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The main research results we have obtained are as follows. Based on the 
qualitative description on the system and the experimental data got from the 
input-output of the system, a new approach to investigate the dynamic features and 
control methods on unknown systems is suggested, which is independent of the 
precise model of plant. The approach consists of some new concepts and methods. 
Two basic concepts ----- the system observation variable and the system output 
response function based upon system input sequence over time are proposed. The 
mathematical model on multi-objective optimal control for unknown systems is 
presented, which is formulized by using of the response function. The Pareto rule 
base and approximate Pareto optimal control method for multi-objective optimal 
control problems are suggested. Some sufficient conditions are obtained for the 
conventional fuzzy control algorithm to be a Pareto one.  Based on the system 
output process trend controlled by a control input sequence, a qualitative model -----
Monotone Inertial System is proposed, which can be used to describe most MIMO 
plants with no exactly mathematical model or unknown systems in practical 
engineering. In a monotone inertial system whose inputs and outputs have a 
monotone relation and the output is of time inertia. Base on this model, a measure 
method of Pareto rule and a method to construct a Pareto rule base with the ordinary 



optimal objectives such as the rising-time, overshoot and settling time are presented. 
Further more, we suggest two new concepts for fuzzy control rules----- the extension 
rule and effective rule, and give a methods to analyze the system control stability, 
which is different from Lyapunov method. Moreover, an approach to construct an 
effective rule base for an unknown nonlinear monotone inertial system is presented, 
which only depend on some finite data getting from the system. Simulation results on 
strong nonlinear systems show that the methods we proposed are effective and 
feasible.  
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§2．研究結果要點內容簡述

2.1 研究的主要思想

我們的主導研究思想是：建立一種

可行的系統輸入輸出回應過程之間的定性關係描述方法，用於確定系統狀態的

動態趨勢；用觀測到的輸入輸出資料，確定系統的動態範圍和某些界限，達到

既可定性分析又可定量估計的目的。這一思想的主要目的則是除了建立一種不

依賴確切數學模型的設計分析方法之外，還應易於工程應用，而不僅僅是一種

理論。

2.2 主要研究結果

1

僅簡述有關概念和結論的宏觀意義 詳細內容請參見附件的論文

2.2.1 提出了新的系統觀測量和響應函數概念

系統觀測量(System observation var iables)

系統輸出過程響應函數(Response Function)



t u u0,u1,L,un

S(t,u |u0,u1,L,un ) ,

2.2.2 給出了未知系統多目標最佳化控制的數學模型

Maximize  g(S(t,u|u0,u1,L,u l))=( g1(S(t,u|u0,u1,L,u l)),…. ..,gn(S(t,u|u0,u1,L,u l)))          
(1)

Subject to:
h1(S(t,u|u0,u1,L,u l))≥0,…,hp(S(t,u|u0,u1,L,u l))≥0                      (2)

hp+1(S(t,u|u0,u1,L,u l))=0,…,hp+q(S(t,u|u0,u1,L,u l))=0                     (3)
Where g1 ,…, gn are the objectives and hk , k=1,… ,p+q, the constraints. 

2.2.3 提出了規則對目標函數的支持度和 Pareto 規則概念

Pareto  Pareto 

2.2.4 提出了近 Pareto 最佳化控制演算法

Pareto 
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2.2.5 給出了常用模糊控制演算法成為近 Pareto 最佳化控制演算法的充分條件

Pareto

Mamdani Pareto 

2.2.6 建立了單調慣性系統模型(Monotone Iner tial System)

MIMO

2.2.7 建立了自平衡單調慣性系統常用控制目標的Pareto  規 則 基 的 一種提

取方法

(Overshoot) ( Rising Time)

(Settling time) Pareto 

Pareto

Mamdani

Robustability

2.2.8 提出了擴展規則和有效規則基概念和不同於 Lyapunov 方法的模糊控制穩

定性分析方法, 給出了單調慣性系統穩定控制的充分條件。

“ --- ---



”

If x(t) is A then u(t) is W so that x(t+T) is B.

t A W

T

B
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Lyapunov

Mamdani

2.2.9 給出了基於有限測試資料的非線性未知單調慣性系統有效規則基的建立

方法

Tuning 

--

Mamdani

2.3 研究結論

Pareto

Pareto

Lyapunov 



§3 後續研究建議

3.1 現狀分析

Lotfi A.Zadeh[20]

Mamdani
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T-S

(Robustness) ( Model 

Identification ) T-S T-S

精確化研究途徑

 T-S

[21-27]

T-S

Mamdani 

[ 15,19,22,26]

