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摘要

假設 M0 為 3-維歐式空間上之一曲面。此報告首先重新建立 Willmore 演化方程藉

以導出其相關幾何量之演化方程。其次證明:若始初曲面 M0為旋轉曲面時，則其

解亦為旋轉曲面。並導出此情形下對應之方程。最後分析有限時間有奇異現象之
解的可能形式，及建立有助於觀察此現象之通量公式。

關鍵詞 Willmore 曲面、奇異解、旋轉曲面

Abstract

Let M0 be a Willmore surface in the 3 dimensional Euclidean space. For 

establishing evolution equations for the related geometric quantity we first derive the 
first vaiational formula of the Willmore functional. Next we show that if the initial 
surface is a surface of revolution then the solution is also a surface of revolution. In 
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this case we establish the corresponding equations for the generated curve. Then we 
construct a function which expect to be a finite time blow up solution of a generalized 
flow. Finally, using the Mobious geometry, we obtain some flux formulas.           

Keywords: Willmore flow, singularity, surface of revolution.

1. Introduction
    
   Let X:M→R3 be a compact immersed surface in the 3-dimensional Euclidean 
space R3. Denote by [ hij ] the second fundamental form of M, and the mean curvature 

of M by .∑= iihH Let 2and  
2 ∑=Φ−= ijijijij
Hh φδφ the square length of the trace 

free tensor. Then the Willmore functional of X is given by 

∫ Φ= .  )(
M

XW

This functional W(X) is invariant under conformal transformations of R3. 

For a given immersion X0: M →  R3, we consider a variation 
3),0[: RMTX →× of X0. The L2 gradient flow for the Willmore functional is a 

system of fourth order quasilinear geometry evolution equations

Xt = - τ N, 

where ,HH Φ+∆=τ  Xt  is the variational field of X. This flow is called the 

Willmore flow. A surface in R3 is called a Willmore surface if it is a critical surface of 
the Willmore functional; A surface M in R3 is a Willmore surface if and only if 

.0=Φ+∆ HH

The short time existence is standard. The question whether a solution always exists 
long time has been asked by many authors(see {KS1}). Kuwer and Schatzle in their 
paper have shown the following: There exists ε> 0 such that if at time t = 0 we have 
W(X0) < ε, then the Willmore flow exists smoothly for all times and converges to a 
round sphere (see [KS2]). It is not known whether or not the fourth order geometric 
evolution equation can develop singularities in finite time. In accordance with 
numerical simulation of Mayer and Simonett, the existence of such a surface is 
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possible (see [MS]). The purpose of this project is to study their numerical example 
which is finite time blow up. 

Our first work is to establish evolution equations for the elementary geometric 
quantity, such as the area element, the mean curvature, the Gaussian curvature and the 
energy (see section 2). Since the numerical example of Mayer and Simonett is a 
family of surfaces of revolution, we need to show that if the initial surface is a surface 
of revolution then the solution is also a surface of revolution for each existence time t. 
We make it in section 3. In this case the Willmore flow is given by
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where (h, v) is the parametrization of the generated curve. In additional, if we assume 
the initial surface is given by rotation about the z-axis and reflection about the 
xy-plane of this curve then

).,(),(),,(),( ψπψψπψ −−=−= tvtvthth

In this case the boundary conditions will be

0)0(',0)0( == vh  and .0)
2

(,0)
2

(' ==
ππ vh

  Palmer consider the conformal Gauss map ,: 4
1SMY →  where 4

1S is the deSitter 
space,  and prove that a Willmore surface of disc type which has its boundary on a 
circle and which intersects the plane of the circle in a constant angle is a spherical cap 
or a flat disc (see [P]). The flux formulas and a holomorphic quartic differential play 
crucial roles in his proof. If we truncate the solution of the surface of revolution, then 
its boundary is a circle which intersects the plane of the circle in an angle depending 
only on time t. In the final section we establish the flux formulas to a Willmore flow 
with symmetric initial surface, which we believe will be an important tool for finding 
finite time blow up solution.

2. The Willmore Flow

In this section we state briefly the first variational formula of the Willmore 
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functional, and establish evolution equations for the area element, the mean curvature, 
the Gaussian curvature and the energy. 

