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一、中文摘要： 

過去一年多的『禪定腦電波』研究，已觀察到不同禪定劇本，我們以不同方

法進行多通道腦電波分析與詮釋，包括小波分析、參數模型、分頻量化、模糊理

論分類、非線性動態分析…等，並依據其空間－時間－頻域之特性變化，歸納出

幾種不同的禪定腦電波變化劇本，並已將結果撰寫成三篇學術論文投稿於國際期
刊，目前正在審查中。 

關鍵字：禪定腦電波、禪定劇本、小波分析、參數模型、分頻量化、模糊理論分
類、非線性動態分析、空間－時間－頻域之特性 

二、英文摘要： 

During the past years, we have observed a variety of meditation scenarios based 
on the meditation EEG analysis. A number of methods applied to multi-channel EEG 
analysis and interpretation include the wavelet analysis, parametric modeling, 
subband spectral quantification, fuzzy clustering, nonlinear dynamical analysis, etc. 
Results of quantifying the spatio-temporal-spectral characteristics are shown to 
correlate with different meditation scenarios. Three manuscripts reporting our 
research work have been submitted to the international journals. 

Keywords: Meditation EEG (electroencephalogram), meditation scenario, wavelet 
analysis, parametric modeling, subband spectral quantification, fuzzy clustering, 
nonlinear dynamical analysis, spatio-temporal-spectral characteristics. 

三、前言： 

Zen-Buddhist meditation originated more than 2,500 years ago, and had been 
proved to benefit the health while on the way toward the ultimate “Buddhahood” state. 
Meditation process reflects a brain state completely differing from the normal 
consciousness or the sleep states. Different meditating techniques have been studied 
for several decades [1]-[9]. They are mostly the TM (transcendental meditation), Yoga, 
and Japanese Zen meditation, with the focus mainly on the physiological and 
psychological effects of meditation. This paper presents a systematic approach for 
meditation EEG interpretation and firstly reports the results of investigating 
meditation scenarios of the orthodox Zen-Buddhist practitioners. 

A number of papers have reported the EEG findings for experimental subjects 
under meditation [3]-[5] [8]-[9]. EEG has been recognized to be an important clinical 



tool for diagnosing and monitoring the nervous system [10]-[12]. In the meditation 
EEG study, West [5] summarized the EEG findings and made three major comments 
including: slower alpha with larger power at the meditating beginning, occurrence of 
the rhythmic theta trains for experienced meditators at the mid session, and very rarely, 
bursts of high-frequency beta (above 20Hz) observed for meditators capable of 
achieving deep meditation, the so-called samadhi or transcendence. Thus, it was 
suggested that the beta dominated pattern characterized the EEG under deep 
meditation stage. 

In spite of the extensive study on meditation EEG since 1960, no report was found 
regarding the meditation scenario based on the EEG features. This paper proposes a 
strategy of establishing an overview of the meditation EEG record. The strategy 
involves a robust approach in consideration of the inter-subject variation. We extract 
the subject-oriented prototypes from meditation EEG, without a pre-specified, 
prototypical base, to characterize the meditation process. The first approach mainly 
applies the FCM clustering to the feature vectors derived from the wavelet 
coefficients. Thus, the feature prototype is oriented towards the particular EEG 
patterns of each individual meditator. The second approach is based on parametric 
modeling and subband spectral quantification. Details of both approaches were 
illustrated in [13] and [14]. 

四、研究方法： 

A. Experimental protocol 

The meditation EEG signals were recorded using 8-channel SynAmps amplifiers 
(manufactured by NeuroScan, Inc.) connected to the Pentium MMX-166 (MHz) PC. 
We applied the 8-channel unipolar recording montage of which the common reference 
was the linked MS1-MS2 (mastoid electrodes). The 8-channel EEG electrodes were 
placed at F3, F4, C3, C4, P3, P4, O1, and O2. The sampling rate was 400Hz. Each 
recording lasted for 45 minutes, including the first 5-minute background EEG (the 
subject sat in normal relaxed position with eyes closed) and the rest 40-minute 
meditation EEG. During the meditation session, the subject sat, with eyes closed, in 
the full-lotus or half-lotus position. Each hand formed a special mudra (called the 
Grand Harmony Mudra), laid on the lap of the same side. The subject focused on the 
Zen Chakra and the Dharma Eye Chakra (also known as the “Third Eye Chakra”) in 
the beginning of meditation till transcending the physical and mental realm [13]. The 
Zen Chakra locates inside the third ventricle, while the Dharma Eye Chakra locates at 
the hypophysis. 