[ 22,24,25] [ 28,29] [ 27,31]

T-S



K.Hirota “There is a 

fundamental difference between the theoretically possible and the practically 

feasible”

( 3.1 )

3.2  建議研究目標，內容和創新之處

3.2.1 針對環境參數大範圍變化的非線性未知系統之強健模糊控制器設計

(real time) 

----

T-S
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3.2.2 非線性未知系統之跟蹤模糊控制器設計



(Turning Time)

T-S

3.2.3 汽車自動駕駛多目標最佳化模糊控制器設計方法

Pareto
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附錄 ( Pareto  Multiobjective Pareto 

Optimal Fuzzy Control For Unknown Nonlinear Systems)

Multiobjective Pareto Optimal fuzzy Control for  Nonlinear  Unknown Systems

Abstract: This paper is focused on the optimal control problem on the 
nonlinear unknown systems with multiobjectives. The concept of 
system output response function based upon system input sequence 
over time is proposed, and the problem is formulized with it. 
Considering the fact that a finite response curve set is easy to be 
obtained, we suggest the Pareto rule-base and the approximate Pareto 



control algorithm for multiobjective control optimization based on the 
finite response curve set. In this way, an easy method to find a Pareto 
rule-base for the complicated multiobjective optimal control problem 
is presented, that converts the problem to be one resolved only in a 
finite set consisting of input-output date and curves over time. It can 
guarantee that every rule’s input and output base point is optimally 
matched in Pareto sense within the known set of input and output of 
the system. Moreover, some sufficient conditions are obtained for the 
conventional fuzzy control algorithm to be a Pareto one. Which shows 
that, if the rule-base is composed of Pareto rules, then for any inputs 
between two rule base-point, the corresponding output of the algorithm 
is also bounded by the two corresponding out base-points of the two 
rules.  From the view of approximation, the Pareto algorithm can 
guarantee the system response is of Pareto performance relative to the 
objectives. As an illustration, the theory is applied to Monotone 
Inertial System, which is proposed as a qualitative model for a class of 
multi-variables nonlinear system whose inputs and outputs have the 
relation of monotone and time inertia. Simulation results support the 
theories presented in this paper, and show that the fuzzy controller 
based on the Pareto rule-base presents very good behaviors in 
adaptivity, robustness and tracking with time-varying setpoint process.

Keywords: Control theory, Fuzzy control, multiobjective optimization, 
Pareto, Monotone Inertial System.

1. Introduction

Multiobjective optimization control problems on nonlinear systems can be 
divided into two classes, i.e. the one that can be formalized with specific functions 
and the one with no available system model, which is also be called multiobjective 
optimization control problems with unknown nonlinear systems. For the 
multiobjective optimization problems with functional objective function and 
constraint condition, there are many approaches appears in literatures, such as the 
balance set [1], Weighted Pareto front[2] and the ε-constraint method [3], etc. To 
break away from the limit of traditional method on optimization and to utilize the 
powerful calculation ability of the computer, genetic algorithm is widely applied to 
complicated multiobjective optimization problems [4-7]. But the algorithm usually 
need a fitness function 



concerning with the objective functions to evaluate the decision variables to be 
searched. So this kind of method is still essentially need to know the functional 
relation between the objective functions and the decision variables. The 
multiobjective optimal control problem is compounded from the theory of 
optimization and the theory of control. Since the plants or systems to be controlled 
become more complicated than ever before. The research on the theory of 
multiobjective control optimization is so important that many scholars employ oneself 
investigating on it. A lot of related works on multiobjective optimization for different 
kinds of control methods was published on transactions or journals, such as the 
optimal-tuning or designing methods on PID controller in mutiobjective[8-9], robust 
control and H2/H∞ control [10,11], the weight selection problems on multiobjective 
optimization[12-13], etc. But multiobjective optimization control problems on 
nonlinear unknown systems is always a difficult problem. It expresses as several 
aspects: First is no available specific mathematics model to be used, and we can only 
recognize the system based upon some experiences or its input-output data; Second is 
the control objective can not be formulized specifically to a function of control input 
in quantitatively; The third is that there are many uncertainty in its running process.
As a result, only a few papers on fuzzy control in multiobjective optimization could 
be found in literatures. These references provide some good ideas to such problems. 
Reference [14] suggest a optimal method for membership functions with genetic 
algorithm, but this method have to depend on the plant model, otherwise the searching 
function can not be into action effectively. Another method combining the genetic 
algorithm with on line data seems can obtain a good effect [16]; the work [18] 
presents a control structure with a decomposing part and synthesizing part. It firstly 
designs a controller to each objective separately, then according to the system states to 
get the output of the controllers by a soft switch based on weight synthesis method, so 
that the total control objective can be fulfilled. The methods which is equipped with 
what is called neuro-fuzzy combiner with reinforcement learning capability, can find 
the suitable weighting value of each sub-controller by training its neural-fuzzy 
network.  It provides an effective approach for a kind of systems that the 
multiobjective can be decomposed to single-objective tasks. In reference [19], a 
modulation method to multiobjective is proposed.  It firstly uses the model of the 
plant to have the membership function of the fuzzy rules optimized by genetic 
algorithm; then, to remove the difference between model and the practical plant, the 
response surface methodology was adopted to approximate the control objectives with
a second-order regression models, which is a function whose variables are some 
parameters of the membership functions; and finally the GA is employed again to find 
the optimal coefficients of the second-order regression models. The simulation shows 



