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During the past years, we have observed a variety of meditation scenarios based
on the meditation EEG analysis. A number of methods applied to multi -channel EEG
analysis and interpretation include the wavelet analysis, parametric modeling,
subband spectral quantification, fuzzy clustering, nonlinear dynamical analysis, etc.
Results of quantifying the spatio-temporal-spectral characteristics are shown to
correlate with different meditation scenarios. Three manuscripts reporting our
research work have been submitted to the international journals.

K eywords. Meditation EEG (electroencephalogram), meditation scenario, wavelet
analysis, parametric modeling, subband spectral quantification, fuzzy clustering,
nonlinear dynamical analysis, spatio-temporal-spectral characteristics.
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Zen-Buddhist meditation originated more than 2,500 years ago, and had been
proved to benefit the health while on the way toward the ultimate “Buddhahood” state.
Meditation process reflects a brain state completely differing from the normal
consciousness or the sleep states. Different meditating techniques have been studied
for several decades[1]-[9]. They are mostly the TM (transcendental meditation), Yoga,
and Japanese Zen meditation, with the focus mainly on the physiological and
psychological effects of meditation. This paper presents a systematic approach for
meditation EEG interpretation and firstly reports the results of investigating
meditation scenarios of the orthodox Zen-Buddhist practitioners.

A number of papers have reported the EEG findings for experimental subjects
under meditation [3]-[5] [8]-[9]. EEG has been recognized to be an important clinical



tool for diagnosing and monitoring the nervous system [10]-[12]. In the meditation
EEG sudy, West [5] summarized the EEG findings and made three major comments
including: slower alphawith larger power at the meditating beginning, occurrence of
the rhythmic theta trains for experienced meditators at the mid session, and very rarely,
bursts of high-frequency beta (above 20Hz) observed for meditators capable of
achieving deep meditation, the so-called samadhi or transcendence. Thus, it was
suggested that the beta dominated pattern characterized the EEG under deep
meditation stage.

In spite of the extensive study on meditation EEG since 1960, no report was found
regarding the meditation scenario based on the EEG features. This paper proposes a
strategy of establishing an overview of the meditation EEG record. The strategy
involves arobust approach in consideration of the inter-subject variation. We extract
the subject-oriented prototypes from meditation EEG, without a pre-specified,
prototypical base, to characterize the meditation process. The first approach mainly
applies the FCM clustering to the feature vectors derived from the wavelet
coefficients. Thus, the feature prototype is oriented towards the particular EEG
patterns of each individual meditator. The second approach is based on parametric
modeling and subband spectral quantification. Details of both approaches were
illustrated in [13] and [14].

A. Experimental protocol

The meditation EEG signals were recorded using 8-channel SynAmps amplifiers
(manufactured by NeuroScan, Inc.) connected to the Pentium MM X-166 (MHz) PC.
We applied the 8-channel unipolar recording montage of which the common reference
was the linked MS1-M S2 (mastoid electrodes). The 8-channel EEG electrodes were
placed at F3, F4, C3, C4, P3, P4, O1, and O2. The sampling rate was 400Hz. Each
recording lasted for 45 minutes, including the first 5-minute background EEG (the
subject sat in normal relaxed position with eyes closed) and the rest 40-minute
meditation EEG. During the meditation session, the subject sat, with eyes closed, in
the full-lotus or half-lotus position. Each hand formed a special mudra (called the
Grand Harmony Mudra), laid on the lap of the same side. The subject focused on the
Zen Chakra and the Dharma Eye Chakra (also known as the “Third Eye Chakra”) in
the beginning of meditation till transcending the physical and mental realm [13]. The
Zen Chakra locates inside the third ventricle, while the Dharma Eye Chakra locates at
the hypophysis.