B. Feature vector derived from Wavelet coefficients  

For the past two decades, Wavelet analysis has been extensively studied and 
proved to be a useful tool in biomedical signal processing. Appropriate selection of 
scales and wavelet bases enables it to characterize the EEG rhythmic patterns. 
According to our study, wavelet prototype of appropriate duration has little effect on 
the quantitative feature vector. We employ db5 wavelet prototype in this study. In 
consideration of computational efficiency, the discrete Wavelet transform (DWT) is 
often applied. The DWT scales D4 ~ D7 are approximately matched to those 
well-defined EEG rhythmic bands, assuming a sampling rate of 400 Hz. The feature 
vector is thereafter constructed from these DWT coefficients. The procedure is 
depicted below. 

Firstly, the 2-second running window, moving at a step size of 1 second, is 
employed. And the entire meditation EEG record is divided into L segments. Consider 

a discrete-time signal x[n], 0nN1 (N=800), representing the lth running EEG 

epoch. The  na j  and  nd j  indicate, respectively, the coarse and detailed 

sequences after j′s decompositions. 

The lth running feature vector, vk[l], is extracted from the selected detailed-scale 
coefficients by computing their powers. The feature vector of the lth EEG epoch 
accordingly is 

   ][],[],[],[ 7654 lvlvlvlvlv  . 

Finally,       TT
LvvLllv 1,,010][  V is an L4 feature matrix of which 

each row indicates the running feature vector.  

C. FCM-merging strategies 

Automatic interpretation algorithm often involves three strategies: derivation of 
feature basis, feature clustering, and scoring (interpretation) based on the feature 
clusters. Feature extraction aims at transforming the input data into a form (feature 
vector) appropriate for the clustering algorithm to identify the clusters. Each feature 
vector, after processed by the FCM, belongs to a cluster to some degree that is 
specified by a membership matrix. According to our experience in EEG feature 
classification, conventional FCM algorithm, without the background knowledge of 
EEG characteristics, cannot effectively classify and interpret the EEG record in 
comparison with the naked-eye examination. We thus developed a novel approach, 
with three cluster-merging strategies, for the meditation EEG analysis. The main 



attribute is its knowledge-based processing of EEG record, that is encoded into an 
easily comprehensible chart of meditation scenario. Fig. 1(a) illustrates the overall 
strategy developed according to our experiences on meditation EEG characteristics. 
The FCM-merging strategies involving three cluster-merging subroutines (Fig. 1(b), 
1(c), and 1(d)) are designed particularly to solve the problem of blind clustering by 
simple FCM algorithm [13]. 



Fig. 1(a)  Flow chart of FCM.   Fig. 1(b)  Clustering merge step 1. 
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Fig. 1(c)   Clustering merge step 2. 
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Fig. 1(d)  Clustering merge step 3. 
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The FCM function described above blindly classifies the EEG patterns based on 
quantitative features. Consequently, the result of interpretation often appears to be 
away from satisfaction. We accordingly developed sophisticated cluster-managing 
strategies, the FCM-merging strategies, based on background knowledge of 
meditation EEG characteristics, for achieving an interpretation closer to the result of 
naked-eye examination. Figs. 1(b)-1(d) illustrate, respectively, three cluster-merging 
stages. In the cluster-merge A subroutine (Fig. 1(b)), number of clusters (K) is 
justified by having the inter-distance between cluster centers (Dij) no less than a 
pre-specified threshold Dth,1. The goal of cluster-merge B is to eliminate the tedious 
work of interpreting those insignificant transient activities, which tend to complicate 
the result. 

