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Numerical Range and Poncelet Property

Hwa-Long Gau�
and Pei Yuan Wu�

Abstract

In this survey article, we give an expository account of the recent developments on

the Poncelet property for numerical ranges of the operators S(�). It can be considered

as an updated and more advanced edition of the recent expository article published

in the American Mathematical Monthly by the second author on this topic. The new

information includes: (1) a simpli�ed approach to the main results (generalizations of

Poncelet, Brianchon{Ceva and Lucas{Siebeck theorems) in this area, (2) the recent

discovery of Mirman refuting a previous conjecture on the coincidence of Poncelet

curves and boundaries of the numerical ranges of �nite-dimensional S(�), and (3)

some partial generalizations by the present authors of the above-mentioned results

from the unitary-dilation context to the normal-dilation one and also from the �nite-

dimensional S(�) to the in�nite-dimensional.

||||||||||||||||||||||||

2000 Mathematics Subject Classi�cation: Primary 15A60, 47A12; Secondary 14H99.

Key words and phrases: Numerical range, Poncelet property, unitary dilation.

�This work was partially supported by the National Science Council of the Republic of

China under research projects NSC-91-2115-M-008-011 and NSC-91-2115-M-009-009

of the respective author.

2



1. Introduction

In recent years, the research on the numerical ranges of �nite matrices and bound-

ed operators has been very active, thanks to the biennial convening of the WONRA

(Workshop on Numerical Ranges and Numerical Radii). (For more information on

this, check the webpage http://www.resnet.wm.edu/�cklixx/wonra02.html.) One

area of investigations concerns the numerical ranges of the �nite-dimensional com-

pressions of the shift. It was discovered that the boundaries of their numerical ranges

possess the Poncelet property, meaning that there exist in�nitely many polygons with

the property that each has all its vertices on the unit circle and all its sides tangent to

the asserted boundary. This yields an unexpected link between the twentieth-century

subject of numerical range and some nineteen-century gems of projective geometry.

An expository account of this development was given in [35], which explains the per-

tinent results in a historical context. The purpose of this survey is to update this

previous account by providing a simpli�ed approach and expounding the recent dis-

coveries. Chief among the latter is the one by Mirman that not every algebraic convex

curve in the open unit disc which has the Poncelet property arises as the boundary of

the numerical range of the asserted operator, thus refuting a previous conjecture on

identifying such numerical ranges by the Poncelet property. We will also elaborate

on our recent attempts in generalizing the main results in this area to more general

contexts such as general convex polygons instead of polygons with vertices on the unit

circle and general compressions of the shift instead of mere the �nite-dimensional ones.

In Section 2 below, we start with a brief review of the de�nition and basic prop-

erties of numerical ranges of operators on a Hilbert space. We also discuss the notion

of dilation and its connection with numerical ranges. Section 3 then treats numerical

ranges of �nite matrices. Here the extra tool of Kippenhahn curve proves very useful.

It involves the point-line duality of the projective plane. Section 4 considers the com-

pressions of the shift, whose numerical ranges will be the main focus of this paper.
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Several di�erent representations of such operators, one analytic and two matricial, are

presented, each of which has its merit in exposing certain properties of their numerical

ranges. Section 5 gives the main results on the Poncelet property for the numerical

ranges of the compressions of the shift on �nite-dimensional spaces. There are three

of them: generalizations of the Poncelet porism (on the existence of in�nitely many

interscribing polygons between two ellipses), Brianchon-Ceva theorem (on the condi-

tion for the tangent points of an inscribing ellipse of a triangle), and Lucas-Siebeck

theorem (on the relation between zeros of a polynomial and its derivative). We then

move on to the partial generalizations of these results in Section 6.

