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Abstract

Let Mo be a Willmore surface in the 3 dimensional Euclidean space. For

establishing evolution equations for the related geometric quantity we first derive the
first vaiational formula of the Willmore functional. Next we show that if the initia
surface is a surface of revolution then the solution is aso a surface of revolution. In
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this case we establish the corresponding equations for the generated curve. Then we
construct a function which expect to be afinite time blow up solution of a generalized
flow. Finally, using the M obious geometry, we obtain some flux formulas.

Keywords. Willmore flow, singularity, surface of revolution.
1. Introduction

Let X:M—R> be a compact immersed surface in the 3-dimensional Euclidean
space R®. Denote by [ hj;] the second fundamental form of M, and the mean curvature
of M by H:é_h,.Letf,j =h; - gd’/ andF = § f,jzthe square length of the trace

free tensor. Then the Willmore functional of X is given by
WMXx)=9Q, F-

This functional W(X) isinvariant under conformal transformations of R®.

For a given immersion Xo: M — R% we consider a variation
X:[0,T) M® Rof X, The L? gradient flow for the Willmore functional is a
system of fourth order quasilinear geometry evolution equations

th't N,

wheret =DH +F H, X: is the variationa field of X. This flow is caled the
Willmore flow. A surfacein R®is called a Willmore surfaceif it is a critical surface of
the Willmore functional; A surface M in R® is a Willmore surface if and only if

DH +F H =0.

The short time existence is standard. The question whether a solution always exists
long time has been asked by many authors(see { KS1}). Kuwer and Schatzle in their
paper have shown the following: There exists ¢ > 0 such that if at timet = 0 we have
W(Xo) < ¢, then the Willmore flow exists smoothly for al times and convergesto a
round sphere (see [KS2]). It is not known whether or not the fourth order geometric
evolution equation can develop singularitiesin finite time. In accordance with
numerical simulation of Mayer and Simonett, the existence of such asurfaceis



possible (see [MS]). The purpose of this project isto study their numerical example
which isfinite time blow up.

Our first work is to establish evolution equations for the elementary geometric
guantity, such as the area element, the mean curvature, the Gaussian curvature and the
energy (see section 2). Since the numerical example of Mayer and Simonett is a
family of surfaces of revolution, we need to show that if the initial surface is a surface
of revolution then the solution is also a surface of revolution for each existence timet.
We makeit in section 3. In this case the Willmore flow is given by

ht:t—\/’

V() +(v)*

Vt:-t—h',

V() +(v)?
where (h, v) is the parametrization of the generated curve. In additional, if we assume
the initial surface is given by rotation about the z-axis and reflection about the
xy-plane of this curve then

h(t,y):h(t,p'y),\/(t,y) =- V(t!p'y)

In this case the boundary conditions will be

h0)=0,v(0) =0 and ﬁ(%) =0, v(%) =0.

Palmer consider the conformal Gauss map Y: M ® S', where S'is the deSitter
space, and prove that a Willmore surface of disc type which has its boundary on a
circle and which intersects the plane of the circle in a constant angle is a spherical cap
or aflat disc (see [P]). The flux formulas and a holomorphic quartic differential play
crucia rolesin his proof. If we truncate the solution of the surface of revolution, then
its boundary is a circle which intersects the plane of the circle in an angle depending
only on time t. In the final section we establish the flux formulas to a Willmore flow
with symmetric initial surface, which we believe will be an important tool for finding
finite time blow up solution.

2. The Willmore Flow

In this section we state briefly the first variational formula of the Willmore



functional, and establish evolution equations for the area element, the mean curvature,
the Gaussian curvature and the energy.

Let M be a compact surface in the 3-dimensional Euclidean space R®. Denote by
e & X and N, where e; e;are tangent to M, X is the position vector of M and N is
the unit normal of M in R%. Let 01 and U, be the dual coframe. Then the structure
eguations are

dx=Sw.e,
de =Sw;e; + hw, N,

dN =-Shyw;e

J=i
dW,- :SW,-j UWju
N 1 N

R = hikhjl - hilhjk'

Let X :[0,T)" M ® R?be asmooth variation of an initial surface X, . Then
the first variation of the Willmore functional is given by

(). = gDH +F H) X, N,
M M
where D is the Laplacian of X (for details see [Leg]). The L® gradient flow for the
Willmore functiona is a system of fourth order quasilinear geometric evolution
guations
Xi=-1N,

wheret = DH +F H. Thisflow isbriefly called the Willmore flow.