a good result. Christer Carlsson [15] proposed a description approach based on fuzzy 
rules to the multiobjective optimization problems, which the functional relationship 
between the decision variables and the objective functions is not completely known, 
and, gives a method to determine the crisp functional relationship between the 
decision variables and objective functions. Other method on optimization of fuzzy 
controller can be found on [17]. All these contributions enriched the multiobjective 
fuzzy control theory, but they do not touch upon some more important design theory 
on multiobjective optimization of fuzzy control. To overcome the difficulties existing 
on the fuzzy control problem on multiobjective optimization with unknown system, 
the key is to establish a feasible method to describe the relation between the 
objectives and the output response function of the plant. And, what is the most 
important is just to find the control function or the functional relation between the 
plant states and its the control inputs such that each control objectives can get a level 
as high as possible, or get the maximum of some compromise function about the 
objectives. This paper is focused on the fuzzy controller design problem to MIMO 
nonlinear unknown system with multiobjective optimization. It is obvious that to find 
the optimal control function for this problem seems not realistic and even impossible, 
so we adopt the following steps. At first we express system output response as a 
function based upon system input sequence over time and formulize the problem with 
it. Then, the supporting degree of a rule to a single objective is defined, follows the 
optimal rule is defined in Pareto sense within a known rule set in which the rules have 
the same response region and base point but different outputs. Finally, a approximate 
Pareto control algorithm is suggested in the idea that, the algorithm matched with a 
Pareto optimal control input-output couple set of the plant, and for any input bounded 
by two inputs in that set the algorithm should guarantee the corresponding output (i.e. 
the control input of the plant ) is also bounded by the two inputs. By means these 
concepts, we can further discuss conditions for a conventional fuzzy control to be an 
approximate Pareto control algorithm.

The main contents of the paper are organized as follows. Section 2 presents some 
basic concepts and terms. Section 3 gives the suggestion on general formula of the 
multiobjective optimal control and main concepts, which include the Pareto rule base 
and approximate Pareto control algorithm. Section 4 give the main conclusions 
addressed on the conventional fuzzy control algorithm. In section 5, the Monotone 
Inertial System is proposed, and simulation results are presented also in this section.

2. Basic concepts and symbols

For MIMO nonlinear systems that only some incomplete information are known 
or that state equations are hard to be obtained, the usual way investigating them is to 
observe their input-output data and the response process. To express these kinds of 



systems or plants effectively, we introduce the concepts, i.e. Observation State 
Variables and Response Function of system outputs.  For explicitly, we must 
emphasize that the system inputs (outputs) are different from the fuzzy controller 
inputs (outputs). The system inputs means the plant inputs, but the inputs of a fuzzy 
controller usually come from the plant outputs. On the other hand, the outputs of a 
fuzzy controller are just as some input of the system or plant, so that the controller can 
control the system or plant. Different controller usually owns different inputs. 
Throughout this paper we use the following terms with the meaning specified. 

Control var iables: that are the input variables of the plant or system to be 
controlled. The domain their value lie in is called as their universe of discourse.  

System outputs: that are the plant outputs, they will be changed with the change 
of system inputs.

System setpoint: the desirable system outputs value ( for single output ) or point 
( for multi-output ).   

Error : the difference between the system output and the setpoint. 

Definition 2.1 ( System Observation Variables)  All the systems parameters that 
can be measured by instruments and can be used to the controller design are called as 
system observation variables. So the system setpoints, system outputs, system error, 
the error’s derivatives with respect to time and some character parameters of system 
output response, are all the system observation variables. The point or element on the 
universe of discourse of the system observation variables is called as system state. We 
call a fuzzy point and a crisp point on the universe of discourse of the system 
observation variables a fuzzy state and a crisp state, respectively.   