B. Feature vector derived from Wavelet coefficients

For the past two decades, Wavelet anal ysis has been extensively studied and
proved to be a useful tool in biomedical signal processing. Appropriate selection of
scales and wavelet bases enables it to characterize the EEG rhythmic patterns.
According to our study, wavelet prototype of appropriate duration has little effect on
the quantitative feature vector. We employ db5 wavelet prototype in this study. In
consideration of computational efficiency, the discrete Wavelet transform (DWT) is
often applied. The DWT scales D4 ~ D7 are approximately matched to those
well-defined EEG rhythmic bands, assuming a sampling rate of 400 Hz. The feature
vector is thereafter constructed from these DWT coefficients. The procedure is
depicted below.

Firstly, the 2-second running window, moving at astep size of 1 second, is
employed. And the entire meditation EEG record is divided into L segments. Consider
adiscrete-time signal x[n], 0<n<N-1 (N=800), representing the Ith running EEG

epoch. The a;[n] and d,[n] indicate, respectiely, the coarse and detailed
sequences after j's decompositions.

The Ith running feature vector, v]l], is extracted from the selected detailed-scale
coefficients by computing their powers. The feature vector of the Ith EEG epoch
accordingly is

V[ = v, 011, vs 11, vell 1, v, [1T}

Finally, V = MIJo<I <L-1f ={{0}...,V{L —1]f" is an Lx4 feature matrix of which
each row indicates the running feature vector.
C. FCM-merging strategies

Automatic interpretation algorithm often involves three strategies: derivation of
feature basis, feaire clustering, and scoringinterpretation) based on the feature
clusters. Feature extraction aims at transforming the input data into a form (feature
vector) appropriate for the clustering algorithm to identify the clustersEach feature
vector, after pocessed by the FCM pelongs to a cluster to some degree that is
specified by a membershipmatrix. According to our experience in EEG feature
classification, conventional FCM algorithm, without the background knowledge of
EEG characteristics, cannot effeately classify and interpret the EEG record in
comparison with the nakedeye examination. We thus developed a novel approach,
with three clustermerging strategies, for the meditation EEG analysis. The main



attribute is its knowledgebased processing of EEGrecord, that is encodednto an
easily comprehensible chart of meditation scenario. Fig. 1(a) illustrates the overall
strategy developed according to our experiences on meditation EEG characteristics.
The FCM-merging strategies involving three clustermerging subroutines (Fig. 1(b),
1(c), and 1(d)) are designed particularly to solve the problem of blind clustering by
simple FCM algorithm [13].



Fig. 1(a) Flow chart of FCM. Fig. 1(b) Clustering merge step 1.
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Fig. 1(c)  Clustering merge step 2.
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Fig. 1(d) Clustering merge step 3.
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The FCM function described above blindly classifies the EEG patterns based on
quantitative features. Consequently, the result of interpretation often appears to be
away from satisfaction. We accordingly developed sophisticated cluster-managing
strategies, the FCM-merging strategies, based on background knowledge of
meditation EEG characteristics, for achieving an interpretation closer to the result of
naked-eye examination. Figs. 1(b)-1(d) illustrate, respectively, three cluster-merging
stages. In the cluster-merge A subroutine (Fig. 1(b)), number of clusters (K) is
justified by having the inter-distance between cluster centers (Djj) no lessthan a
pre-specified threshold Dy, 1. The goal of cluster-merge B isto eliminate the tedious
work of interpreting those insignificant transient activities, which tend to complicate
the result.

In EEG considerable variation i n amplitude often obscures identification of
certain rhythmic pattern. For instance, FCM function tends to output multiple clusters
for a rhythm classified according to the squared wavelet coefficients. This situation
also occursto A and 6 rhythms. Cluster-merge C subroutine hence reexamines and
corrects the fault by computing the subband power ratios as follows. Firstly, we
modify the Lx4 feature matrix V that is expressed by

V'={v[0],v]1],...,v[L -1]}",

where V'[1] isthe new (1x4) feature vector of the Ith EEG epoch:
AIIERANRANRANRANEE

Elementsin V'[l] are derived from V[I] by

L1100 06,4 < k < 7, where
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Based on the modified feature matrix V’, FCM function outputs a set of new cluster
centers{c’, 1<i<K}. If cluster j has a center ¢ close enough to the center of cluster i

(e, Dj =

G —C;| < Dy,3), the coding vector S (output of cluster-merge B) will be

modified by re-encoding cluster j as cluster i. In thisway, different clusters actually



containing feature vectors of the same EEG rhythm (e.g., o or 0) areto be identified
and interpreted as the same one via an adequate choice of Dy, 3.

