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The main research results we have obtained are as follows. Based on the
qualitative description on the system and the experimental data got from the
input-output of the system, a new approach to investigate the dynamic features and
control methods on unknown systems is suggested, which is independent of the
precise model of plant. The approach consists of some new concepts and methods.
Two basic concepts ----- the system observation variable and the system output
response function based upon system input sequence over time are proposed. The
mathematical model on multi-objective optimal control for unknown systemsis
presented, which is formulized by using of the response function. The Pareto rule
base and approximate Pareto optimal control method for multi-objective optimal
control problems are suggested. Some sufficient conditions are obtained for the
conventional fuzzy control algorithm to be aPareto one. Based on the system
output process trend controlled by a control input sequence, a qualitative model -----
Monotone Inertial System is proposed, which can be used to describe most MIMO
plants with no exactly mathematical model or unknown systemsin practical
engineering. In amonotone inertial system whose inputs and outputs have a
monotone relation and the output is of time inertia. Base on this model, a measure
method of Pareto rule and a method to construct a Pareto rule base with the ordinary



optimal objectives such as the rising-time, overshoot and settling time are presented.
Further more, we suggest two new concepts for fuzzy control rules----- the extension
rule and effective rule, and give a methods to analyze the system control stability,
which is different from Lyapunov method. Moreover, an approach to construct an
effective rule base for an unknown nonlinear monotone inertial system is presented,
which only depend on some finite data getting from the system. Simulation results on
strong nonlinear systems show that the methods we proposed are effective and
feasible.
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Where g1 V4, g, are the objectives and hx, k=1,...,p+q, the constraints.
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Optimal Fuzzy Control For Unknown Nonlinear Systems)

Multiobjective Pareto Optimal fuzzy Control for Nonlinear Unknown Systems

Abstract: This paper isfocused on the optimal control problem on the
nonlinear unknown systems with multiobjectives. The concept of
system output response function based upon system input sequence
over timeis proposed, and the problem is formulized with it.
Considering the fact that afinite response curve set is easy to be
obtained, we suggest the Pareto rule-base and the approximate Pareto



control algorithm for multiobjective control optimization based on the
finite response curve set. In this way, an easy method to find a Pareto
rule-base for the complicated multiobjective optimal control problem
is presented, that converts the problem to be one resolved only in a
finite set consisting of input-output date and curves over time. It can
guarantee that every rule'sinput and output base point is optimally
matched in Pareto sense within the known set of input and output of
the system. Moreover, some sufficient conditions are obtained for the
conventional fuzzy control algorithm to be a Pareto one. Which shows
that, if the rule-base is composed of Pareto rules, then for any inputs
between two rule base-point, the corresponding output of the algorithm
Is aso bounded by the two corresponding out base-points of the two
rules. From the view of approximation, the Pareto algorithm can
guarantee the system response is of Pareto performance relative to the
objectives. As an illustration, the theory is applied to Monotone
Inertial System, which is proposed as a qualitative model for a class of
multi-variables nonlinear system whose inputs and outputs have the
relation of monotone and time inertia. Simulation results support the
theories presented in this paper, and show that the fuzzy controller
based on the Pareto rule-base presents very good behaviorsin
adaptivity, robustness and tracking with time-varying setpoint process.

Keywords. Control theory, Fuzzy control, multiobjective optimization,
Pareto, Monotone Inertial System.

1. Introduction

Multiobjective optimization control problems on nonlinear systems can be
divided into two classes, i.e. the one that can be formalized with specific functions
and the one with no available system model, which is also be called multiobjective
optimization control problems with unknown nonlinear systems. For the
multiobjective optimization problems with functional objective function and
constraint condition, there are many approaches appearsin literatures, such asthe
balance set [1], Weighted Pareto front[2] and the e-constraint method [3], etc. To
break away from the limit of traditional method on optimization and to utilize the
powerful calculation ability of the computer, genetic algorithm iswidely applied to
complicated multiobjective optimization problems [4-7]. But the algorithm usually
need afitness function



concerning with the objective functions to evaluate the decision variables to be
searched. So this kind of method is still essentially need to know the functional
relation between the objective functions and the decision variables. The
multiobjective optimal control problem is compounded from the theory of
optimization and the theory of control. Since the plants or systems to be controlled
become more complicated than ever before. The research on the theory of
multiobjective control optimization is so important that many scholars employ oneself
investigating on it. A lot of related works on multiobjective optimization for different
kinds of control methods was published on transactions or journals, such as the
optimal-tuning or designing methods on PID controller in mutiobjective]8-9], robust
control and H2/H¥ control [10,11], the weight selection problems on multiobjective
optimization[12-13], etc. But multiobjective optimization control problems on
nonlinear unknown systemsis always a difficult problem. It expresses as several
aspects: First is no available specific mathematics model to be used, and we can only
recognize the system based upon some experiences or its input-output data; Second is
the control objective can not be formulized specifically to a function of control input
in quantitatively; The third is that there are many uncertainty in its running process.
Asaresult, only afew papers on fuzzy control in multiobjective optimization could
be found in literatures. These references provide some good ideas to such problems.
Reference [14] suggest a optimal method for membership functions with genetic
algorithm, but this method have to depend on the plant model, otherwise the searching
function can not be into action effectively. Another method combining the genetic
algorithm with on line data seems can obtain a good effect [16]; the work [18]
presents a control structure with a decomposing part and synthesizing part. It firstly
designs a controller to each objective separately, then according to the system states to
get the output of the controllers by a soft switch based on weight synthesis method, so
that the total control objective can be fulfilled. The methods which is equipped with
what is called neuro-fuzzy combiner with reinforcement learning capability, can find
the suitable weighting value of each sub-controller by training its neura -fuzzy
network. It provides an effective approach for akind of systems that the
multiobjective can be decomposed to single-objective tasks. In reference [19], a
modulation method to multiobjective is proposed. It firstly uses the model of the
plant to have the membership function of the fuzzy rules optimized by genetic
algorithm; then, to remove the difference between model and the practical plant, the
response surface methodology was adopted to approximate the control objectives with
a second-order regression models, which is a function whose variables are some
parameters of the membership functions; and finally the GA is employed again to find
the optimal coefficients of the second-order regression models. The simulation shows