2. Numerical Range

Let A be a (bounded linear) operator on a complex Hilbert space H. The nu-

merical range of A is the set W (A) � fhAx; xi : x 2 H; kxk = 1g in the complex

plane, where h�; �i denotes the inner product in H. In other words, W (A) is the image

of the unit sphere fx 2 H : kxk = 1g of H under the (bounded) quadratic form

x 7! hAx; xi. Some properties of the numerical range follow easily from the de�ni-

tion. For one thing, the numerical range is unchanged under the unitary equivalence

of operators: W (A) = W (U�AU) for any unitary U . It also behaves nicely under

the operation of taking the adjoint of an operator: W (A�) = fz : z 2 W (A)g. More

generally, this is even the case when taking the aÆne transformation: if

f(x+ iy) = (a1x + b1y + c1) + i(a2x + b2y + c2)

is an aÆne transformation of the complex plane C , where x; y and aj; bj and cj; j =

1; 2, are all real and the latter satisfy a1b2 6= a2b1, and if we de�ne f(A) to be

(a1Re A+ b1Im A + c1I) + i(a2Re A + b2Im A+ c2I);

where Re A = (A + A�)=2 and Im A = (A � A�)=(2i) are the real and imaginary

parts of A, respectively, then W (f(A)) = f(W (A)) � ff(z) : z 2 W (A)g. Thus the
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numerical range can be considered as an aÆne property of the operator. In this study

of numerical ranges, the reduction through aÆne transformations is a handy tool in

many situations.

The most important property of the numerical range is that W (A) is always con-

vex. This is the celebrated Toeplitz{Hausdor� Theorem from 1918-19 [31, 15]. Over

the years, there are numerous proofs and generalizations of this fact. The usual proof

is to �rst reduce it to the case of 2-by-2 matrices (since the de�nition of convexity

involves only two points at a time) and show that the numerical range of the latter

is a closed elliptic disc or one of its degenerate forms (circular disc, line segment or

a single point). Indeed, if A =

�
a b

0 c

�
, then W (A) is the elliptic disc with foci a

and c and minor axis of length jbj. An easy proof of this is to reduce A to

�
0 1

0 0

�

via some aÆne transformation and check directly that the latter has numerical range

fz 2 C : jzj � 1=2g (cf. [19]).

The numerical range is a bounded set, but is not closed in general. For example,

if S is the (simple) unilateral shift on l2:

S(x0; x1; � � � ) = (0; x0; x1; � � � );

then W (S) equals the open unit disc D = fz 2 C : jzj < 1g. However, if the operator

A acts on a �nite-dimensional space, then W (A) is obviously closed and hence com-

pact. For an arbitrary operator A, the closure of its numerical range W (A) always

contains the spectrum �(A). Hence the numerical range gives a rough estimate of

the location of the spectrum. This is one of the reasons to study the numerical range

and provides its main applications. If A is normal, then W (A) equals �(A)^, the

convex hull of �(A). Thus, in particular, if A is a normal (�nite) matrix, then it-

s numerical range is a polygonal region whose vertices are some of the eigenvalues of A.
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A natural question in the study of numerical ranges is to determine which nonemp-

ty bounded convex set is the numerical range of some operator on a separable Hilbert

space. (Note that if nonseparable Hilbert spaces are allowed, then every such set is

the numerical range of some normal operator; compare [26].) Even more intricate

is to determine, for each positive integer n, the numerical ranges of operators on

an n-dimensional space. Although many necessary/suÆcient conditions are known,

a complete characterization is beyond reach at this moment. One condition on the

boundary of the numerical range is worth noting. If4 is a closed convex subset of the

plane, then every nondi�erentiable point of the boundary @4 of 4 has two distinct

supporting lines of 4 with angle less then � such that the closed section formed by

them contains 4. Such a point is called a corner of 4. According to this de�nition,

the endpoints of a line segment are corners. A result of Donoghue [8, Theorem 1] says

that a corner � of W (A) which also belongs to W (A) is a reducing eigenvalue of A.

The latter means that there is a nonzero vector x such that Ax = �x and A�x = �x.

The proof of this makes use of the geometric fact that an elliptic disc which is con-

taining � and contained in W (A) must be reduced to a line segment. It follows that

if A is an n-dimensional operator, then W (A) can have at most n corners. This gives

a certain constraint on the shape of the numerical range of a �nite-dimensional oper-

ator. Using the condition for the equality case of the Cauchy{Schwarz inequality, we

may prove the analogous result that any point � in W (A) satisfying j�j = kAk is a

reducing eigenvalue of A.

Associated with the numerical range W (A) is the quantity w(A), the numerical

radius of A, de�ned by sup fjzj : z 2 W (A)g. For example, if S is the unilateral shift,

then w(S) = 1, and if A is normal, then w(A) = sup fjzj : z 2 �(A)g.