Note that the system state in this paper is different from that in the state-space 
methods. Here every state can be measured by means of instruments or some 
surveying methods.  

Definition 2.2 ( control algorithm and control system). A mapping 

                    f :   I×X →U
   ∀(t, x)∈I×X,     (t, x)a u=f(t,x)                              

(2.1)
is called a control algorithm. Where I⊆[0,+∞) is a finite or infinite interval, X the 
domain of system state, U the domain of system control input . Obviously, the control 
algorithm dominates the system state response over time, so the process can be 
expressed as a curve or surface over time, which is called the track curve or surface of 
the system state generated by control algorithm f . A couple which consists of a 
controller and a plant ( or a process) is called a Control System, and denoted by S(P,f), 
simply write as S , where P is the plant (or process) controlled, f the control algorithm.



Since a plant often is a complicated system acted by multi-factor, some times we call 
the plant the system to be controlled.

Note that for all control methods, no matter what kinds they are, the final 
expression is a relation between the grasp system observation variables and the grasp 
control input of the plant.  Often, different control approaches usually have the 
different set of observation variables to be used. A control method always uses a 
subset of system observation variables.

In an intelligent control system with the computer as its kernel, the control 
algorithm’s outputs or the inputs of the plant are usually changed in the step way. The 
system state tracks depend on the control sequences and time t.  When the system 
specific model is hard to find, the following qualitative description is more useful.

Definition 2.3. Let S=(S1,…,Sr) be a system with q inputs and r outputs. Let ξ be 
the disturbance with domain Ξ, and u=( u1,L,uq) the inputs with domain 
U=U1×…×Uq . Let u0,u1,L,un are the step sequence of u with the initial value u0 such 
that u jumps from u=uk-1 to u=uk at time tk, k=1,L,n.  Obviously, controlled by 
u0,u1,L,un, the system response process of outputs S with initial S(t0,u0) can be 
expressed by a function vector with variables time t , control inputs u and disturbance 

ξ, . We denote the function as S(t,u,ξ |u0,u1,L,un) , and call it as the response function 
vector of plant P (Response Function for short ) controlled by control sequence

u0,u1,L,un. 

To the multi-input multi-output systems, for simplicity, we use Xk to denote 

S(tk,u|u0,u1,L,un) i.e. Xk   expresses the system output vector at the time instant tk . 
Note that the control input changes at time tk from uk -1to uk , k=1,L,n, so Xk  can be 
regarded as a function with arguments Xk-1, uk-1,tk and expressed as S (Xk-1, uk-1,tk) for 
simplicity.

In most cases, the disturbance can be considered as some noise of the system 

inputs, so we can write S(t,u,ξ |u0,u1,L,un) as S(t,u|u0,u1,L,un) for convenient .

3. General formula on multiobjective optimal control problem

The problem to design a optimal controller on multiobjective unknown system, is 
to design a control algorithm such that for any initial state, the controller can generate
a control sequence such that the corresponding response function can meet all the 
objectives on some compromise sense. Note that among the objectives, most of them 
are time-varying and some of them even depended on the whole process. For example, 
in the automatic control system of a vehicle, several apparent requests are safety, high 
speed, comfortable feeling and lower gasoline rate. The first two goals can be 
considered as real time and the last two requests relating to the whole control process. 
By observing the general cases on multiobjective control problems, we can get a 



conclusion that the satisfying degree to each objective is depended on the features of 

the response function S(t,u|u0,u1,L,un). Considering that all evaluation to the 
objectives must be finished in a finite time, we can assume the control sequence is 
finite.  So the general form on multiobjective optimal control problems can be 
formulized as followings.

Objective function vector: 

Maximize     g(S(t,u|u0,u1,L,u l))=( g1(S(t,u|u0,u1,L,u l)),… gn(S(t,u|u0,u1,L,u l)))        
(3.1)

  Subject to:
h1(S(t,u|u0,u1,L,u l))≥0,…,hp(S(t,u|u0,u1,L,u l))≥0                (3.2)

      hp+1(S(t,u|u0,u1,L,u l))=0,…,hp+q(S(t,u|u0,u1,L,u l))=0              (3.3)
Where g1 ,…, gn are the objectives and hk , k=1,… ,p+q the constraints. 