agood result. Christer Carlsson [15] proposed a description approach based on fuzzy
rules to the multiobjective optimization problems, which the functional relationship
between the decision variables and the objective functions is not completely known,
and, gives amethod to determine the crisp functional relationship between the
decision variables and objective functions. Other method on optimization of fuzzy
controller can be found on [17]. All these contributions enriched the multiobjective
fuzzy control theory, but they do not touch upon some more important design theory
on multiobjective optimization of fuzzy control. To overcome the difficulties existing
on the fuzzy control problem on multiobjective optimization with unknown system,
the key is to establish afeasible method to describe the relation between the
objectives and the output response function of the plant. And, what is the most
important is just to find the control function or the functional relation between the
plant states and its the control inputs such that each control objectives can get alevel
as high as possible, or get the maximum of some compromise function about the
objectives. This paper isfocused on the fuzzy controller design problem to MIMO
nonlinear unknown system with multiobjective optimization. It is obvious that to find
the optimal control function for this problem seems not realistic and even impossible,
so we adopt the following steps. At first we express system output response as a
function based upon system input sequence over time and formulize the problem with
it. Then, the supporting degree of aruleto asingle objective is defined, follows the
optimal rule is defined in Pareto sense within aknown rule set in which the rules have
the same response region and base point but different outputs. Finally, a approximate
Pareto control algorithm is suggested in the idea that, the algorithm matched with a
Pareto optimal control input-output couple set of the plant, and for any input bounded
by two inputsin that set the agorithm should guarantee the corresponding output (i.e.
the control input of the plant ) is also bounded by the two inputs. By means these
concepts, we can further discuss conditions for a conventional fuzzy control to be an
approximate Pareto control algorithm.

The main contents of the paper are organized as follows. Section 2 presents some
basic concepts and terms. Section 3 gives the suggestion on general formula of the
multiobjective optimal control and main concepts, which include the Pareto rule base
and approximate Pareto control algorithm. Section 4 give the main conclusions
addressed on the conventional fuzzy control algorithm. In section 5, the Monotone
Inertial System is proposed, and simulation results are presented aso in this section.

2. Basic concepts and symbols

For MIMO nonlinear systems that only some incomplete information are known
or that state equations are hard to be obtained, the usual way investigating them isto
observe their input-output data and the response process. To express these kinds of



systems or plants effectively, we introduce the concepts, i.e. Observation State
Variables and Response Function of system outputs. For explicitly, we must
emphasi ze that the system inputs (outputs) are different from the fuzzy controller
inputs (outputs). The system inputs means the plant inputs, but the inputs of afuzzy
controller usually come from the plant outputs. On the other hand, the outputs of a
fuzzy controller are just as some input of the system or plant, so that the controller can
control the system or plant. Different controller usually owns different inputs.
Throughout this paper we use the following terms with the meaning specified.

Control variables. that are the input variables of the plant or system to be
controlled. The domain their valuelieinis called as their universe of discourse.

System outputs: that are the plant outputs, they will be changed with the change
of system inputs.

System setpoint: the desirable system outputs value ( for single output ) or point
( for multi-output ).

Error: the difference between the system output and the setpoint.

Definition 2.1 ( System Observation Variables) All the systems parameters that
can be measured by instruments and can be used to the controller design are called as
system observation variables. So the system setpoints, system outputs, system error,
the error’s derivatives with respect to time and some character parameters of system
output response, are all the system observation variables. The point or element on the
universe of discourse of the system observation variablesis called as system state. We
call afuzzy point and a crisp point on the universe of discourse of the system
observation variables afuzzy state and a crisp state, respectively.

Note that the system state in this paper is different from that in the state-space
methods. Here every state can be measured by means of instruments or some
surveying methods.

Definition 2.2 ( control algorithm and control system). A mapping
f: I'X®U
CEN X (e LX)
(2.1)

is called acontrol algorithm. Where /i [0,+¥) isafinite or infiniteinterval, Xthe
domain of system state, U the domain of system control input . Obviously, the control
algorithm dominates the system state response over time, so the process can be
expressed as a curve or surface over time, which is called the track curve or surface of
the system state generated by control algorithm 7. A couple which consists of a
controller and a plant ( or aprocess) is caled a Control System, and denoted by S P,f),
simply write as S, where Pisthe plant (or process) controlled, fthe control agorithm.



Since aplant often is a complicated system acted by multi-factor, some times we call
the plant the system to be controlled.

Note that for all control methods, no matter what kinds they are, the final
expression is arelation between the grasp system observation variables and the grasp
control input of the plant. Often, different control approaches usually have the
different set of observation variablesto be used. A control method always uses a
subset of system observation variables.

In an intelligent control system with the computer asits kernel, the control
algorithm’s outputs or the inputs of the plant are usually changed in the step way. The
system state tracks depend on the control sequencesand time t&.  When the system
specific model is hard to find, the following qualitative description is more useful.