Let M be a compact surface in the 3-dimensional Euclidean space R3. Denote by 
e1 ,e2,  X and N, where e1 ,e2 are tangent to M, X is the position vector of M and N is 
the unit normal of M in R3. Let ù 1 and ù 2 be the dual coframe. Then the structure
equations are

.
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Let 3),0[: RMTX →× be a smooth variation of an initial surface X0 . Then 

the first variation of the Willmore functional is given by 

∫∫ ⋅Φ+∆=Φ
M

t
M

t NXHH ,)()(

where ∆  is the Laplacian of X (for details see [Lee]). The L2 gradient flow for the 
Willmore functional is a system of fourth order quasilinear geometric evolution 
quations 

Xt = - τ N, 

where .HH Φ+∆=τ  This flow is briefly called the Willmore flow.

We then obtain the evolution equations for the area element, the mean curvature 
H, the Gaussian curvature K and the energy Φ as follows
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3. Solutions with Symmetr ic Initial Values. 

  In this section we show that if the initial surface is a surface of revolution then the 
solution is also a surface of revolution for each time t. More precisely, if the initial 
surface M0 is a surface of revolution which is parametrized by 32

0 : RSX → with   

)),(,sin)(,cos)((
)cos,sinsin,cos(sin

000

0

ψθψθψ
ψθψθψ

vhh
X
=
Then the solution X is also parametrized by 32 ),0[: RTSX →× , and has the 

form

)).,(,sin),(,cos),((
)cos,sinsin,cossin,(

ψθψθψ
ψθψθψ
tvthth

tX
=

Furthermore we show that if X0 is symmetric with respect to the xy-plane then X is 
also symmetric with respect to the xy-plane. Thus 

),(),(),,(),( ψπψψπψ −−=−= tvtvthth
).()(),()(   0000 ψπψψπψ −−=−= vvhhif

Outline of the proof. (1). Let X be the solution of the Willmore flow. For fixed real
α, let 

),cos,sin,(

)cos,sinsin,cossin,(
)(1 ψψ

ψθψθψ
θα

α
+−−= ietXT

tY

here Tα is the operator of rotating the angleα in the xy-plane if the xy-plane is 
identify with the complex plane. It is easy to see that Y = X0 when t = 0. From the the
structure equations stated in section 1, the first and second fundament forms of Y and 
X are related byα. It follows that Y also satisfies the equation of Willmore flow. By 
the uniqueness of solution, we have Y=X. 
(2). Let x3 be the third component of R3. Then 

),cos,sin,()cos,sin,( 3
)(

3 ψψψψ θθα ii etxetx =+

for allα. This implies the third component x3 is independent withθ. Thus x3 = v(t,ψ) 
for some function v. On the other hand, in terms of polar coordinate, let
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,),,(),,)(( ),,(
21

ψθψθψθ tiethtixx Θ=+
then the relation of the first two components gives

,),,(),,( ),,()),,(( ψθαψαθ ψθψαθ titi etheth Θ−+Θ =+ for all α. This implies
),,(),,( ψθψαθ thth =+

and
αψθψαθ +Θ=+Θ ),,(),(t, t

for all α.It follows that
,),(),,( ψψθ thth = ),(),(t, ψηθψθ t+=Θ  for some function η.

(3). Now we can assume that the solution X is given by
)).,(,),((),,( )),(( ψψψθ ψηθ tvethtX ti +=

Since Xt = - τN, we have

   0   ,0''' 22 ==++ hhvvhh tttt ηηη and

.)'()'('' 22 τvhvhvh tt +=−  From the second equation the function η  vanishes 

identically sinceη(0,ψ) = 0. The first and third equations imply that
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(4). For prove that X is also symmetric with respect to the xy-plane, let  

)).,(,sin),(,cos),((
)cos,sinsin,cossin,(

ψπθψπθψπ
ψθψθψ

−−−−= tvthth
tY

Then Y is also a solution of the 

Willmore flow. By the uniqueness of solution, we have 
),(),(),,(),( ψπψψπψ −−=−= tvtvthth
).()(),()(   0000 ψπψψπψ −−=−= vvhhif

In the case of surface of revolution, the Willmore flow involves two unknown 
functions h and v which satisfy a system of fourth order equations.   