Let Ω denote the feasible region of control input u implied by the constraints, and 
λ a compromise operator defined as 

                           λ:     Rn→ R1

                 ∀x=( x1,L,xn)∈ Rn, x →λ(x)∈ R1

The optimal problem can be converted to find a control input sequence 

                  (v0,t1),  (v1,t2) ,L,  (vl, tl+1 )
such that

λ( g(S(t,v|v0,v1,L,vl)) )=
Ω∈luu L,1

max λ( g(S(t,u|u0,u1,L,u l)))             (3.4)

Where vk∈Ù ,k=1,…l.
Remark: When considering the minimize case, the “max” in equality (3.4) should 

be replaced by min, and the corresponding compromise operator be changed also.

The following are several compromise operators in common use [23]. 

Minimum operator
λ1( x1,L,xn)= x1∧ x2∧L∧xn                           (3.5)

Weighting Minimum operator
λ2( x1,L,xn)= w1x1∧ w2x2∧L∧ wnxn,                    (3.6)

Where, wk≥0, k=1,…,n, and
n

k 1=
∑ wk=1.

Pure weight operator 

            λ3( x1,L,xn)=
n

k 1=
∑ wkxk,                               (3.7)

Where, wk≥0, k=1,…,n , and
n

k 1=
∑ wk=1.

Other operators refer to [21,22,24].



From the model depicted above, we can see that the response function 

S(t,u|u0,u1,L,un) can not be expressed explicitly in quantitative if the plant model is 
unknown, or even the plant model is known, very often the response function is hard 
to obtained. Therefore, the conventional method to resolve the multiobjective 
optimization could not be used directly. In the next, we try to get a method by 
imitating the acquisition process of human control experience. We begin the discuss 
with several basic definitions.                  

Observing the process of controlling a complicated system by human, we can 
find that he usually take a manner as “ adjusting --- waiting---observing ”. In that 
process, he looks at the system output response features closely (that maybe include 
the trends, the change rate of the speed, the maximum and the minimum of the output 
curve and the shape of the output curve, and so on) so that he could judge if the output 
is controlled by the input he just take or if any abnormal behavior occurs. If the any 
abnormal phenomena happened then he would take a control action to deal with that. 
So a detailed experience rule of human can be depict as follows:

If x is x(t) then u is u(t,Tt) so that Chara(g)∈Normal and x(t+Tt)=g(x(t),u(t)) otherwise u is u ' (t' ,T' t')

Where, u(t,Tt) is the control input at time instant t; Tt is the anticipative action time of 
the control input; Chara(g) is observable features, g is the response function; Normal
is the set of the normal features of the response function; u '(t',T't') is the control input 
when the process is abnormal; t' and T't' denote the time instant that the abnormal 
phenomena happens and the anticipative action time of u ' , respectively. We call the 
rule a control rule with per fect information.

The most important messages contained in the perfect information rule are the 
fuzzy matching relation between the system observable states and the control inputs, 
the action time and the forecast states after the action time.

Let Ak and xk denote the fuzzy state and crisp state of system P on the time instant 
tk, respectively. Further more, let Wk and uk denote the fuzzy control inputs and the 
crisp input on the time instant tk,, respectively. For any state Ak and control input Wk, 
the correspond state in time Tk is called the fuzzy result state, which is denoted by 
P(Ak ,Wk ,Tk ). Similarly, in the case of crisp state and control input, we call the 
correspond state the crisp result state and denote it by p(xk-,uk ,Tk ). When k=1,2, …  
the correspond adjust call the k-th adjust, by this way, P(Ak ,Wk ,Tk ) and p(xk-,uk ,Tk ) 
is call as the k-th adjust result fuzzy state and crisp state, respectively.

Evidently, p(xk-,uk ,Tk ) can be obtained by the features of S(t,u|u0,u1,L,un).

Definition 3.1 (Extension rules) Assume that X =X 1×L×Xm and U=U1×L ×Um

are the universe of discourse of the observable states and the control inputs of system 
P, respectively. An extension rule is formulated as the following form 



R: If x(t) is A then u(t) is W so that x(t+T) is B                        
(3.8)

And, there are two positive constants T0 and T1, such that ∀T, 0<T0≤T≤T1, the 
following two statements hold. 

  (1)  ∀x∈suppA, ∀u∈suppW, the result state x(t+T)= p(x,u ,T )∈suppB          
(3.9)

   (2) ∀b∈suppB, ∃x∈suppA,∃u∈suppW such that p(x,u ,T )=b                
(3.10)

Where A∈F*(X), W∈F*(U), B∈F*(X). Call B the result state of the rule R, and T0, T1

the minimum and maximum expected action time. Let T=(T0+T1)/2, and call it the 
expected action time of rule R. For simplicity, write R as R=(A, W, T  ; B), i.e. R= 
(A,W,T ; B).