Definition 2.3. Let S=(S,Y4,8) be asystem with ginputs and r outputs. Let x be
the disturbance with domain X, and u=( t4,---,ug) the inputs with domain
U=Uy" %" Uy . Let ug,u,---,up are the step sequence of v with theinitial value up such
that v jumps from u=ujy1 to u=uy attime t, k=1,---,n. Obviously, controlled by
Uo,Lh,- - -,Up, the system response process of outputs Swith initial §f,up) can be
expressed by a function vector with variables time ¢, control inputs v and disturbance
X, . We denote the function as J¢t,u,x |uo,us,---,Up) , and call it as the response function
vector of plant P (Response Function for short ) controlled by control sequence
Uo, U, -+, Up.

To the multi-input multi-output systems, for ssmplicity, we use X to denote
St Ulto,th, -+, Up) i.e. Xk expresses the system output vector at the time instant £ .
Note that the control input changes at time &, from uk_1to Uk, k=1,---,n, SO Xx can be
regarded as a function with arguments Xj.1, Uk-1,t and expressed as S(Xk1, Usk1,t) for
simplicity.

In most cases, the disturbance can be considered as some noise of the system
inputs, so we can write St,u,x|uo, U, - -,Uy) 8 St,u|up,us,---,Up) for convenient .

3. General formula on multiobjective optimal control problem

The problem to design a optimal controller on multiobjective unknown system, is
to design a control algorithm such that for any initial state, the controller can generate
acontrol sequence such that the corresponding response function can meet all the
objectives on some compromise sense. Note that among the objectives, most of them
are time-varying and some of them even depended on the whole process. For example,
in the automatic control system of avehicle, several apparent requests are safety, high
speed, comfortable feeling and lower gasoline rate. The first two goals can be
considered as real time and the last two requests relating to the whole control process.
By observing the general cases on multiobjective control problems, we can get a



conclusion that the satisfying degree to each objective is depended on the features of
the response function St,u|uo, s, - -,U,). Considering that all evaluation to the
objectives must be finished in afinite time, we can assume the control sequenceis
finite. So the general form on multiobjective optimal control problems can be
formulized as followings.

Objective function vector:

Maximize At uluo, -+, up))=( u(Stulto,un, -+, u)) Ya gl St U0, UL, -,U))))

3.0

Subject to:
(St uluo,un,---,up))3 0Ya A St ulto, th,- -+ ,uy))2 O (3.2
hpr (St U|Uo, U, -+, U)))=0,Ya , Bp+ f St U UG, U, -+ -, Uy))=0 (3.3)

Where g1 V4, g, are the objectives and hy, k=1,...,p+qthe constraints.
Let Wdenote the feasible region of control input v implied by the constraints, and
| acompromise operator defined as
l R® R
"x=(x, X)) Rox®1 ()1 R
The optimal problem can be converted to find a control input sequence
(wt), (b)), -, (W, th)
such that

At ,-,1)) )= max | (AL ultio,th, -, 1)) (34)

Where vl U,k=1Y4l.
Remark: When considering the minimize case, the “max” in equality (3.4) should
be replaced by min, and the corresponding compromise operator be changed al so.

Thefollowing are severa compromise operators in common use [23].

Minimum operator

I 1( X1, X)= XU xoU- - -Ux;, (3.5
Weighting Minimum operator
| o( X1, %)= WU wexeU- -~ U WXy, (3.6)

Where, wié 0, k=1,%,n, and & w=1.
k=1

Pure weight operator

n

| 3( X, X0)= k?’a_l Wik, (3.7)

Where, w80, k=1,Ya,n, and & w=1.
k=1

Other operatorsrefer to [21,22,24].



From the model depicted above, we can see that the response function
St u|uo,th,- -, Up) can not be expressed explicitly in quantitative if the plant model is
unknown, or even the plant model is known, very often the response function is hard
to obtained. Therefore, the conventional method to resolve the multiobjective
optimization could not be used directly. In the next, we try to get amethod by
imitating the acquisition process of human control experience. We begin the discuss
with severa basic definitions.

Observing the process of controlling a complicated system by human, we can
find that he usually take a manner as“ adjusting --- waiting---observing ”. In that
process, he looks at the system output response features closely (that maybe include
the trends, the change rate of the speed, the maximum and the minimum of the output
curve and the shape of the output curve, and so on) so that he could judge if the output
is controlled by the input he just take or if any abnormal behavior occurs. If the any
abnormal phenomena happened then he would take a control action to deal with that.
So adetailed experience rule of human can be depict as follows:

If xisx(f) then uvis u(t, T, sothat Chara(g)l Normal and x(#+ T)=g(x(),u(f)) otherwise uis u/' (¢, T;)

Where, u(t, T;) isthe control input at timeinstant £, T;is the anticipative action time of
the control input; Chara(g) is observable features, gis the response function; Normal
isthe set of the normal features of the response function; u(t, T) is the control input
when the processis abnormal; t'and T'; denote the time instant that the abnormal
phenomena happens and the anticipative action time of u’, respectively. We call the

rule a control rulewith perfect information.

The most important messages contained in the perfect information rule are the
fuzzy matching relation between the system observable states and the control inputs,
the action time and the forecast states after the action time.

Let Acand x, denote the fuzzy state and crisp state of system P on the time instant
ti, respectively. Further more, let W4 and uy denote the fuzzy control inputs and the
crisp input on the time instant &, respectively. For any state A, and control input 1,
the correspond state in time 7 is called the fuzzy result state, which is denoted by
PA Wk, Ti). Similarly, in the case of crisp state and control input, we call the
correspond state the crisp result state and denote it by p(X, Uk, Tx ). When k=1,2, ...
the correspond adjust call the k-th adjust, by thisway, P(Ac, Wk, Tx) and p(Xk, Uk, Tk)
iscal asthe k-thadjust result fuzzy state and crisp state, respectively.

Evidently, p(X«, Uk, Tx ) can be obtained by the features of St,u|uo,th,:--,Up).