4. Solutions in the Generalized Sense.

  As a special case, if the initial surface M0 is an ellipsoid which is a surface of 

revolution of the form 12
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a
x  in the 3-dimenensional Euclidean space, there 

exists a solution of a flow in the following form
component,tangential+−= NXt τρ
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where ρ is a positive function defined on M×∞),0[ (see [Lee]). Moreover this 

solution converges to a round sphere as the time tends to infinity. In fact the same 
argument is also work when the initial surface is a circular torus in R3. In this case the 
generalized flow converges to the Clifford torus. In both cases the behavior of the 
solutions look just like the numerical scheme given by Mayer and Simonett (see 
[MS]). These solutions are constructed by solving a system of ordinary differential 
equations without using the maximum principle. It should be noted that the main tool 
for the second order parabolic equation is the maximum principle which has no 
known counterpart for fourth order equation. The problem of constructing a solution 
of fourth order equation will be simplify if we can observe the solution is of certain 
type. By studying the numerical example given by Mayer and Simonett, we may 
expect the solution is in the form of     

)).,(,sin),(,cos),(( ψθψθψ tvththX =
with ψψρααρψ cos),()(cos))(,(),( ttttth −=
and ψψρψ sin),(),( ttv = . Furthermore, after rescaling in horizontal and vertical 

directions, these functions h and v are deformed by the sine function and cosine 
function. Under this observation, ρmust given implicitly by

,)),()()(,(),(sin)( 21 πψρψ =−+ ttctbtFtFta where F1 and F2 are increasing functions, 

ππ
2
3

),( =tFi  for all t and Fi(t,ψ) converges to ψ as t tends to the maximal 

existence time T uniformly on any closed intervals contained in ),
2

[ ππ
 for I = 1,2. 

To show this solution is blow up in finite time, it suffices to show that there exists a 
constant R and functions a(t), b(t) and c(t) such that a(t) - c(t)R converges to zero as 

the time t tends to T and 
),(tan))(,('))(,(cos)(

))(,()()(,(')())(,(

11

2

tttFttFta
tttctbtFtctt
ααα

αραρ
−=

−

for all .0 Tt <≤  To construct the solution  X precisely, we need to find suitable 
deformations F1 and F2 , and then show that the corresponding X satisfies a 
generalized flow. If it is done, the problem of constructing example will be reduced to 
a scalar equation involved only one unknown functionρ. There are more work to be 
done in this direction.

5. The Flux Formulas. 

  In this section we establish by specializing the flux formulas to a Willmore flow 
with a symmetric initial surface. Let X be a solution of the Willmore flow, and let
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where x3 and n3 are the z-component 

of the position vector and unit normal, respectively. In fact, y’s are component 
functions of the  conformal Gauss map(see [P]). Then we have

,ααα τzyy =Φ+∆  for allα=1,2,3, where 
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Denote by αββα
αβω dyydyy ∗−∗=   

for α,β=1,2,3. Then we have

.)( 21 ωωω αββα
αβ Λ∆−∆= yyyyd

In particular, if X is a Willmore surface then αβω  are closed 1-forms. Now let Σ be  

a part of truncated surface in the z-axis of the solution. Taking integration over Σ, 
the stokes’ theorem implies

),( αββα
αβω yyyy ∆−∆= ∫∫∫

ΣΣ∂

for all α,β=1,2,3. We consider the following three cases: α=1, β=2; α=1, β
=3 andα=2, β=3. Then we have the following flux formulas   
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n
H
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is the outer ward normal derivative of H, n3 = sin γ , 

γγ cossin hvNX +=⋅
on the boundary of Σ. Since the boundary of Σ is a circle which intersects the 
plane of the circle in an angle depending only on time t, by the Joachimsthal theorem, 
the boundary is a line of curvature and h11 is the normal curvature. These formulas 

will be more simple for special choice of Σ. In particular, if Σ cuts from 
2
πψ = , 

then γ=π. In this case the flux formulas will be written as
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