The FCM-merging strategies, systematically and effectively encoding the
quantitative EEG features, were also proven to be robust to implementing parameters.
Moreover, awide range of mother wavelet prototypes can be used without changing
the interpreting result should the wavelet duration be long enough.

D. AR coefficients of subband component

The method proposed is focused on monitoring the time-varying characteristic
frequency in meditation EEG. The AR model is applied to the subband component to
quantify the characteristic frequency. The autoregressive (AR) spectrum estimation is
one of the widely used methods for examining the time-varying spectral activities due
to its advantage of obtaining more accurate estimate with better resolution.
Nevertheless, the AR estimates of low frequencies are less reliable than those for high
frequencies. However, EEG is a low-frequency signal in the range between DC and
30 Hz. The AR method often fails to provide accurate estimate of low-frequency
spectral components. To solve this problem, one can use a higher order AR model to
estimate the spectrum, yet, at the cost of heavy computation load.

To deal with the problems mentioned above, we developed a systematic strategy,
combining multiresolution concept with parametric modeling, to facilitate the
long-term meditation EEG analysis. Main idea of the proposed strategy isto establish
an adequate criterion for classifying the windowed segment, based on the
characteristic frequency extracted from subband components, and for eventually
providing an overview of the entire meditation EEG record. EEG signals are firstly
decomposed into different subband components by downsampling and filtering. Then
the characteristic frequency (root frequency) of each subband component is estimated
by AR(2) model. The entire scheme is called the Subband-AR EEG Miewer (Fig. 2).

Fig. 2 SubbandAR EEG Viewer.
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The cutoff frequencies of Hi(2), ..., Hs(2) are, respectively, 30Hz, 15Hz, 7.5Hz,
3.75Hz, and 1.875Hz (sampling rate: 200Hz).

Note that the cutoff frequencies approximate the upper boundaries of the four
well-known EEG rhythms— 3 (13~30Hz), a (8~13Hz), 6 (4~8Hz), and A (below
4Hz). Therefore, changes of the characteristic frequency in meditation EEG can be
traced by quantifying the root frequency (f;) of each subband filtered component. For
example, when f,’s of outputy, output, and outputs are all within the range 8~12 Hz,
the dominated pattern of this windowed segment is identified, to a great degree, asthe
o rhythm. When f,’s of output; and output, are greater than 15Hz and f; of output, is
between 4Hz and 7Hz, the particular segment most likely contains the 6 intermixed
with  rhythm. After the subband decomposition, the AR(2) model coefficients are
computed. The model coefficients are directly computed by

P A A B A (o N A
nl0) o\ nlor-rig? )
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where y,[Kk] isthe autocorrelaton function. Finally, the characteristic frequency f;,
also called the “root frequency,” of output; can be estimated by

4a,[2] - a2[1]
f =sin 4 —sn? \/1——6‘5[1]2 z\/l——ag[l] .
Ja,[2] 4a,[2] 4a,[2]
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A. Five meditation EEG scenarios

During the past three years, we have collected the EEG and other
electrophysiological signals for more than fifty meditators. Their experiences on
Zen-Buddhism meditation range from a few months to sixteen years. Substantial
meditation training leads them into the true Zen realm, that is, the spiritual world
beyond the Alaya consciousness (the 8" consciousness). We thus are able to observe a
variety of EEG changes during meditation session.