We say that the operator A on space H dilates to B on K or B compresses to A

if there is an isometry V from H to K such that A = V �BV . It is easily seen that
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this is equivalent to B being unitarily equivalent to a 2-by-2 operator matrix of the

form

�
A �

� �

�
. The notion of dilation and compression is closely related to that of

numerical range. For one thing, the numerical range itself can be described in terms

of dilation. Namely, for any operator A, the numerical range of A is the same as the

set of complex numbers � for which the 1-by-1 matrix [�] dilates to A. On the other

hand, if A is an operator which dilates to B, thenW (A) is contained inW (B). Hence

a judicious choice of a nicely behaved B can yield useful information on the numerical

range of A. One type of dilation which will be fully exploited in our derivations in

Sections 5 and 6 is the unitary dilation of contractions. The classical result in this

respect is Halmos's dilation: every contraction A (kAk � 1) can be dilated to the

unitary operator 2
4 A (I � AA�)1=2

(I � A�A)1=2 �A�

3
5

(cf. [14, Problem 222 (a)). With more care, the unitary dilation can be achieved

in a most economical way: if A is a contraction on H, then A can be dilated to

a unitary operator U from H � K1 to H � K2 with K1 and K2 of dimension-

s dA� � dim ran (I � AA�)1=2 and dA � dim ran (I � A�A)1=2, respectively, and,

moreover, in this case dA� and dA are the smallest dimensions of such spaces K1 and

K2. Here dA and dA� are called the defect indices of the contraction A. They provide

a measure on how far A deviates from the unitary operators and play a prominent

role in the unitary dilation theory.

Properties of numerical ranges of operators are discussed in [14, Chapter 22]; those

for �nite matrices are in [16, Chapter 1]. The two classic monographs [4] and [5] treat

the numerical ranges of elements of normed algebras; the more recent [13] emphasizes

applications to numerical analysis.

3. Numerical Range of Finite Matrix
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For the study of numerical ranges of �nite matrices, the matrix-theoretic properties

can be exploited to yield special tools which are not available for general operators.

One such tool is the characteristic polynomial of the pencil xRe A+yIm A associated

with any matrix A. This can be utilized in two di�erent ways to yield W (A) or its

boundary. One is via Kippenhahn's result that the numerical range of A coincides

with the convex hull of the real part of the dual curve of det (xRe A+yIm A+zI) = 0.

In this way, the classical algebraic curve theory can be brought to bear on the study

here. On the other hand, a parametric representation of the boundary @W (A) can

also be obtained from the largest eigenvalue of cos �Re A+sin � Im A yielding useful

information on W (A). Here we give a brief account of both approaches.

Let C P
2 be the complex projective plane consisting of all equivalence classes

[x; y; z] of ordered triples of complex numbers x; y and z which are not all zero.

Two such triples [x; y; z] and [x0; y0; z0] are equivalent if x = �x0; y = �y0 and z = �z0

for some nonzero �. The point [x; y; z] (z 6= 0) in homogeneous coordinates can be

identi�ed with (x=z; y=z) in nonhomogeneous coordinates. On the other hand, the

point (u; v) becomes [u; v; 1] in homogeneous coordinates. In this way, C 2 is embed-

ded in C P
2. If p(x; y; z) is a homogeneous polynomial of degree d in x; y and z, then

the set of points [x; y; z] in C P
2 satisfying the equation p(x; y; z) = 0 is an algebraic

curve of order d. If C is such a curve, then its dual C� is de�ned by

C� = f[u; v; w] 2 C P
2 : ux+ vy + wz = 0 is a tangent line of Cg:

In this case, C� is also an algebraic curve of order at most d(d � 1) and d is called

the class of C�. It is known that the dual of C� is C itself. The point [x0; y0; z0] is a

focus of C if it is not equal to [1;�i; 0] and the lines through [x0; y0; z0] and [1;�i; 0]

are tangent to C at points other than [1;�i; 0]. In general, if a curve is of class d

and is de�ned by an equation with real coeÆcients, then it has d real foci and d2 � d

complex ones, counting multiplicity.
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For an n-by-n matrix A, let

pA(x; y; z) = det (xRe A+ yIm A+ zIn)

and let C(A) denote the dual curve of pA(x; y; z) = 0. Since pA is a real homoge-

neous polynomial of degree n, the curve C(A) is given by a real polynomial of degree