Definition 3.1 (Extension rules) Assumethat X=X;" ---" Xpand U=U;," --- " Up
are the universe of discourse of the observable states and the control inputs of system
P, respectively. An extension rule is formulated as the following form



R: If x(?) is Athen u(?) is Wso that x(t+7) is B
(3.8)

And, there are two positive constants 7o and 71, suchthat " T, O<T,E TE T3, the
following two statements hold.
(1) " x suppA " ul suppW, the result state x(t+T)= p(x,u , T)1 syppB
(3.9)
(2) " B suppB, $xi suppASul suppWsuch that p(x,u, T)=b
(3.20)
Where Al F*(X), WI F*(U), Bl F*(X). Call Btheresult state of therule R, and 7o, T2
the minimum and maximum expected action time. Let 7=(Tp+ 71)/2, and call it the
expected action time of rule R. For smplicity, writeRas R=(A, W, T ; B),i.e. R=
(AWT; B).

Different rules own different expected action time, which can be used to describe
arule avoiding from some high dimensional information that is unknown. Strictly
speaking, the information used to depict the extension rule is not perfect, so we must
spend some time as the cost to win the prediction to the result state of the rule. In fact,
the exciting region (some author call the range that the ruleis on)of theruleisa
section region of the perfect information space cut by the imperfect information space
which the rule based upon. In that region, it can be ignored or foreknown that the
actions of al kinds of the information that belong to the perfect information space and
do not appear in the rule. The expected action time is enclosed to arule so that the
result state can land on aregion in the perfect information space in which all the
information that do not appear in the rules can be ignored or whose action can be
predicted. In a short word, in the exciting range and result range, all the information
unused in therulesis out of action. For example, if the control rules are described
only by the error, then the rules can be used only when the system output is a an
equilibrium state or the error is very large when the influence of error change to the
system output can be ignored. It isthat reason that the rules can be depended upon
only the error and is independent of the change of the error. The expected action time
of arule should be large than the smallest time within which the system outputs trend
become clear.

It should be noted that when take arule into application, there are two conditions
should be satisfied. One is the expected action time of the last rule over (if theruleis
not the first one), another is the rule must be the one with the largest exciting value to
the present system state among all the rules.

Definition 3.2 (Completerule-base) Let X=X;" ---" X, be theobservation



universe of the system P, U the universe of control inputs. Let the j-th control rule be
formalized by

R:1f xyisAzand X isAp and --- and x, is A, then uis G (3.7
Where Ad F*[X{, Gl F*[U], j=1,---,q, k=1,---,n . For smplicity we write R as

Py A
(4,C), where A=Q Ay, =An" " An 1.e" x=0q, X))l X
k=1

AM=U 4, 00)= A:1000 -+ U A(x) (38)

Call therule set R={ R,,---,R} arulebaseof P, if " x=(x,---,X)I X, $RI Rsuch that
Ai(x)* 0. R issaid to bean active rule at input x or excited by input x if A(x)* 0. In
addition, we call suppA; the response area of the rule R (or the fuzzy state A; ), so on
some times we write suppA; as suppR;, and call A{(x) the response intensity of rule R;
at input x ; Similarly, call suppAi« the resonance areaof Aj. Call xpthe input base
point of therule R if A{(xo)=1. And upthe output base point of therule R if
Ci(uo)=1.

Definition 3.3 (Supporting degree for arule to an objective) Let R=(A,W,T; B) be
an extension rule of aplant P, aisthe input base point and vthe output base point of
R, respectively. Let o(St,uluo,th,--+,Up)) is an objective function of the system.
Considering the system response function St,u|up,us) with initial state a and control
input u;=v, and the favored degree g( t,u|uo,th)) yielded by St,uluo,th) to the
objective gwithintimeinterval i [#,t+7] , we call the favored degree as the
supporting degree of the rule Rat the base point a with respect to the objective g.
And simply, call it the rule R's supporting degree to objective g, writeas g(R). Ina
simpler way , g(St,u|uo,us)) can be replaced by g(b), where bis the base point of the
result state Bof rule R

Rul€e's supporting degree to an objective can be used to make an order of the rules
which have the same response area, so that the most suitable rule can be selected
among them in term of that order.

Definition 3.4 (Pareto rule) Let A =Q,E ---E Q, be arule-base of system P,
where Q={ Ra,"--,Ru} » k=1,---,q, have the same response area and input base point.
Let o(t,u|to,th,---,Uy)) be the objective vector of the systemand | (xq,-++, X;) a
compromise mapping . A rule R, is called a Pareto rule relative to the known rules
set Qk (ssmply call a Pareto rule) if

oR)=U 1 (@R, 3ARe) (39

Where  g(St,uluo,th, -+, Up))=( (St u|to, U, +,Un)),Ya g St UlUo, U, -+, Up)))
Call arule-base a Pareto rule base if every ruleinit isaPareto rule.



Definition 3.5 (Approximate Pareto optimal control algorithm) Assume that u,
Lo, ...Upare the Pareto optimal control inputs according to the system state xa, x», ...,
Xp, respectively. Let facontrol algorithm such that f(x)=u; ,/i=1,...,n. Call fan
approximate Pareto optimal control algorithm versus Pareto couple set { (x;,u;)
|i=1,...,n} if for any state x is bounded by x; and x; in Coordinate order, where, 1 f, /,
J1{1...n} implied that f(x) is aso bounded by f(x1) and f(x2) in the Coordinate order.

4 . Analysis of Pareto featuresfor fuzzy control method based on Pareto rule
base

We write conventional fuzzy control algorithm as CFCA, which employs
singleton fuzzification, Center of Area defuzzification and “max-min” composition
inference rule. Further more, we assume that any two membership functions of input
(or output) in the universe of discoursed can intersect only if they are adjoining, and
the base point of any membership function can excite only one membership function.
By utilizing the conclusions of reference [25], we have the following results.

