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ARTICLE INFO ABSTRACT

Keywords: Data envelopment analysis (DEA) is a representative method to estimate efficient frontiers and derive
Data envelopment analysis efficiency. However, in a situation with weight restrictions on individual input-output pairs, its suitabil-
DEA-R-1 ity has been questioned. Therefore, the main purpose of this paper is to develop a mathematical method,
CCR-I

which we call the input-oriented ratio-based comparative efficiency model, DEA-R-I, to derive the input-

target improvement strategy in situations with weight restrictions. Also, we prove that the efficiency
score of DEA-R-I is greater than that of CCR-I, which is the first and most popular model of DEA, in
input-oriented situations without weight restrictions to claim the DEA-R-I can replace the CCR model
in these situations. We also show an example to illustrate the necessity of developing the new model.
In a nutshell, we developed DEA-R-I to replace CCR-I in all input-oriented situations because it sets a
more accurate weight restriction and yields a more achievable strategy.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Data envelopment analysis (DEA) is one popular method for
identifying efficient frontiers and evaluating efficiency. An efficient
frontier is based on the concept of a non-dominated condition,
which was first expressed by the Italian economist Pareto in
1927. This concept was adapted to production by Koopmans in
1951 and to evaluate efficiency by Farrell in 1957 (Cooper et al.,
2002). Charnes, Cooper, and Rhodes (1978) applied linear program-
ming (LP) to identify efficient frontiers and measure productivity.
This method, which measures productivity by LP, is called “data
envelopment analysis”. They derived both an output-oriented
(CCR-0) model and an input-oriented (CCR-I) model, which are
not only the first but also most popular models of DEA. Many
scholars have used DEA as the representative method to estimate
an efficient frontier and measure productivity (Amirteimoori,
2007; Jahanshahloo, Hosseinzadeh Lotfi, & Zohrehbandian,
2005a). Over the past two decades, DEA has been established as
a robust and valuable methodology (Chen & Ali, 2002; Liu &
Chuang, 2009).

One advantage of DEA is objective weight selection, and there
are many studies that focus on weight (Bernroider & Stix, 2007;
Jahanshahloo, Soleimani-damaneh, & Nasrabadi, 2004; Jahanshahloo,
Memariani, Hosseinzadeh, & Shoja, 2005b; Lotfi, Jahanshahloo, &
Esmaeili, 2007; Wang, Parkan, & Luo, 2008). However, when apply-
ing the typical DEA model, which is based on (3" vx)/(>-uy) or
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- uy)/(>° vx), to a situation with weight restrictions on individual
input-output pairs, its suitability is questionable. We take a case in
hospitals as the example of the necessity of weight restrictions.
Sickbeds, physicians, outpatients, inpatients, and surgery are
important variables for hospital performance evaluations, where
the sickbed variable contributes only to the inpatient and surgery
variables but not the outpatient variable. In this situation, it is hard
to assign a suitable weight restriction to an outpatient-sickbed
pair. Golany and Roll (1989) argue that input-output pairs must
correspond to an isotonicity assumption to avoid this problem.
However, an isotonicity assumption represents a statistical rather
than a causal relationship. For example, the statistical relationship
between outpatient services and sickbeds is high, but the causal
relationship between them is low. Therefore, conformance to the
isotonicity assumption does not always avoid this problem. Dyson
et al. (2001) argue that handling weight restrictions is still a pitfall
in DEA applications from a theoretical perspective. Despic, Despic
and Paradi (2007) claim that this kind of problem is difficult to
solve with a typical DEA model and therefore developed DEA-R, a
model to solve the problem of weight restriction. DEA-R is
expressed as follows:

S m
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However, the DEA-R model developed by Despic et al. (2007) is an
output-oriented model (we call it DEA-R-O). In some situations, we
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need an input-oriented model to provide an input-target improve-
ment strategy with weight restrictions. Using Taiwan'’s private hos-
pitals as an example again, the output was bounded by National
Health Insurance; they have to adopt an input-targeted improve-
ment strategy (reduce inputs), rather than an output-targeted strat-
egy, to improve their efficiency. Therefore, a new mathematical
method of deriving the input strategy (we call it input-oriented
DEA-R, or DEA-R-I) has been developed.