at most n(n � 1), is of class n, and has n real foci [aj; bj; 1]; j = 1; � � � ; n, which

correspond exactly to the n eigenvalues aj + ibj of A. The connection of C(A) with

the numerical range W (A) is provided by a result of Kippenhahn [18]: W (A) is the

convex hull of the real points of the curve C(A), namely, the convex hull of the set

fa + ib 2 C : a; b 2 R; ax + by + z = 0 is tangent to pA(x; y; z) = 0g. Kippenhahn's

result can be easily veri�ed by noting that x = max �(Re (e�i�A)) is a supporting

line of W (Re (e�i�A)) for any real �. Since it can be shown that @W (A) contains

only �nitely many line segments, the above result implies that @W (A) is piecewise

algebraic, that is, it is the union of �nitely many algebraic curves.

There is another way to make the above to be more revealing. For any nonemp-

ty compact convex subset 4 of the plane, there is a natural parametrization of its

boundary @4. For any �; 0 � � � 2�, let L� be the ray from the origin which has

inclination � from the positive x-axis, and let M� be the supporting line of 4 which

is perpendicular to L�. If d(�) is the signed distance from the origin to M�, then @4

can be \parametrized" by �(�) = (x(�); y(�)), where

x(�) = d(�) cos � � d0(�) sin �;

y(�) = d(�) sin � + d0(�) cos �:

It can be shown that d(�) is di�erentiable for almost all � and is equal to max fRe (e�i�z) :

z 2 4g. In particular, if 4 =W (A) for some operator A, then

d(�) = max �(Re (e�i�A))

= max �(cos �Re A+ sin � Im A)
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for all �. This shows that, for a �nite matrixA, the degree-n polynomial pA(cos �; sin �; z)

in z has �d(�) as a zero. As an example, if A is the 3-by-3 matrix diag (1; i; 0), then

d(�) =

8>>><
>>>:

cos � if 0 � � � �

4
or 3

2
� � � � 2�;

sin � if �

4
� � � �;

0 if � � � � 3

2
�;

and the natural parametrization of @W (A) (=the triangular region with vertices 1; i

and 0) is given by

�(�) =

8>>><
>>>:

1 if 0 < � < �

4
or 3

2
� < � < 2�;

i if �

4
< � < �;

0 if � < � < 3

2
�:

In particular, this shows that the natural parametrization is not a parametrization

in the usual sense: it does not traverse the line segments on the boundary; but the

convex hull of its image equals @4.

4. Compression of the Shift

Compressions of the shift are a class of operators studied intensively in the 1960s

and '70s. Playing a role analogous to the companion matrix in the rational form for

�nite matrices, they are the building blocks in the \Jordan form" (under quasisim-

ilarity) for the class of C0 contractions. The whole theory is subsumed under the

dilation theory for contractions on Hilbert spaces developed by Sz.-Nagy and Foia�s.

The standard reference is the monograph [30]; a more complete account of the theory

of C0 contractions is given in [3].

We start by noting that the unilateral shift S has another representation as

(Sf)(z) = zf(z) for f in H2, the Hardy space of square-summable analytic func-

tions on D . This analytic model of S facilitates a complete description of its invariant
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subspaces. Indeed, according to the celebrated theorem of Beurling (1949), all nonze-

ro invariant subspaces of S are of the form �H2 for some inner function � (� is inner

if it is bounded and analytic on D with j�(ei�)j = 1 for almost all real �). The

compression of the shift S(�) is the operator on H(�) � H2
	 �H2 de�ned by

S(�)f = P (zf(z));

where P denotes the (orthogonal) projection from H2 onto H(�). Thus S(�) is the

operator in the lower-right corner of the 2-by-2 operator matrix representation of S

as 2
4 � �

0 S(�)

3
5 on H2 = �H2

�H(�):

This class of operators was �rst studied by Sarason [29] and has been under intensive

investigation over the past 35 years. In particular, it is known that kS(�)k = 1; S(�)

is cyclic (there is a vector f (= 1� �(0)�) in H(�) such that
W
fS(�)nf : n � 0g =

H(�)), and its commutant fS(�)g0 (� fX on H(�) : XS(�) = S(�)Xg) and double

commutant fS(�)g00 (� fY on H(�) : Y X = XY for every X in fS(�)g0g) are both

equal to ff(S(�)) : f 2 H1
g. The inner function � is the minimal function of S(�)

in a sense similar to the minimal polynomial of a �nite matrix, that is, it is such that

(a) �(S(�)) = 0, and (b) � is a factor of any function f in H1 for which f(S(�)) = 0.