Theorem 4.1 If aPareto rule base R={ R,,---,R;} is monotone and all the output
membership functions of therulesin R take the shape of isosceles bend-triangle,
then the single-input-single-output conventional fuzzy control algorithmisan
approximate Pareto optimal control algorithm versus the rule base point couple set
{(a,c)),i=1,2Y4 g}, where g and ¢; are the input base point and output base point of
rule R, respectively, i=1,2,%q.

Proof : Let fdenote the single-input-single-output CFCA. Since the assumption of
the theoremisjust same asthat in[25], so f isamonotonic agorithm. We only need
to provethat fsatisfiesthat for /=1,2,Y4n

flai )= ci 4.1)

In fact, by the assumption that any two membership functions of input or output
can intersect only if they are adjoining and the assumption that al the base point of
any membership function can excite only one membership function. we have that if
the crisp input is an base point &, so it only excitesrule R, Notethat (g ) isjust the
center of area of the output fuzzy number of rule R; , and the output fuzzy number of
rule R, .is symmetric, so equality (4.1) holds.

Theorem 4.2 Assume R={ Ri/=1,---,m, k=1,---,n} be amonotone increasing
Pareto rule base for the two-input single-output CFCA f, where R=(A’ By, Cy) and
al of A, B, areisoscelestriangle fuzzy number, Cjx areisosceles bend-triangle
fuzzy number. Furthermore, Assume Ry j=1,---,m, k=1,---,nsatisfy that:

(1) The base point of Ry only excites Ry .

(2) Two rules must be simultaneously excited at every points but the base points.



3)" j, il {1,--,m," kh1 {1,---,r} if j+k=i+hthen Cx=Cir, (soSmply write as

Gi+k)

Then f an approximate Pareto optimal control algorithm.

The proof is almost the same with that in [25] and is omitted.

The geometry sense of the two theorems

can beillustrated as Fig. 4.1. in which the x;
isthe goal state from initial state x3, X, by
control input th and w, respectively. When
A [min(x, ), max(x , )], the control
method fcan guarantee f{xX)1 [min(tx, w),
max (L, k)], so the system output response
bounded by the two curves corresponding to
the Jt,ufto, i)l [min(St,uth, k)
St U, ), max (S, Uth, th) St Ute, b))].
Remark: The conclusions of theorem
4.1 and 4.2 hold also when the defuzzifier is
replaced by Center of Gravity. And the proof

A
X —¥()6,b)
Sf,UILIo,Ul) .........
(xa,t)
Xo,br):
(e,h) >
O tl t2 t
Figdl System output response modulated by

approximate pareto control algorithm

process is almost the same as the theorems 4.1 and 4.2, respectively.

It should be note that all the output fuzzy number of therulein therule baseis
asked to be shaped as isoscel es bend-triangle, but in the engineering or practical fuzzy
controller design, much often the output fuzzy membership function is taken the
shape as Fig 4.2. So the monotonicity of the CFCA could not be guaranteed. In this
situation, we can take a monotonic mapping j from the original universe X of the

rules output to anew universe X’ asfollows.
Jji X® X
such that j (a)=b;, i=1,%,9. Such a
mapping is easy to construct. For example,
it can be obtained by taking a piecewise
composite functions as follows
J OGS O @) ]
A [a,a1]
where /= 1,¥49, and a; iswell selected
depending on expanding or compressing.
By this way, we can always take isosceles

fuzzy membership function as the partition
on the new universe of the rules output,

/XN

a & B ddsa ar as 2]

J(@)=b,i=1,2Y,.9

v

SR

b b b bbb b b b X

Xy

Fig 4.2 Universe Transform Illustration. Where Xand X’
are the original universe and the new one,
respectively.



whichiscaled liner universe. Therefore, by theorem 4.1 and 4.2, the monotonocity
of the CMA can be guaranteed when the CFCA is regarded as a mapping from the
original observable universe to the original plant input universe, even the original
plant input universe is not partitioned by isoscel es bend-triangle membership
functions.

5. Application on monotonic inertial systems
5.1 monotonicinertial systems

Thereare alot of systemsor plantsin industrial processes with a monotone
relation between its inputs and outputs and time inertial. The systems usually operate
in awide circumstance and are asked for multiobjective optimization. For most cases,
such systems mathematical models areill-defined, or could not be used due to some
sensor limit in practice. At the controller design point, the plant information is
incomplete. Such systems are very often to meet in engineering. For example, the
anneal furnace heated with resistance and the water heater with gas fired for shower
as well asthe traction motor with heavy loads, etc. These plant outputs can
automatically reach an equilibrium state when the control inputs are fixed at some
point after itsinertial time. Surely that some systems can get an equilibrium point
only on some specific input. For instance, a moving car only when its moving
direction parallels the car body, the velocity of it can get an equilibrium point if the
brake and throttle position fix. Anyway these kind of systems are the most practical in
engineering and are worthy to be study in asystematic way. Before we introduce the
main concept about those systems, several related terms are needed to be specified.

Considering the response function St,uduo,th,---,up) of aplant P, if there existsa
numberd>0 and an integer K& 0 such that S¢,uduo,us,- - -,Up) do not change when time
fi (t-d, t] or [t, t+d), then ¢t iscalled an equilibrium point, and S(t,uguo,ts, -, Up)
an equilibrium state of the system.  Suppose that the equilibrium state only depend
on the control input vy, so we denote the equilibrium state as Juy).

Here after, if system P can reach a equilibrium state on control input point v,
then we use S u) to express the equilibrium state on the control input v, where t does
not appears to imply that the equilibrium state is independent to time. This part of
paper is focused on the systems that can automatically reach at an equilibrium state
when the control input is fixed for an enough long but afinite time.