Different rules own different expected action time, which can be used to describe 
a rule avoiding from some high dimensional information that is unknown. Strictly 
speaking, the information used to depict the extension rule is not perfect, so we must 
spend some time as the cost to win the prediction to the result state of the rule. In fact, 
the exciting region (some author call the range that the rule is on)of the rule is a 
section region of the perfect information space cut by the imperfect information space 
which the rule based upon. In that region, it can be ignored or foreknown that the 
actions of all kinds of the information that belong to the perfect information space and 
do not appear in the rule. The expected action time is enclosed to a rule so that the 
result state can land on a region in the perfect information space in which all the 
information that do not appear in the rules can be ignored or whose action can be 
predicted. In a short word, in the exciting range and result range, all the information 
unused in the rules is out of action. For example, if the control rules are described 
only by the error, then the rules can be used only when the system output is at an 
equilibrium state or the error is very large when the influence of error change to the 
system output can be ignored. It is that reason that the rules can be depended upon 
only the error and is independent of the change of the error. The expected action time 
of a rule should be large than the smallest time within which the system outputs trend 
become clear. 

It should be noted that when take a rule into application, there are two conditions 
should be satisfied. One is the expected action time of the last rule over (if the rule is 
not the first one), another is the rule must be the one with the largest exciting value to 
the present system state among all the rules.     

Definition 3.2 (Complete rule-base)  Let X=X1×L×Xn be the observation 



universe of the system P, U the universe of control inputs. Let the j-th control rule be 
formalized by  

Rj: If x1 is Aj1 and x2 is Aj2 and L and xn is Ajn then u is Cj                 (3.7)
Where Ajk∈F*[Xk], Cj∈F*[U], j=1,L,q, k=1,L,n . For simplicity we write Rj as 

(Aj,Cj), where Aj=∏
=

n

k
jkA

1
= Aj1×L× Ajn  i.e. ∀x= (x1,L,xn)∈X 

Aj(x)= )(
1

kjk

n

k
xA

=
∧ = Aj1(x1)∧L ∧ Ajn(xn)                                (3.8)

Call the rule set R={R1,L,Rq} a rule base of P, if ∀x= (x1,L,xn)∈X, ∃Rj∈R such that 
Aj(x)≠0. Rj is said to be an active rule at input x or excited by input x if Aj(x)≠0. In 
addition, we call suppAj the response area of the rule Rj (or the fuzzy state Aj ), so on 
some times we write suppAj as suppRj, and call Aj(x) the response intensity of rule Rj

at input x ; Similarly,  call suppAjk  the resonance area of Ajk . Call x0 the input base 
point of the rule Rj  if Aj(x0)=1. And u0 the output base point of the rule Rj  if 
Cj(u0)=1.

Definition 3.3 (Supporting degree for a rule to an objective) Let R=(A,W,T ; B) be 
an extension rule of a plant P, a is the input base point and v the output base point of 

R, respectively. Let g(S(t,u|u0,u1,L,un)) is an objective function of the system. 
Considering the system response function S(t,u|u0,u1) with initial state a and control 
input u1=v, and the favored degree g(S(t,u|u0,u1)) yielded by S(t,u|u0,u1) to the 
objective g within time interval t∈[t1,t1+T] , we call the favored degree as the 
supporting degree of the rule R at the base point a with respect to the objective g . 
And simply, call it the rule R’s supporting degree to objective g, write as g(R).  In a 
simpler way , g(S(t,u|u0,u1)) can be replaced by g(b), where b is the base point of the 
result state B of rule R.

Rule’s supporting degree to an objective can be used to make an order of the rules 
which have the same response area, so that the most suitable rule can be selected 
among them in term of that order.   

Definition 3.4 (Pareto rule) Let ℜ=Q1∪L∪Qq be a rule-base of system P, 
where Qk={Rk1,L,Rkm}, k=1,L,q, have the same response area and input base point. 
Let g(S(t,u|u0,u1,L,un)) be the objective vector of the system and λ (x1,L, xn) a 
compromise mapping . A rule Rk j is called a Pareto rule relative to the known rules 
set Qk (simply call a Pareto rule) if  

   g(Rk j)=
n

i 1=
∨ λ(g1(Rki),L,gn(Rki))                                  (3.9)

Where g(S(t,u|u0,u1,L,un))=( g1(S(t,u|u0,u1,L,un)),… gn(S(t,u|u0,u1,L,un)))
Call a rule-base a Pareto rule base if every rule in it is a Pareto rule. 