An operator A is (unitarily equivalent to) a compression of the shift if and only if it is

a contraction, both An and A�n converge to 0 in the strong operator topology, and the

defect indices dA and dA� are both equal to one. It follows from these conditions that

the compression of the shift is irreducible, that is, it can have no nontrivial reducing

subspace.

For �nite matrices, the characterization of compressions of the shift in even easier:

A is such an operator if and only if it is a contraction, it has no eigenvalue of modulus

one and dA = 1. In this case, A is unitarily equivalent to S(�) with � is the �nite

11



Blaschke product

�(z) =
nY

j=1

z � aj

1� ajz
;

where aj's are the eigenvalues of A in D . We let Sn denote the class of such matrices.

An example in Sn is Jn, the n-by-n nilpotent Jordan block

2
6666666664

0 1

� �

� �

� 1

0

3
7777777775
;

with the corresponding inner function �(z) = zn. By the results in Section 2, matrices

in Sn admit unitary dilations on an (n + 1)-dimensional space. For this reason, Sn-

matrices are called matrices admitting unitary bordering or UB-matrices by Mirman

(cf. [21, 22, 23]). Since S(�) is de�ned by its minimal function �, we infer that for

any n points a1; � � � ; an in D (not necessarily distinct) there is a matrix in Sn, unique

up to unitary equivalence, with the aj's as its eigenvalues. A more speci�c description

of a matrix in Sn with eigenvalues the aj's is given by [aij]
n

i;j=1, where

(1) aij =

8>>><
>>>:

aj if i = j;

[
Q

j�1

k=i+1
(�ak)](1� jaij

2)1=2(1� jajj
2)1=2 if i < j;

0 if i > j:

This matricial representation was �rst discovered by Young [36, p. 235] (cf. also [28,

p. 201], [21, Theorem 4] and [11, Corollary 1.3]). In particular, it follows that S2

consists of 2-by-2 matrices which are unitarily equivalent to a matrix of the form

2
4 a (1� jaj2)1=2(1� jbj2)1=2

0 b

3
5

with a and b in D . There is another representation for matrices in Sn which is

useful for our discussions in Section 5. If A is in Sn, then it has the singular value
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decomposition A = UDW , where U and W are unitary and D is a diagonal matrix

diag (1; � � � ; 1; a) with 0 � a < 1. The equality WAW � = (WU)D shows that A is

unitarily equivalent to (WU)D, a matrix of the form

(2) [f1 � � � fn]

whose columns fj satisfy kfjk = 1 for 1 � j � n � 1; kfnk < 1 and fj ? fk for

1 � j 6= k � n. Conversely, a matrix of the above form with no eigenvalue of modu-

lus one is in Sn.

>From the information we have so far on the compressions of the shift, we can

already deduce certain properties of their numerical ranges. Let A be a matrix in

Sn. Then W (A) must be contained in the open unit disc D . This is because if � in

W (A) is such that j�j = 1 (= kAk), then it will be a reducing eigenvalue of A, which

contradicts the irreducibility of A. On the other hand, by Donoghue's result and

the irreducibility of A, we may deduce that the boundary of W (A) is a di�erentiable

curve. In the subsequent sections, we will discuss other �ner properties of W (A).

5. Poncelet Property

The recent establishment of a link between the numerical ranges of matrices in Sn

and some classical geometric results from the 19th century was achieved by Mirman

[21, 23, 22, 24] and the present authors [9, 10, 11, 12]. Here we give a brief account

of this development.