Let S(t,uluo,ln,---,up) denote the k-th component of the response function
S{t,u|uo, th,- - -, Up) starting form an equilibrium state. Let
T=sup{t [XI X, to,th, U1 U," t>t+t, S(tuf Uo,Us, - Un)= S{Un)}
(5.2



If 7<¥, then call T asthe maximum inertial time of S respective to control input

Note that the inertial times of an output component
vary with different control inputs. (5.1) Givesthe
maximum transient time from any initial stateto an
equilibrium state of the system. It give atime bound that
we can judge or observe the performances of the system
output after a control input taking into action.

Definition 5.1 . Let A(X) be afunction with single
argument with domain X. We say A(X) is monotone
(strictly monotone )increasing at x, if $4>0," x,

X1 Mx,d)i Xand x;<x, such that
A)EA)(A(X)<A(X))holds . Similarly, the monotone
(strictly monotone) decreasing at a point of afunction can
be defined. A interval /i Xis called as a monotone (strictly
monotone) interval of A(X) iff

(1) A(X) has the same monotonicity (strictly
monotonicity) at any pointin /.

(2)" X 1, Iisthe maximum interval which keeps the
same monotonicity and includes point x.

Definition 5.2 Let wp,tn,---,u, be astep control
sequence such that U1t tk. k=1,---, n. Connecting points
(tw Uy, k=0,---,nin succession with piecewise-line, we get a
curve t=A(1), il [y, ;] satisfiesthat ux= [y, k=0,---, n.
The number of monotone interval of fis called the
monotone times of that step control sequence ,and denoted
by Numo(p,th, -+ ,uy). Similarly, The number of
monotone interval of fon the interval [, is denoted by
Numo(f ;[ t,1).

Observing the systems those inputs and outputs has
the relation of monotone and time inertia, we can find the
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Fig 5.1 Sketch map of system
output response shapes when
input in the step change

common characteristic as follows. no matter the inputs are changed continuously or
step-like, the system outputs is always continuous; When the system output are
moving up (or going down), any control action that make the output convert to its
opposite trend is applied to the system, the output will still maintain the moving up (or
going down) trend for some time; If the input changes in step with variousinitial
states, the ordinary output response of the system are just like the cases (&), (b) and



(¢)showed in Figure 5.1. Please note the convex and concave features of the curves.
The case (d) in figure 5.1 is unordinary, which in succession presents two processes of
the output change speed from increasing to decreasing. Such systems are not taken
into count in this paper; If two different step inputsis taken under sameinitial state
respectively, then the two response will keep the same relation in magnitude at any
time (i.e. the output state of one responseis alwayslarger (or smaller) than that of
another); The inertiaof the system presents filter function to the inputs; System can
automatically reach to an equilibrium state. That means that, if the control input is
fixed then the system outputs can automatically reach an equilibrium state in atime
which is not long than the inertiatime 7, and the final equilibrium state only depends
on the last term of the control input sequence; Starting from the time instant where the
input changes in step, the system output have no equilibrium state except the fina
one.

Considering the al the ordinary features, we suggest the next definition about the
above system from a qualitative point. For simplicity of description, we only depict it
with respect to the SISO system.  For the MIMO systems, we can convert it to the
situation that only one output component of the response function is considered and
only one of the control inputs changes while let other inputs be fixed. So it can be
converted to the case as a SISO system.

Definition 5.3 ?? Let Sbe a observation variable and va control input of the
controlled system P. Pis said to be a monotone increasing inertial system with respect
to Sand uif it satisfies the following conditions:

(1) Sismonotonic continuous function of v such that
" Uo,th,tl U and thfEw," 13 thimplies
Stu| o, t)E SLU Lo, k)
(5.2
(2) For any step control sequence sequence t,th, ---,U, of uwith initial value w,
the response function St,uf W, h, ---,Uy) starting at equilibrium state S, W) is
twice differentiable with respect to ¢ and satisfies that
@ " m’=1,2,---, the monotone interval number of St,uf to,th,--,Uy) iN [, t,+T]is
smaller than or equal to 2 . And, St,uf ,th,---,Us1) and St,uf to,ta,---,Uy) have
the same strict monotonicity at point ¢..
(b) For aresponse function St,uf W, n,---,Uy) starting from a equilibrium state
b, W) the following inequality holds:
Numo(§ [to, t2#+T]) £ Numo(h, th, -+, )
(5.3)
(©) "3 T LU,y Un) = S Un)
(5.4



where T isthe inertia time of observation variable Swith respect to control
input u.

(d) Let t,=inf t|Stulto,th,- -, Up)=SUp), >t} if Ut U1 then thereisno
equilibrium point of Son the open interva (i, t )

(e) There are at most two times converting from concave to convex or from
concave to convex on the curve St ufto, L, - -,Up) over theinterva [, t,+T].

Some times we simply write St,uf to,t,---,Uy) as S(t,u) when we don't mind
what the specific control input sequence o, th, -, Uy iS.

Figure 5.2 shows a sketch map to the response process of a monotone increasing
inertial system. On the picture, we can see the relation between the monotone number
of the control input sequence w, i, -+, s and the monotone interval number of the
response function and how the system output moves up and goes down with the input
sequence. Case (a) presents a process of a control input sequence changed in step
along time ¢t and its corresponding curve connected by the piecewise-line, where the
coordinate of pkis (t Uy, k=0,---,6. Case (b) presents the system response
corresponding to the input sequence ,---,Us, Noting that the moving up interval on
case (@) from ps to ps disappeared on case (b) , i.e. some chattering or the oscillations
of the input sequence are filtered by the inertia of the system . Obviously,

Numo(t,- - -,ug)=5 and Numo( S| ty,ts+T])=4, So the latter number of monotone
interval isless than that of the formers.