Definition 3.5 (Approximate Pareto optimal control algorithm) Assume that u1, 
u2, … un are the Pareto optimal control inputs according to the system state x1, x2, … , 
xn, respectively. Let f a control algorithm such that f(xi)=u i ,i=1,… ,n.  Call f an 
approximate Pareto optimal control algorithm versus Pareto couple set { (xi,u i) 
|i=1,… ,n} if for any state x is bounded by xi and xj in Coordinate order, where, i≠j , i, 
j∈{1… n} implied that f(x) is also bounded by f(x1) and f(x2) in the Coordinate order.

4 . Analysis of Pareto features for  fuzzy control method based on Pareto rule 
base

We write conventional fuzzy control algorithm as CFCA, which employs 
singleton fuzzification, Center of Area defuzzification and “max-min” composition 
inference rule. Further more, we assume that any two membership functions of input 
(or output) in the universe of discoursed can intersect only if they are adjoining, and 
the base point of any membership function can excite only one membership function. 
By utilizing the conclusions of reference [25], we have the following results.

Theorem 4.1 If a Pareto rule base R={R1,L,Rq} is monotone and all the output 
membership functions of the rules in R  take the shape of isosceles bend-triangle,  
then the single-input-single-output conventional fuzzy control algorithm is an 
approximate Pareto optimal control algorithm versus the rule base point couple set 
{(a i,c i),i=1,2,…q}, where a i and ci are the input base point and output base point of 
rule Ri, respectively, i=1,2,…q.

Proof : Let f denote the single-input-single-output CFCA. Since the assumption of 
the theorem is just same as that in [25], so f  is a monotonic algorithm. We only need 
to prove that f satisfies that for i=1,2,…n

f(a i )= c i                                                   (4.1)  

In fact, by the assumption that any two membership functions of input or output 
can intersect only if they are adjoining and the assumption that all the base point of 
any membership function can excite only one membership function. we have that if 
the crisp input is an base point a i, so it only excites rule Ri .  Note that f(a i ) is just the 
center of area of the output fuzzy number of rule Ri ., and the output fuzzy number of 
rule Ri . is symmetric, so equality (4.1) holds.  

Theorem 4.2 Assume R={Rjk|j=1,L,m, k=1,L,n} be a monotone increasing 
Pareto rule base for the two-input single-output CFCA f , where Rjk=(Aj×Bk,Cjk) and 
all of Aj, Bk  are isosceles triangle fuzzy number,  Cjk  are isosceles bend-triangle 

fuzzy number. Furthermore, Assume Rjk  j=1,L,m, k=1,L,n satisfy that:

 (1) The base point of Rjk only excites Rjk .
 (2) Two rules must be simultaneously excited at every points but the base points.



 (3) ∀j, i ∈{1,L,m},∀k,h ∈{1,L,n},if j+k=i+h then Cjk =Cih (so simply write as 
Cj+k )

Then f an approximate Pareto optimal control algorithm.

The proof is almost the same with that in [25] and is omitted. 

The geometry sense of the two theorems 
can be illustrated as Fig. 4.1. in which the x3

is the goal state from initial state x1, x2  by 
control input u1 and u2, respectively. When 
x∈[min(x1 , x2), max(x1 , x2)], the control 
method f can guarantee f(x)∈[min(u1 , u2), 
max(u1 , u2)], so the system output response 
bounded by the two curves corresponding to 
the S(t,u|u0,u)∈[min(S(t,u|u0,u1)
S(t,u|u0,u2)),max(S(t,u|u0,u1) S(t,u|u0,u2))]. 

Remark: The conclusions of theorem 
4.1 and 4.2 hold also when the defuzzifier is 
replaced by Center of Gravity. And the proof 
process is almost the same as the theorems 4.1 and 4.2, respectively.  

It should be note that all the output fuzzy number of the rule in the rule base is 
asked to be shaped as isosceles bend-triangle, but in the engineering or practical fuzzy 
controller design, much often the output fuzzy membership function is taken the 
shape as Fig 4.2. So the monotonicity of the CFCA could not be guaranteed. In this 
situation, we can take a monotonic mapping ϕ from the original universe X of the 
rules output to a new universe X’ as follows.