Quantitative illustration of whole meditation EEG record portrays a distinctive
scenario for each particular meditator. To provide along-term legible illustration, five
meditation EEG prototypes are displayed by different gray-scales. Asillustrated in Fig.
3, the gray-scales from the darkest to the brightest colors indicate, respectively, thea”,
A, A+6, 6+a, and @ prototype. Based on the running gray-scale chart quantifying the
evolution of meditation EEG, we have observed five distinct meditation scenarios
(Figs. 3(a)-3(e)).

Fig. 3 Five meditation scenarios (aYe) and the control-group scenario.
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Fig. 3(b) Meditation scenario B
Fig. 3(c) Meditation scenario C
Fig. 3(d) Meditation scenario D

Fig. 3(e) Meditation scenario E




Fig. 3(f) Control group scenario E

Each meditation scenario was explained in details in [13]. The interpreted result
highly correlates with that of the naked-eye examination. Among all, one particular
meditator exhibits a unique meditation scenario (Fig. 3(e))}— the ®@ prototype
dominates since the beginning of meditation, and no other activity is observed to be
significant. Another interesting observation is the correlation between the occurrence
of @ prototype and the feeling of blessings by most experimental subjects.

The running gray-scale chart derived from the control group tells quite another
story. As shown in Fig. 3(f), the entire meditation scenario was dominated by the o
rhythms, while A+0 or 6 appeared occasionally. Note that A and 6 emerged because
the subjects fell asleep.

B. Extraction of dow alpharhythm

Frequency of o rhythm ranges from 8Hz to 12Hz. The slow « is a particular
pattern, normally below 10Hz, that is observed in some experimental subjects at the
mind-focusing stage of meditation. The Subband-AR-EEG-Viewer , designed to track
the slow-a., can be reduced to the structure shown in Fig. 4.

Fig. 4 The slowo detector derived from the reduced structure of
Subband-AR-EEG-MViewer .
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According to analytical reasoning and practical experience, output; in combination



with outputs highly enhances the effectiveness of slow-a. detection. The algorithm
developed in [14] depicts that ow-a pattern is detected when both root frequencies
satisfy the following criteria:

fr 1< 14Hz, and
8Hz < f; 3 <10Hz.

While only examining output; (up to 30Hz) with the criterion 8Hz < f, ; <10Hz,
the model often fails to identify the noise-contaminated slow-o. activities. Figure 5
demonstrates the noise-immunization capability of our model. When a pure 9Hz
sinusoid (Figure 5(a)) is partially contaminated by a uniformly distributed random
noise (Figure 5(b)), the AR model does not recognize the noise-contaminated slow-a
segment based on the criterion 8Hz<f, 1<10Hz (Figure 5(c)). Note that the epoch
identified as the slow o is indicated by a black bar above the signal. Result in Figure
5(d) showsthat the proposed model successfully detects the slow o under poor
environment (SNR=8dB).

slow ¢ slow ¢

slow ¢

SNR=8dB

Fig. 5 e

To justify the performance, we first analyze a simulated signal of 4-second
duration. The signal shown in Figure 6(d) is generated by connecting three
short-duration, amplitude-modulated sinusoids, respectively, with frequencies 9Hz,
15Hz, and 5Hz (Figure 6(a)~(c)). The window length is 0.5 second (100 samples),
moving at a step of 0.25 second. As shown in Figure 6(d), the algorithm effectively
detects the occurrence of slow-a pattern.
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S P E R

During the past year, results of our research work have been reported in
conferences and symposiums. In addition, these results were organized into four
manuscripts and submitted to well-known international journals. As listed below, one
isin press, the other three are in reviewing process. Our research work is pioneering
and promising. Especially motivated by the multiform benefits of Zen-Buddhist
meditation in promoting health, investigation of brain dynamics under meditation and
various consciousness states become more and more significant. From the threat of
SARS since March of this year, we should make a self examination of our health-care
problem. We believe that this research study will lead to more understanding of the
mechanism of how people can keep younger and healthier via Zen meditation
practice.
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