We then obtain the evolution equations for the area element, the mean curvature
H, the Gaussian curvature K and the energy @ asfollows



(w, Uw,), =tHw, Uw,,
2
H =-Dt - (F +H7)t,

H H H?
Kt:fijtij- ?Dt"'?(lz' T)t'

F,=-2f,t,- 2FHt.

3. Solutions with Symmetric Initial Values.

In this section we show that if the initial surface is a surface of revolution then the
solution is aso a surface of revolution for each time t. More precisaly, if the initia
surface Mg is a surface of revolution which is parametrized by x, : S* ® R®with
X,(siny cosg,siny sing,cosy )
=(h()cosq, iy )sing, % (v )),

Then the solution X isalso parametrizedby X : S*” [0,7) ® R?,and hasthe
form

X(t,siny cosg,siny sing,cosy )

=(Aty)cosq, Aty )sing, Uty)).

Furthermore we show that if X is symmetric with respect to the xy-plane then X is
also symmetric with respect to the xy-plane. Thus
Wty)=Htp-y)UAty)=-uUtp-y)

it hy)=hpE-y)wly)=-%pE-y).

Outline of the proof. (1). Let X be the solution of the Willmore flow. For fixed redl
a,let

Y(t,siny cosg,siny sing,cosy )

=T X(t,e"®* siny ,cosy ),

here T.. isthe operator of rotating the angle in the xy-plane if the xy-planeis
identify with the complex plane. It iseasy to seethat Y = Xy when t = 0. From the the
structure equations stated in section 1, the first and second fundament forms of Y and
X arerelated by « . It follows that Y also satisfies the equation of Willmore flow. By
the uniqueness of solution, we have Y=X.

(2). Let x3 be the third component of R®. Then

x,(t, € siny ,cosy ) = x,(t, €7 siny ,cosy ),

for al . Thisimplies the third component X3 is independent with& . Thus x3=v(t, ¢)
for some function v. On the other hand, in terms of polar coordinate, let



(% +%)(tq.y )= Htq.y)e® s,

then the relation of the first two components gives

h(t,qg +a,y )@t ay)ra = gt qy)d ) foral «.Thisimplies
Ntg+ay)=Ktqy)

and

Qltg+ay)=Q(tqy)+a

foral «.Itfollowsthat

ntq,y)=Hnty), Q(t,q.y)=q+h(ty) forsomefunction 7.
(3). Now we can assume that the solution X is given by

X(tg.y)=(hty e yty)).
Since X;=- 7 N, wehave

hH+v.V+h IPR'=0, W =0 and

hv- hv, =4(H)?+(v)*t. From the second equation the function 7 vanishes

identically since 7 (0, ¢ ) = 0. The first and third equations imply that

t
[ S—
V()2 +(v)?

t
V=-—0H

V() + (V)

(4). For prove that X isaso symmetric with respect to the xy-plane, let
Y(t,siny cosg,siny sing,cosy )
=(Atp-y)cosg, Atp-y)sing,- ULp - y)).
Willmore flow. By the uniqueness of solution, we have
Wty )=Htp-y)UAty)=-uUtp-y)

it hy)=hpE-y)wly)=-%E-y).

Then Y is adso a solution of the

In the case of surface of revolution, the Willmore flow involves two unknown
functions h and v which satisfy a system of fourth order equations.