In general, for the MIMO system we R ;
have o -
Definition 5.3 A system (or plant) P p° A .2— ‘
to controlled is called a monotone O 4 oLt & 4 & & r
increasing inertial system with respect to (& Monotone times of the step change

sequence of input Numo(te,th, *** ,Us)=5

3[,”/ u]!ull ” IUG)
Num [to, t6+T]):4

control inputs ta,---,Unand outputs S, -+, S,
if for al j and k ,the P is amonotone
increasing inertial system with respect to

S

control inputs ¢; and S, ,where j=1,---,m,
k=1,---,n.

Here we have some remarks on the Fig. 52 Monotone number of the step input
definition.  When the relation between sequence and the corresponding system output
. . . . response of amonotone inertial system
input and output is monotone decreasing, it
can be converted to a monotone increasing one by taking a proper variable substitute.
Systems inertia time depends on all inputs, so in practical systemsit can take an
average value or tradeoff value as areference in design.

»

o & &6t & L & & T,
(b) System output response St.uf to,th, ", U)




For alot of MIMO systems, it is very often decomposed to a SISO by control
different input on different time segment. To implement this control strategy, it is
usually to make the system state reach at some state at first, then to adjust only one
input while keep others fixed. From the viewpoint of short timeinterval, the MIMO
system can beregarded asa
combination of SISO in time sequence.
In the next, we mainly discuss the SISO
systems.

n
o
T
1

5.2. Refining of Pareto rule base on
monotone inertial system

]
]
T

Plant outpul

[u]
[
T

For the monotone inertial system,
the usua control objectives are rise time,
overshoot and the settling time when
setpoint is changed in a step mode.
System setpoint usually is changed in a
range, or according to a function of time.
To obtain agood dynamic performance
on al setpoints, the incremental of the
system input is usually designed as the
fuzzy controller ‘s outputs. So control
rule base must balance all cases. On the Time t
other hand, if afuzzy controller is
implemented by microprocessor, to
reduce the memory space is always a problem worth considering. Constructing a good
rule base seems to be the most effective ways to reduce the memory space. As known,
to evaluate something, we must base upon the knowledge or experience about it, so to
construct a Pareto optimal rule base to a plant with only partial information being
known, it isinevitable and absolutely necessary to acquaint ourselves with the
performance of the plant. The method to get a the Pareto rule depicted bellow, is
mainly motivated that if a control ruleis applied to the plant, it must have an
influence on every control objective, so its supporting degrees to the objectives can be
defined in term of those influences. The main ideaisthat, first makes use of the
features of the response curves to determine the supporting degree of the state and
control incremental couples to the objective, and then to find the optimal couplesin
Pareto sense, finally to construct a Pareto rule-base whose input output base pointsis
just the optimal couples. For ssmplicity, we only discuss the SISO system.

—
=
T

Fig 5.3 A response curve set of amonotone

The follows presents a method to construct a Pareto rule-base whose rule output
is control incremental, and the control objectives are minimum overshoot and



maximum rise-time at all setpointslocated in ainterval. Since relation between the
plant input and output is nonlinear, so the final solution isto find the output
incremental of the rule, which must be tradeoff between all control input position.

Let [ M, My and [a,b] are setpoint interval and the output range of the plant,
respectively. Select ainput set C={ &,c,--+,¢;} such that a<c<---<c, For every
d C,we can get aresponse curve of the plant. Let G={ St,utp,th) |tb=0 th=c;
i=,1,2,...,n} bethe curve set obtained, which looks like Fig 5.3. Let §¢) expressthe
equilibrium value, /=,1,2,...,n. Let V={ v, W}, such that = ), = §¢), i<j and v,
b arethe nearest valueto M, Mier, respectively. Let E={ &, ... ,ex1} betheerror
rank set such that @<...<e&,.1. To areference point vi V' and the setpopint v+ex,
k=,1,2,...,p, we define overshoot as afunction with variable Du=c-c, asfollows.

A overshoot(e,Du;,V) _l Sc)- (vte) Iif Jc)- (v+e)>0

_% 0 otherwise
(5.5)
B_overshoot( e, Du;,V) =;i,(~)9(0/) - (v+e) 0;;;5;; (v+e)<0
(5.6)

Where A overshoot( e, Du;,V) and B_overshoot( e, Du;,V) are the above overshoot
function and below overshoot functons.

Let Miw=max{ A_overshoot(e,Du;,V)|i=0,...n} and
Mi.=max{ -B_overshoot(e,Du;,V)| i=0,...n}, the supporting degree of a couple (e,Du;)
with respect to the reference point vcan be defind as a function with variable Du; as
follows.

A _support(e,Duj, )= 1-A_overshoot( €, Du;, ) M.
(5.7)
Let Wi.=max{ risetimeg e, Du;,V)|i=0,...,n} and
Wi.=max downtime e,Du;,V)|i=0,...n}, define that
R_support(e, Duj, V)= risetime(e Duj, )I\W
D _support(e, Du;, V)= downtime( e, Duj, /Wi

i A_support(Du;, e,, WUR support(Du;,e.,V) if e >0
goal(e,Du, V)= ppor(Du; , &, V) U R_support(Du;, &, V) " &
1 B_support(Du;, e,, ) U D_support(Du;, e,,V) if g, <0

B _support(e, Du;, )=1+B_overshool( &, Du;, )| My
(5.8
Note that the supporting degrees are bounded by 0 and 1. Similarly, we can deal
with the rise-time and down-time by a function with variable Du; as follows.



r/setinﬂa(,aj,,wz‘:'%[s(cf)' v if 30,-)-. v>0and g >0
10 otherwise
(5.9)
downtime(e,upy= LY XN i 1) - (and €, <0
i0 otherwise
(5.10)