In EEG, considerable variation in amplitude often obscures identification of 
certain rhythmic pattern. For instance, FCM function tends to output multiple clusters 

for  rhythm classified according to the squared wavelet coefficients. This situation 
also occurs to  and  rhythms. Cluster-merge C subroutine hence reexamines and 
corrects the fault by computing the subband power ratios as follows. Firstly, we 

modify the L4 feature matrix V that is expressed by 

 TLvvv ]1[,],1[],0[  V , 

where v[l] is the new (14) feature vector of the lth EEG epoch: 

   ][],[],[],[ 7654 lvlvlvlvlv  . 

Elements in v[l] are derived from v[l] by 

  74%,100
][
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
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][
k

kt lvv . 

Based on the modified feature matrix V, FCM function outputs a set of new cluster 
centers {ci, 1iK}. If cluster j has a center cj close enough to the center of cluster i 

(i.e., 3th,DccD jiij  ), the coding vector S (output of cluster-merge B) will be 

modified by re-encoding cluster j as cluster i. In this way, different clusters actually 



containing feature vectors of the same EEG rhythm (e.g.,  or ) are to be identified 
and interpreted as the same one via an adequate choice of Dth,3. 

The FCM-merging strategies, systematically and effectively encoding the 
quantitative EEG features, were also proven to be robust to implementing parameters. 
Moreover, a wide range of mother wavelet prototypes can be used without changing 
the interpreting result should the wavelet duration be long enough. 

D. AR coefficients of subband component 

The method proposed is focused on monitoring the time-varying characteristic 
frequency in meditation EEG. The AR model is applied to the subband component to 
quantify the characteristic frequency. The autoregressive (AR) spectrum estimation is 
one of the widely used methods for examining the time-varying spectral activities due 
to its advantage of obtaining more accurate estimate with better resolution. 
Nevertheless, the AR estimates of low frequencies are less reliable than those for high 
frequencies. However, EEG is a low-frequency signal in the range between DC and 
30 Hz. The AR method often fails to provide accurate estimate of low-frequency 
spectral components. To solve this problem, one can use a higher order AR model to 
estimate the spectrum, yet, at the cost of heavy computation load. 

To deal with the problems mentioned above, we developed a systematic strategy, 
combining multiresolution concept with parametric modeling, to facilitate the 
long-term meditation EEG analysis. Main idea of the proposed strategy is to establish 
an adequate criterion for classifying the windowed segment, based on the 
characteristic frequency extracted from subband components, and for eventually 
providing an overview of the entire meditation EEG record. EEG signals are firstly 
decomposed into different subband components by downsampling and filtering. Then 
the characteristic frequency (root frequency) of each subband component is estimated 
by AR(2) model. The entire scheme is called the Subband-AR EEG Viewer  (Fig. 2). 

Fig. 2  Subband-AR EEG Viewer. 
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The cutoff frequencies of H1(z), …, H5(z) are, respectively, 30Hz, 15Hz, 7.5Hz, 
3.75Hz, and 1.875Hz (sampling rate: 200Hz). 

Note that the cutoff frequencies approximate the upper boundaries of the four 

well-known EEG rhythms  (13~30Hz),  (8~13Hz),  (4~8Hz), and  (below 
4Hz). Therefore, changes of the characteristic frequency in meditation EEG can be 
traced by quantifying the root frequency (fr) of each subband filtered component. For 
example, when fr’s of output1, output2 and output3 are all within the range 8~12 Hz, 
the dominated pattern of this windowed segment is identified, to a great degree, as the 

 rhythm. When fr’s of output1 and output2 are greater than 15Hz and fr of output4 is 
between 4Hz and 7Hz, the particular segment most likely contains the  intermixed 
with  rhythm. After the subband decomposition, the AR(2) model coefficients are 
computed. The model coefficients are directly computed by 
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where ][kx  is the autocorrelation function. Finally, the characteristic frequency fr, 

also called the “root frequency,” of outputi can be estimated by 
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五、結果與討論： 

A. Five meditation EEG scenarios 

During the past three years, we have collected the EEG and other 
electrophysiological signals for more than fifty meditators. Their experiences on 
Zen-Buddhism meditation range from a few months to sixteen years. Substantial 
meditation training leads them into the true Zen realm, that is, the spiritual world 
beyond the Alaya consciousness (the 8th consciousness). We thus are able to observe a 
variety of EEG changes during meditation session. 