4. Solutionsin the Generalized Sense.

As a special case, if the initial surface Mg is an ellipsoid which is a surface of

revolution of the form iz . Kz . éz _1 in the 3-dimenensional Euclidean space, there
a a b

exists a solution of aflow in the following form
X, =-rt N+tangential component,



where p is a positive function defined on [0,¥)” M (see [Leg]). Moreover this
solution converges to a round sphere as the time tends to infinity. In fact the same
argument is also work when theinitial surfaceis acircular torusin R®. In this case the
generalized flow converges to the Clifford torus. In both cases the behavior of the
solutions look just like the numerica scheme given by Mayer and Simonett (see
[MS]). These solutions are constructed by solving a system of ordinary differentia
equations without using the maximum principle. It should be noted that the main tool
for the second order parabolic equation is the maximum principle which has no
known counterpart for fourth order equation. The problem of constructing a solution
of fourth order equation will be ssmplify if we can observe the solution is of certain
type. By studying the numerical example given by Mayer and Simonett, we may
expect the solution isin the form of

X=(Aty)cosq, Aty )sing, ULy )).

with Aty )=r(ta(f))cosa(f)- r(ty)cosy

and Uty)=r(ty)siny . Furthermore, after rescaling in horizontal and vertical
directions, these functions h and v are deformed by the sine function and cosine
function. Under this observation, o must given implicitly by

alt)sn F(ty )+ F(t,b(0) - ct)r(ty)) =p,where F, and F, are increasing functions,

F,(t,p):gp for al t and FK(t, o) convergesto ¢ ast tends to the maximal

existence time T uniformly on any closed intervals contained in [% ,p) forl=12

To show this solution is blow up in finite time, it suffices to show that there exists a
constant R and functions a(t), b(t) and c(t) such that a(t) - c(t)R convergesto zero as
r(ta(®))anhf, (60 - d)r(ta()

=-a(f)cosF (t,a(t)F'(ta(t)tana(l),

for all OE£t<T. To construct the solution X precisely, we need to find suitable
deformations F; and F, , and then show that the corresponding X satisfies a
generalized flow. If it is done, the problem of constructing example will be reduced to
a scaar equation involved only one unknown function o . There are more work to be
donein this direction.

thetimettendsto T and

5. The Flux Formulas.

In this section we establish by specializing the flux formulas to a Willmore flow
with asymmetric initial surface. Let X be a solution of the Willmore flow, and let



H (X°-1
V(ty=—x+n,y(ty=——H+XxN

2 , 4 where X3 and n3 are the z-component
| X|" +1

and (13 = H+ X xN,

of the position vector and unit normal, respectively. In fact, y’s are component
functions of the conformal Gauss map(see [P]). Then we have
Dy +Fy* =tZ, foradla=1,23, where

X1, X +1

zl:ﬁ,zz=|—,23
2 4 4

Denoteby w,, = y* *dy® - y* * ayf

for a,5=1,2,3. Then we have

aw,, =(Y'Dy’ - y'Dy* )w,L w,.

In particular, if X isaWillmore surfacethen w,, areclosed 1-forms. Now let ¥ be

a part of truncated surface in the z-axis of the solution. Taking integration over X,
the stokes' theorem implies

@Vab:(‘l\iyaDyb'beya)i

1s S
for dl «a,5=1,2,3. We consider the following three cases. a=1, £=2; a=1, S
=3anda =2, /3=3. Thenwe have thefollowing flux formulas



d—- hzz)Hcosg+1J"—Hsmg (‘ﬁns,

1S

d— - h,,)H(- vcosg + hsing)

1s

- ﬂ—(vsing+ hcosg)
in

:c‘!‘jXXN

and

@jg- 22)[le/(- veosg + hsing)
s
2

nl +

cosg + (- vcosg + hsing)sing

+(vsing + hcosg) cosg]

‘HH[hZ

_ v2

uld sing- (vsing + hcosg)lz/]

n3+l2/X><N],

where 111—H is the outer ward norma derivative of H, nz = sn 7 ,
n

XxN = vsing + hcosg

on the boundary of X. Since the boundary of X is a circle which intersects the
plane of the circle in an angle depending only on timet, by the Joachimsthal theorem,
the boundary is a line of curvature and hy; is the normal curvature. These formulas

will be more simple for specia choice of . In particular, if ¥ cutsfrom y =B,
then ¢ =7 . Inthiscasethe flux formulas will be written as

1 A 1 A
s wy? *{ e S

2

O:(‘ﬁXXN

and

(_ 3 h2 H'

h (V) 4(\/) =
=c‘f5[”2jlvzn3+§><x/v].

S
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