Our �rst result has to do with a geometric theorem of Poncelet. In this treatise

[27] of 1822, there is contained the following result, called Poncelet's porism or Pon-

celet's closure theorem: is C and D are ellipses in the plane with C inside D, and if

there is one n-gon circumscribed about and inscribed in D, that is, the n-gon has n

sides all tangent to C and n vertices on D, then for any point � on D there is one
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such circumscribing-inscribing n-gon with � as a vertex. This is a porism because

the assertion says that some property (the existence of a circumscribing-inscribing

n-gon) either fails or, if it holds for one instance, succeeds in�nitely many times. It is

a closure theorem since, from any point � on D, we draw a tangent line to C, which

intersects D at another point, then repeat this process by drawing tangent lines from

successive points obtained in this fashion, and obtain the resulting closed n-gon when

the nth tangent line reaches back to �. Viewed dynamically, this gives a con�guration

of rotating n-gons with di�erent shapes but all sharing this circumscribing-inscribing

property. Since the appearance of this result, a huge literature has been developed to

its explanation, exposition and generalization. A comprehensive survey of this topic

can be found in [6]. We may normalize the outer ellipse D as the unit circle @D via

some aÆne transformation and the inner ellipse C is transformed into one in D with

the n-Poncelet property. More precisely, for n � 3, we say that a curve � in D has the

n-Poncelet property if for every point � on @D there is an n-gon which circumscribes

about �, inscribes in @D and has � as a vertex. It is natural to ask whether there are

curves other than ellipses in D which also have the n-Poncelet property. The next

theorem provides more examples.

Theorem 5.1. For any matrix A in Sn and point � on @D , there is a unique (n+1)-

gon which circumscribes about @W (A), inscribes in @D and has � as a vertex. In fact,

such (n+1)-gons P are in one-to-one correspondence with (unitary-equivalence class-

es of) unitary dilations U of A on an (n+1)-dimensional space, under which the n+1

vertices of P are exactly the eigenvalues of the corresponding U .

This theorem appeared in [21, Theorem 1] and [9, Theorem 2.1]. The easy part of

the proof is to show that every (n+1)-dimensional unitary dilation of a matrix A in Sn

has distinct eigenvalues which form an (n+1)-gon inscribed in @D and circumscribed

about W (A) with each side tangent to @W (A) at exactly one point. To show that
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such (n+1)-gons run over every point of @D takes more work. Instead of outlining its

details, we resort to the matrix representations (1) and (2) for A to give the speci�c

(n+ 1)-dimensional unitary dilations U . If A is represented as in (1), then U can be

taken as [bij]
n+1

i;j=1, where

(3) bij =

8>>>>>><
>>>>>>:

aij if 1 � i; j � n;

�[
Q

j�1

k=1
(�ak)](1� jajj

2)1=2 if i = n+ 1 and 1 � j � n;

[
Q

n

k=i+1
(�ak)](1� jaij

2)1=2 if j = n + 1 and 1 � i � n;

�
Q

n

k=1
(�ak) if i = j = n+ 1;

for some � in @D . Here � acts as a parameter for the unitary dilations U . On the

other hand, if A is as (2), then U can be

(4)

2
4 f1 � � � fn�1 fn g

0 � � � 0 �a �kfnk

3
5 ;

where j�j = 1; a = (1� kfnk
2)1=2 > 0 and

g =

8<
:

�(a=kfnk)fn if fn 6= 0;

any unit vector orthogonal to f1; � � � ; fn�1 if fn = 0:

Both (3) and (4) can be used to prove that the (n + 1)-gons with vertices the eigen-

values of U cover all points of @D (the latter is in [9, Theorem 2.1]).

Theorem 5.1 yields additional properties for the numerical ranges of matrices in

Sn.

Corollary 5.2. Let A be a matrix in Sn. Then

(a) W (A) is contained in no m-gon inscribed in @D for m � n,

(b) w(A) > cos(�=n),

(c) Re A and Im A have simple eigenvalues, and
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(d) the boundary of W (A) contains no line segment and is an algebraic curve.

Here (a) is an easy consequence of the (n + 1)-Poncelet property of @W (A), (b)

follows from (a), (c) is a consequence of, besides the Poncelet property, the interlacing

of the eigenvalues of Re A and Re U for (n+1)-dimensional unitary dilation U of A,

and �nally (d) follows from (c) by way of Kippenhahn's result. All assertions except

(d) are in [9].

If A is in Sn, so is e�i�A for any real �. Hence the eigenvalues of Re (e�i�A) are

all distinct by Corollary 5.2 (c). The curves �j; j = 1; � � � ; n, described by �j(�) =

(xj(�); yj(�)) with

xj(�) = �j(�) cos � � �0
j
(�) sin �;

yj(�) = �j(�) sin � + �0
j
(�) cos �;

where �j(�) is the jth largest eigenvalue of Re (e�i�A), are expected to have
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