In addition, the DEA-R-I seems to substitute for CCR-I in input-
oriented situations without weight restrictions because the effi-
ciency score of DEA-R-I is greater than or equal to than CCR-1 when
the relationship between DEA-R-O and CCR-O is unclear. According
to Despic et al. (2007), the efficiency score of DEA-R-O with no
weight restrictions is sometimes higher and sometimes lower than
the efficiency score of CCR-O. This drawback prevents DEA-R-O
from replacing CCR-O in a situation without weight restrictions.
But, based on our study, we found two factors that cause this effi-
ciency score discrepancy. The first is a more flexible selection of
optimum weight, which affects the efficiency score of DEA-R-O
higher than the efficiency score of CCR-O, while the second is the
sum of the output-oriented ratio } (w x ¥), which affects the effi-
ciency score of DEA-R-O less than the efficiency score of CCR-O.
Since we will use the sum of the input-oriented ratio > (w X ;)
to replace the sum of the output-oriented ratio 3 (w x ¥) in com-
puting the efficiency score in the DEA-R-I mathematical method,
we suggest that the efficiency score of DEA-R-I will always be
greater than or equal to the efficiency score of CCR-I (CCR input-
oriented). This also means that the strategies of DEA-R-I are easier
to achieve than the strategies of CCR-I because the strategy derived
from the higher efficiency score needs fewer changes. If we can
prove this hypothesis, the CCR-I model can be replaced by DEA-
R-I because DEA-R-I provides a more accurate efficiency score in
situations with weight restrictions and a better strategy in situa-
tions without weight restrictions.

Because of the above reasons, the first goal of this paper is to de-
velop a mathematical method (we call it DEA-R-I) to derive the in-
put-target improvement strategy in a situation with weight
restrictions. The second goal is to prove that the input-target
improvement strategy developed by DEA-R-I is always better than
the CCR-1 model in a situation without weight restrictions. There-
fore, we can claim that the DEA-R-I model can replace the CCR-I
model in all input-oriented situations.

2. Mathematical method to evaluate efficiency scores and
derive input-target improvement strategies

Because there are no suitable input-oriented models for situa-
tions with weight restrictions on single I/O pairs, we developed a
new model to evaluate the efficiency score and derive the input-
oriented strategy. We applied a new model to calculate the effi-
ciency score and then derive the input-target strategy from the
efficiency score:

Step 1: Compute the efficiency score

DEA-R-], the mathematical model for computing the efficiency
score of a DMU object 0,, is expressed as follows:

Max 0, )
m N
Xi/Yi) _ o -
st. Wi-—5>60,j=1,....n 3
;; " KoV = o 3)
m N
MY wi=1 (4)
i=1 r=1
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X; j: ith input variable of the jth DMU.

Y, j: rth output variable of the jth DMU.

X o: ith input variable of the object.

Y, o: rth output variable of the object.

Wi:: The weight of the ratio of g th inpucvariate X,

S S Wi (Xii/Yi)/(Xio/Yro) : the relative efficient score with jth
DMU's.

For each DMU object, the model first computes its relative effi-
ciency score for each specified weight, and the smallest is selected
as the efficiency score of this set of weights. Second, by adjusting
the weighting set, a maximum efficiency score will be selected as
the efficiency score 0, of the object. Since each DMU can get its
optimal weight, we can say objectively that the DMU is inefficient
if the efficiency score of this DMU is less than one. It is necessary to
provide the improved strategy for this DMU, which we will discuss
in next part. Using the data in Table 1 as an example, if we want to
calculate the efficiency score of the DMU1 of Table 1, we must first
find four relative efficiency scores for the DMU 1 in each weight.

When the weight set is W;; =1 and Wy, =0, the relative effi-
ciency scores of DMU 1 with DMUs 1-4 are 1 x (2)/(2) +0x
()/() = 1.00.1x (3)/@) +0x ()/6) = 133.1x (35)/() + 0
(%)/(3)=0.95,and 1x (3)/(3) +0x (3)/(3) = 0.80, respectively
(the right-most points of lines 1, 2, 3, and 4 shown in Fig. 1a).
The relative efficiency score of DMU 1 with DMU 4 in weight
Wi1=1 and W, =0 is 0.8, which means that if we need one unit
of X; from DMU 1 to produce one unit of Y;, only 0.8 units of X;
from DMU 4 are needed to produce one unit of Y;. Repeating the
computation, the relative efficiency scores of DMU1 with each
DMU in different weight sets are shown in Fig. 1a. In Fig. 1a, when
Wi, is between 0.000 and 0.231, the lowest value of the four rela-
tive efficiency scores is the relative efficiency score with DMU 2.

Table 1

One input and two-outputs.
DMU Input Output

X, Y: Y,

1(A) 2.0 4.0 3.0
2(B) 2.0 3.0 5.0
3(0) 2.0 4.2 4.2
4(D) 2.0 5.0 3.0

Relative
efficiency
Score

Relative efficiency Score of DMUs with DMU 1 in Different Weights
and efficiency curve of DMU 1
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Fig. 1a. Relative Efficiency Score of DMU 1 with DMUs in Different Weights and the
Efficiency curve of DMU 1.
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When Wi, is between 0.231 and 0.652, the lowest value of the four
relative efficiency scores is the relative efficiency score with DMU
3. Finally, when Wj; is between 0.652 and 1.000, the lowest value
of the four relative efficiency scores is the relative efficiency score
with DMU 4. The graph of the lowest values of the four relative effi-
ciency scores in different weight sets is the efficiency curve of DMU
1 (it is not the efficiency frontier of all DMUs but the efficiency of
DMU 1 in different weight sets). Since the efficiency score of point r
(the least relative efficiency score is 20/23 (about 0.870) when
W11 =0.652 and W1, = 0.348) on the efficiency curve is the highest
relative efficiency score on the curve, we select it as the efficiency
score of DMU 1. Repeating the model, the efficiency scores of
DMUs 2, 3, and 4 can be found and are shown in Figs. 1b, 1c and
1d, respectively. The efficiency scores of all DMUs are shown in
Table 2.