Let Wi.=max{ risetimeg e, Du;,V)|i=0,...,n} and
Wi.=max downtime e,Du;,V)|i=0,...n}, define that

R _support(e, Du, V)= risetime &, Duj, )/\W .
(5.11)
D_support(e, Duj,v)= downtime( e, Duj, /Wi
(5.13)
i A_support(Du,, e, ) UR_support(Du,,e,,v) if e >0
goal(e,Du, )= “ e
1 B_support(Du;, e, v) UD_support(Du;,e,,v) if € <0
(5.19)
To select the effective control incremental relative to reference point Vi V, a

effective index J is defind by
il if|Sc+Du)- (vte) Kl c)- (vte)l
J(@Du= . - ‘
10 otherwise
(5.15)
By equadlities (5.5) —(5.15), we can formula the Pareto optimal couple of (e,Du;)
as the solution of the optimal problem :

Maximize Objective:  Goal(e,Du)= a>goal(e,Du;,vi)+b >goal(e, Duj, ),
(5.16)
Subjectto: DT { ¢-cy4| i=0,...n}O{ ¢-Cp| i=0,...n},
(5.17)
J (€D, 1)U (& Dui, 1) =1
(5.18)
Where a,b are the weight parameters, and  a,b% 0, a+b=1.
By resolving the problem , we can get a Pareto optimal couple set X={(e&, Duy)|
k=1,...p}. Partition theinterval [ &, e,1] with triangle fuzzy number into p ranks, and
let A bethe k-thrank fuzzy number, which is defined by

Ascuf] (x8c1)! (eree1)])Ucul] (8! (8w1-6d]. (5.19)
Where k=1,...,p, and “ cut ®®” function is difined as



_1x if xI [0]]
cut(x) 1o otherwise

(5.20)
Further more, Let DU={ Duy, k=1,Y,p} bearank set of the control incremental,
and w=minDU,
Ci& cut] (x Duje+w)/ ) Ucu] (Duirw- X)/ v
(5.20)
Where k=1,...,p,

According to the rule-base definition, we get arule-base A ={ (A C)|k=1,...,0} .
From the process of its construction, we know whose input output base point are
optimal matched in Pareto sense relative to the control demand on overshoot and
risetime, soA iscan beregarded as apareto rule-base. Since C; isisosceles
triangle fuzzy number, so the CFCA based on it is pareto control algorithm. The
constraint of effective index can guarantee the control output converges to the setpoint,
so the fuzzy control system are stable. However, afact must be pointed out that if
the plant is only controlled by the CFCA based the rule-base obtained, a steady-error
maybe exist. But which can be compensated easily by intelligent bisection control
method even a directive bisection control method, and can reached at a error to the
setpoint in any precision. Although the rule-base is constructed only based on the
error and without considering the change of error, the controller's output is the plant
input’s incremental, so it is more adaptive and robust than the fuzzy controller with
position output mode. The simulation on a nonlinear plant shows that the controller
not only can adapt a very wide range of the setpoint ,but also presents a good tracking
behavior to the change of setpoint.

5.3 Simulation results

Considering a plant with a nonlinear model as follows.
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The method suggested in this paper is used to the plant. Fig 5.3 is the plant output
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Fig 5.4 Simulation results at three setpoint with different

response curves yielded by taking input vin steps with an equal space Du=0.2. The
plant can be regarded as a monotone inertial system. From Fig 5.2, it can be see that
the plant output is more sensitive at larger input than that at the smaller input relative
to the same incremental. So the nonlinearity of plant is obvious. In this situation, if a
fuzzy controller with position output mode is adopted, to obtain a good control
features in different setpoints, it have to divide the setpoint interval to severa
segments, and , for each segment a special rule-base is constructed. The problem
along with it is more memory space is heeded to save the rule-bases. The method
presented in this paper can resolve this problem on some extent. Fig 5.4 gives the
simulation results with different preferences on overshoot and rise-time at three
setpoints, the preferences include that the rise-time is top-priority and small overshoot
istop-priority as well as a tradeoff between the two objectives with same importance.
Fig 5.5 gives the tracking results that the setpoint are time-varying in different
function over time. All the ssmulation results are obtained only by the same one
simple CFCA with only a same one rule-base including eleven rules. The design
reference points is y=20 and y=50, but the controller present a good behaviors at other
setpoints and time-varying situation.

6. Conclusions
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There are many difficult problemsin deal with nonlinear unknown system with
multiobjective control optimization. This paper proposes a mathematical description
by means of the system output response function based on control input sequence.
Which can be easily realized by the input-output data of the system. The proposed
concepts of support degree of arule to an objective, the Pareto rule-base and the
approximate Pareto control algorithm give ideas and approaches to build an optimal
fuzzy controller. All these concepts can be quantified easily in practical controller
design. Moreover, some sufficient conditions are presented for a conventional fuzzy
control algorithm to be an approximate Pareto control method. To verify the theory
suggested in this paper, we put forward to a qualitative model of Monotone Inertial
System and a method to construct a pareto optimal rule-base compromising the
rise-time and overshoot with some other constraints for it. Research shows that the
CFCA based on that rule base is an approximate control method, and the method
together with amonotone inertial system is a stable control system. Simulation on a
nonlinear plant supports the theories presented in this paper.  Since the rule's output
isincremental way, simulation sows that the controller presents very good behaviors
in adaptivity, robustness and tracking with time-varying setpoint process. Analysis
and simulation also give a conclusion that by using finite knowledge about an
unknown system to construct an optimal rule-base relative to the finite knowledge and



mutiobjective is an effective approach to resolve multiobjective optimization control
problem.
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