CVTBP and NVTBP algorithms, respectively, and find

individually a set of optimal weights. In the testing phase, 80 testing patterns (40
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patterns for each emitter type) are presented to the trained VNNs for performance
testing. However, the VNN trained by the NVTBP algorithm performs better than the
VNN trained by the CVTBP algorithm; the former achieves an average identification

rate of 99.91% and the latter 96.26% as listed in the last row of Table 5.2.

Experiment 2: In this experiment, a three-emitter identification problem is solved by
two 3-8-3 VNNs trained by the NVTBP and CVTBP algorithms, respectively. The 15
input-output training pairs (5 pairs for each type) are used to train the two VNNs.
After training, 120 testing patterns (40 patterns for each emitter type) are presented to
the trained VNNs for performance testing.

(2) Performance Evaluation with Measurement Error

Two experiments are performed to evaluate the robustness of VNN with

measurement distortion. At first, we define the error deviation level (EDL) by

< .
EDL; (%) = 22 x 100%. i = 1.2.3. (5.20
.'l'p,'

for emitter type i, where &pi is a small randomly generated deviation for the pth

input pattern.

Experiment 3: First, we consider the two-emitter identification problem with the input
data corrupted by additive noise. The noise testing patterns are obtained by adding

random noise, & pi (i =1, 2, 3), to each testing pattern (xp1, xp2, xp3),p=1, ..., 80,
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used in Experiment 1 to form the noise testing database, (xp1 £ & pl, xp2 £ £ p2, xp3
7 £p3). The noisy testing patterns with different EDLs (from 1 % to 15 %) are
presented to the trained 3-5-2 VNNs in Experiment 1 for performance testing. The

testing results are shown in Table 5.2.

Experiment 4: In this experiment, we consider the three-emitter identification
problem with the input data corrupted by additive noise. The noise testing patterns are
obtained by adding random noise, &pi (i =1, 2, 3), to each testing pattern (xp1, xp2,
xp3),p=1,..., 120, used in Experiment 2 to form the noise testing database, (xp1
Z* Epl, xp2 £ £p2, xp3 £ £ p3). The noisy testing patterns with different EDLs are

presented to the trained 3-8-3 VNNs in Experiment 2 for performance testing. The

testing results are shown in Table 5.3.

Table 5.2 Testing results of the 3-5-2 VNN on the two-emitter identification problem

with/without noise.

Error 3-3-2 VNN trained by the NVTBP algorithm 3-5-2 VNN trained by the CVTBP algorithm
Lo | v Comsim a0 | (LA | s Comontae ) | T
i Type 1 Type 2 ) Type 1 Type 2 ) ‘

15 99.54 99.87 99.71 38.08 94.01 91.04

13 99.92 99.88 99.90 93.08 94.42 93.75

11 99.94 99.88 99.91 95.07 94.63 94.85

9 99.94 99.88 99.91 96.19 94.80 95.49

7 99.94 99.88 99.91 96.74 94.93 95.83

5 99.94 99.88 99.91 97.03 95.03 96.03

3 99.94 99.88 99.91 97.19 95.11 96.15

I 99.94 99.88 9991 97.29 95.17 96.23

0 99.94 99.88 99.91 9731 95.21 96.26
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5.5 Conclusions

A novel neural fuzzy network (NFN) is proposed to estimate the direction of
arrival of moving targets based on the phase differences from an interferometer. The
main contribution of the proposed NFN is that it always produces an economical
networks size, and the learning speed and modeling ability are superior to ordinary
neural networks. In this report, we use two networks, RBFN and NFN, to estimate
DOA and compare their performance under either with noise or without noise
conditions.

Simulation results show that the NFN always produces actual output very close
to the desired DCA values, and the required number of parameters in the NFN is less
than that in the RBFN under the same RMS error in DOA. In addition, we also
construct a three-layered vector neural network (VNN) to perform emitter
identification. Simulation results show that the proposed VNN can gives high
identification capability. With these features, we believe that our proposed networks
(NFN/VNN) may be applied for solving the problems of the signal detection, signal
localization, signal tracking, and beamforming in the military applications (such as

reconnaissance and surveillance).
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Table 5.3 Testing results of the 3-8-3 VNN on the three-emitter identification

problem with/without noise.

Error 3-8-3 VNN trainod by the NVTBP algorithm 3-8-3 VNN traiied by the CYTBP algorithm

Deviation Total Ay T
- ] crage otal Average
Lovdd Average Comoction Rawe 4) | orroction Ralc Corroction Rate

) Typel | Type2 | Type3 ) Type1 | Type2 [ Tvpe3 )
15 63.00 | 8039 | 7437 73.75 5789 | 8797 | 70.78 7221
13 7220 | 9036 | 7493 79,16 59.06 | 89.36 | 70.88 73.10
11 7425 1 9226 | 7495 80.49 6005 | 0027 | 70.96 73.76
9 79151 9378 | 7935 84.09 6085 | 9215 | 75.50 76.17
8635 | 96.18 | 85.80 89.44 67.11 | 93.12 | 80.52 80.25
9601 | 97.94 | 94.16 96.04 75.16 | 9404 | 88.69 85.96
9934 | 9930 | 99.69 99.44 8056 | 9482 | 9218 8.19
99.60 | 99.87 | 99.93 99.30 8271 | 9548 | 93.70 9%0.63
99.63 | 9995 | 99.94 99.34 83.36 | 95.80 | 94.07 91.08

Average Corroction Rate (%o

S —jw ]l
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Chapter 6

Conclusion

In last two years, we proposed an algorithm for the target detection from infrared
images, and detected the target in two parts. Firstly, the infrared images obtained from
an immovable camera would be discussed by using the image difference, run length,
and image thresholding. Secondly, detect the target from images obtained from a
movable camera; according to the result, the rate of success is higher than 98%. In last
year, in order to improve the system efficiency, we proposed another method that
based on the velocity differences of the image objects. By this method, the detection
correctness rate is more than 98.5%. In this year, we proposed another velocity
estimation method to improve the system cfficiency. By this method, the detection
correctness rate 1s more than 98.7%.

Compare these two methods, the proposed method is more efficient, the method
can deal with multi-targets uses less process time. The SSD method can deal with

multi-targets, but it needs too much time. The lightest point method assumes the target
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is the lightest pixel in the image. However the lightest pixel is not always the target, it
might be something else. At the beginning, it must take more than two images to find
the real target. In this year we decrease the brightness effect to the image. Due to the
optical flow, the nature scene is unexpected, the standard methods may not hold for
large displacements. To solve the problem and to improve the process performance an
incremental estimation of optical flow based on multiresolution strategy was proposed.
Even the target detection is wrong, we still can detect correctly in less one second. In
the future, we would determine the distance between the sensor and the object based
on perspective transformation and the algorithm should be deal with more targets.

A novel neural fuzzy network (NFN) is proposed to estimate the direction of
arrival of moving targets based on the phase differences from an interferometer. The
main contribution of the proposed NFN is that it always produces an economical
networks size, and the learning speed and modeling ability are superior to ordinary
neural networks. In this report, we use two networks, RBFN and NFN, to estimate
DOA and compare their performance under either with noise or without noise
conditions. With Simulation results, we believe that our proposed networks
(NFN/VNN) may be applied for solving the problems of the signal detection, signal
localization, signal tracking, and beamforming in the military applications (such as

reconnaissance and surveillance).
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