Step 2: Derive the input-target improvement strategy

Relai
: :ﬁzilevnecy Relative efficiency Score of DMUs with DMU 2 in Different Weights
and efficiency curve of DMU 2
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Fig. 1b. Relative Efficiency Score of DMU 2 with DMUs in Different Weights and the
Efficiency curve of DMU 2.
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Relative efficiency Score of DMUs with DMU 3 in Different Weights
and efficiency curve of DMU 3
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Fig. 1c. Relative Efficiency Score of DMU 3 with DMUs in Different Weights and the
Efficiency curve of DMU 3.
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Fig. 1d. Relative Efficiency Score of DMU 4 with DMUs in Different Weights and the
Efficiency curve of DMU 4.

Table 2
The efficiency score of DMUs.
DMU Efficiency score
1(A) 0.870
2(B) 1.000
3(C) 1.000
4(D) 1.000

Table 3
Original data, efficiency score and strategy of DMU 1 in Table 1.

DMU Original data Efficiency score Input-target strategy

Input Output Input Output
Xq Y Y, X4 Yy Ys
1(A) 2.0 40 3.0 20/23 40/23 4.0 3.0

As we stated above, if the efficiency score of a DMU is less than
one, it is inefficient. The improvement now becomes indispensable.
We can simply replace each input variable with a new DMU that
equals its original data times its efficiency score, without changing
the output variables. We call the new DMU our improved strategy.
If we replace the inefficient DMU with this new DMU, then the effi-
ciency score of this new DMU is one, and the efficiency score of the
others is the same as before. Table 3 shows the improved strategy
of the DMUI1. The table indicates that in order to make the DMU
efficient, the input variable X; should be lowered from 2.0 to 40/
23 to get the same outputs Y; and Ys.

3. Mathematical proof that the efficiency score of DEA-R-I is
greater than or equal to the efficiency of CCR-I

After studying the relationship between DEA-R-O and CCR-O,
we suggest that the efficiency score of DEA-R-I is greater than or
equal to the efficiency of CCR-I. If this hypothesis holds, then we
can claim that DEA-R-I can replace CCR-I because DEA-R-I is more
efficient in situations with weight restrictions and more achievable
in situations without weight restrictions.

Inspired by Despic et al. (2007), we define the efficiency of
CCR-1
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to help us prove our claim. The proof requires two steps:

Step 1: Proof that the efficiency of CCR-Harmonic 0; is always
greater than or equal to CCR 6,".

By replacing Xj;, W1th v2 and multiplying
Yo 1
Zrul’ Yy _ Zrur Yy
Yo 1
Zru” Tf} Eruf Y_rj,

in formulation, we can transpose 0, to
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and infer that 0, < 0.

[

Step 2: Proof that the efficiency of DEA-R-I 0 is always greater
than or equal to CCR-Harmonic 0.

We can rewrite the efficiency of DEA-R-I as #; = _ max
22 =1
Wi =0
mvinz,-zrwﬁ-);—,” and CCR harmonic 0;=__max min};
J i Swi=ly=0

Zrur:].ur>0

X
> Vil 5 .. Because Y v =1 and > u, =1, we get >, > viu, =1,
ij

and we argue that 0 is a special case of ;. The best we obtain
is: 6; < 0. With the two steps, we obtain: 6} < 6; < 6.

4. An example

Like other studies (Ballestero & Maldonado, 2004; Katharaki,
2008), this study takes a hospital as an example to show the neces-
sity of developing DEA-R-I and the advantages of this model. Two-
inputs- two-outputs simplified data for four hospitals are shown in
Table 4. Because only DMU 5 is inefficient, we show the efficiency
scores, improvement strategies, and optimal weight sets that are
derived by different models with two oriented situations in Table
5. The upper part of Table 5 shows the results without weight
restrictions. Because the sickbed variable has no direct contribu-
tion to the outpatient variable, the weight restriction is needed.
Although there are not suitable restrictions for CCR, we take the
most approximated restriction, ;% < uly':z_yjzyz, as the weight
restriction of CCR in this case to compare with other models. For
the DEA-R models, we set wy; =0 as a weight restriction. The
results with weight restrictions are shown in the lower part of
Table 5.