Quantitative illustration of whole meditation EEG record portrays a distinctive 
scenario for each particular meditator. To provide a long -term legible illustration, five 
meditation EEG prototypes are displayed by different gray-scales. As illustrated in Fig. 

3, the gray-scales from the darkest to the brightest colors indicate, respectively, the +, 
, +, +, and  prototype. Based on the running gray-scale chart quantifying the 
evolution of meditation EEG, we have observed five distinct meditation scenarios 
(Figs. 3(a)-3(e)). 

Fig. 3  Five meditation scenarios (a)-(e) and the control-group scenario. 
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Fig. 3(b) Meditation scenario B 

 
Fig. 3(c) Meditation scenario C 

 
Fig. 3(d) Meditation scenario D 

 
Fig. 3(e) Meditation scenario E 



 
Fig. 3(f) Control group scenario E 

 

 

Each meditation scenario was explained in details in [13]. The interpreted result 
highly correlates with that of the naked-eye examination. Among all, one particular 

meditator exhibits a unique meditation scenario (Fig. 3(e)) the  prototype 
dominates since the beginning of meditation, and no other activity is observed to be 
significant. Another interesting observation is the correlation between the occurrence 

of  prototype and the feeling of blessings by most experimental subjects. 

The running gray-scale chart derived from the control group tells quite another 

story. As shown in Fig. 3(f), the entire meditation scenario was dominated by the  
rhythms, while + or  appeared occasionally. Note that  and  emerged because 
the subjects fell asleep. 

 

B. Extraction of slow alpha rhythm 

Frequency of  rhythm ranges from 8Hz to 12Hz. The slow  is a particular 
pattern, normally below 10Hz, that is observed in some experimental subjects at the 
mind-focusing stage of meditation. The Subband-AR-EEG-Viewer , designed to track 
the slow-, can be reduced to the structure shown in Fig. 4. 

Fig. 4  The slow- detector derived from the reduced structure of 
Subband-AR-EEG-Viewer. 
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with output3 highly enhances the effectiveness of slow- detection. The algorithm 
developed in [14] depicts that slow- pattern is detected when both root frequencies 
satisfy the following criteria: 

fr,1 < 14Hz, and 

8Hz < fr,3 <10Hz. 

While only examining output1 (up to 30Hz) with the criterion 8Hz < fr,1 <10Hz, 

the model often fails to identify the noise-contaminated slow- activities. Figure 5 
demonstrates the noise-immunization capability of our model. When a pure 9Hz 
sinusoid (Figure 5(a)) is partially contaminated by a uniformly distributed random 

noise (Figure 5(b)), the AR model does not recognize the noise-contaminated slow- 
segment based on the criterion 8Hz<fr,1<10Hz (Figure 5(c)). Note that the epoch 

identified as the slow  is indicated by a black bar above the signal. Result in Figure 
5(d) shows that the proposed model successfully detects the slow  under poor 
environment (SNR=8dB). 

F i g .  5            
1 sec 

slow  

slow  slow  

(a) 

(b) 

(c) 

(d) 

SNR=8dB 

 

To justify the performance, we first analyze a simulated signal of 4-second 
duration. The signal shown in Figure 6(d) is generated by connecting three 
short-duration, amplitude-modulated sinusoids, respectively, with frequencies 9Hz, 
15Hz, and 5Hz (Figure 6(a)~(c)). The window length is 0.5 second (100 samples), 
moving at a step of 0.25 second. As shown in Figure 6(d), the algorithm effectively 

detects the occurrence of slow- pattern. 
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七、計畫成果自評： 

During the past year, results of our research work have been reported in 
conferences and symposiums. In addition, these results were organized into four 
manuscripts and submitted to well-known international journals. As listed below, one 
is in press, the other three are in reviewing process. Our research work is pioneering 
and promising. Especially motivated by the multiform benefits of Zen-Buddhist 
meditation in promoting health, investigation of brain dynamics under meditation and 
various consciousness states become more and more significant. From the threat of 
SARS since March of this year, we should make a self examination of our health-care 
problem. We believe that this research study will lead to more understanding of the 
mechanism of how people can keep younger and healthier via Zen meditation 
practice. 
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