First, we show the necessity of weight restrictions. Compare the
upper part of Table 5 with the lower part. The results show that the
efficiency scores of the models without weight restriction are all
greater than the same efficiency scores of the models with weight
restrictions. Thus, weight restrictions in different models are nec-
essary. Then compare the optimal weight sets of different models
with weight restrictions. Although the efficiency score of DEA-
R-O with restriction is the same as CCR-O, we show the difference
between the optimal weight sets in two output-oriented models. In
the input-oriented situation, DEA-R-I derives not only a different
efficiency from CCR-I but also a different optimal weight set. In
addition, the weight sets derived by DEA-R models are more easily
understood than those of CCR because the weight restriction of
DEA-R always holds, but the same is not true for CCR. Therefore,
we claim that the DEA-R model is more suitable under weight
restrictions.

We compare DEA-R-I with DEA-R-O after comparing DEA-R
with CCR. Compare the improvement strategies. The left part of Ta-
ble 5 shows that the strategies of the input-oriented models are
different from output-oriented models, both CCR and DEA-R. Then
compare the efficiency scores of DEA-R in different orientations.
The efficiency scores of DEA-R-I are different from those of
DEA-R-O whether or not there are weight restrictions. Unlike the
difference between two CCR models, which is only different
improvement strategies, the differences between DEA-R-I and
DEA-R-O are in both strategies and efficiency. This means that
DEA-R-I cannot be replaced with DEA-R-O and that the develop-
ment of DEA-R-I is necessary.

Finally, compare the DEA-R-I with CCR-I in the situation with-
out weight restrictions. The left part of Table 5 shows that DEA-
R-I without weight restrictions has a greater value than CCR-I. This
result does not contradict our proof. The middle part of Table 5
shows the improvement strategies, which are translated from the

Table 4
Two-inputs-two-outputs.
DMU Input Output
Sickbed Doctor Outpatient Inpatient
5(E) 2.0 3.0 4.0 3.0
6(F) 2.0 2.7 3.0 5.0
7(G) 2.0 2.7 42 42
8(H) 2.0 2.7 5.0 3.0
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Table 5
Efficiency scores, strategies and optimal weight sets for DMU 5(E).
Without restriction 0o X X, Y, Y, V1Xq hXo Ury4 Usy>
CCR-1 0.857 1.71 2.57 4.00 3.00 1.000 0.000 0.571 0.286
CCR-O 0.857 2.00 3.00 4.67 3.50 1.167 0.000 0.667 0.333
0o X 5 Y} Y W11 Wiz W1 W22
DEA-R-I 0.870 1.74 2.61 4.00 3.00 0.652 0.348 0.000 0.000
DEA-R-O 0.857 2.00 3.00 4.67 3.50 0.667 0.333 0.000 0.000
With Restriction 0o X X, Yy Y, V1X1 hXo uy1 Usys
CCR-1 0.800 1.60 2.40 4.00 3.00 0.333 0.667 0.533 0.267
CCR-O 0.800 2.00 3.00 5.00 3.75 0.417 0.833 0.667 0.333
0o X X5 Y} Y, Wit Wiz W1 W22
DEA-R-I 0.811 1.62 243 4.00 3.00 0.000 0.324 0.676 0.000
DEA-R-O 0.800 2.00 3.00 5.00 3.75 0.000 0.357 0.643 0.000

efficiency score. DEA-R-I without weight restrictions shows that
we need a change of X/ from 2 to 1.740 (i.e. 2,000 beds to 1,740
beds) and X, from 3 to 2.610 (that is, 300 doctors to 261 doctors)
and keep the same output. CCR-I1 shows that values of X = 1.714
(1,714 beds) and X}, = 2.571 (2,571 doctors) are needed. This result
shows that the changes of DEA-R-I are less than those of CCR-I in
the situation without weight restrictions. Based on these results,
we claim that the DEA-R-I strategy is always easier to achieve than
the CCR-I strategy. We can conclude that DEA-R-I can replace CCR-I
in all input-target situation.

5. Conclusion

In this paper, we developed an input-oriented ratio-based mod-
el (DEA-R-I) for calculating efficiency scores and identifying input-
target improvement strategies in situations with weight restric-
tions. We also show further proof of our model in order to claim
that this model can replace the CCR-I model in situations without
weight restrictions. A numerical example shows the difference be-
tween DEA-R-O and DEA-R-I to support our claim that the develop-
ment of the DEA-R-I model is necessary for input-oriented
situations with weight restrictions. This example further supports
the claim that DEA-R-I can also provide easier improvement strat-
egies than CCR-I in situations without weight restrictions. Because
of its accuracy in situations with weight restrictions and its better
strategy, we claim that DEA-R-I can replace CCR-I in all input-ori-
ented situations.
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