  ϕ :   X→ X‘
such that ϕ(a i)=bi , i=1,…,9. Such a 
mapping is easy to construct. For example, 
it can be obtained by taking a piecewise 
composite functions as follows

  ϕ(x)= i

jj

jj

jjaa
bb bax α])([ )(

)(

1

1 +−−
−

+

+   

x∈[a i,a i+1]
where i= 1,…9, and αi is well selected 
depending on expanding or compressing. 
By this way, we can always take isosceles 
fuzzy membership function as the partition 
on the new universe of the rules output, 

0          t1                       t2           t

x

(x1,t1)

Fig4.1  System output response modulated by

approximate pareto control algorithm

(x3,t2)

(x2,t1)

S(t,u|u0,u1)

S(t,u|u0,u2)

S(t,u|u0,u)

a1    a2    a3   a4 a5 a6  a7      a8        a9  X

b1  b2  b3   b4  b5  b6   b7   b8   b9  X’

ϕ(a i)= bi , i=1, 2,…,9

 Fig 4.2 Universe Transform Illustration.  Where X and X’  
are the original universe and the new one, 
respectively.



which is called liner  universe. Therefore, by theorem 4.1 and 4.2, the monotonocity
of the CMA can be guaranteed when the CFCA is regarded as a mapping from the 
original observable universe to the original plant input universe, even the original 
plant input universe is not partitioned by isosceles bend-triangle membership 
functions.

5. Application on monotonic iner tial systems

5.1 monotonic iner tial systems

There are a lot of systems or plants in industrial processes with a monotone 
relation between its inputs and outputs and time inertial. The systems usually operate 
in a wide circumstance and are asked for multiobjective optimization. For most cases, 
such systems mathematical models are ill-defined, or could not be used due to some 
sensor limit in practice. At the controller design point, the plant information is 
incomplete. Such systems are very often to meet in engineering. For example, the 
anneal furnace heated with resistance and the water heater with gas fired for shower 
as well as the traction motor with heavy loads, etc. These plant outputs can 
automatically reach an equilibrium state when the control inputs are fixed at some 
point after its inertial time. Surely that some systems can get an equilibrium point 
only on some specific input. For instance, a moving car only when its moving 
direction parallels the car body, the velocity of it can get an equilibrium point if the 
brake and throttle position fix. Anyway these kind of systems are the most practical in 
engineering and are worthy to be study in a systematic way.  Before we introduce the 
main concept about those systems, several related terms are needed to be specified.  

Considering the response function S(t,uk|u0,u1,L,un) of a plant P, if there exists a 
numberδ>0 and an integer k≥0 such that S(t,uk|u0,u1,L,un) do not change when time 
t∈(τ-δ, τ] or [τ, τ+δ), then τ is called an equilibr ium point, and S(τ,uk|u0,u1,L,un) 
an equilibr ium state of the system.  Suppose that the equilibrium state only depend 
on the control input uk , so we denote the equilibrium state as S(uk).

Here after, if system P can reach a equilibrium state on control input point u , 
then we use S(u) to express the equilibrium state on the control input u , where t does 
not appears to imply that the equilibrium state is independent to time. This part of 
paper is focused on the systems that can automatically reach at an equilibrium state 
when the control input is fixed for an enough long but a finite time. 

Let Sk(t,u|u0,u1,L,un) denote the k-th component of the response function 
Sk(t,u|u0,u1,L,un) starting form an equilibrium state. Let 

T=sup{τ |ξ∈Ξ, u0,u1,L,un ∈U, ∀t> tn+τ, Sk(t,u|  u0,u1,L,un)= Sk(un)}         
(5.1)
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input in the step change 

If T<∞, then call T as the maximum inertial time of Sk respective to control input 
u.

Note that the inertial times of an output component 
vary with different control inputs. (5.1) Gives the 
maximum transient time from any initial state to an 
equilibrium state of the system. It give a time bound that 
we can judge or observe the performances of the system 
output after a control input taking into action.

Definition 5.1 . Let A(x) be a function with single 
argument with domain X . We say A(x) is monotone 
(strictly monotone )increasing at x, if ∃δ >0,∀x1,
x2∈N(x,δ )⊆X and x1<x2 such that 
A(x1)≤A(x2)(A(x1)<A(x2))holds . Similarly, the monotone 
(strictly monotone) decreasing at a point of a function can 
be defined. A interval I⊆X is called as a monotone (strictly 
monotone) interval of A(x) iff

    (1) A(x) has the same monotonicity (strictly
monotonicity) at any point in I.

    (2) ∀x∈I , I is the maximum interval which keeps the 
same monotonicity and includes point x.

Definition 5.2 Let u0,u1,L,un be a step control 
sequence such that uk-1 ≠uk . k=1,L, n. Connecting points 
(tk,uk), k=0,L,n in succession with piecewise-line, we get a 
curve u=f(t), t∈[t0, tn] satisfies that uk = f(tk), k=0,L, n. 
The number of monotone interval of f is called the 
monotone times of that step control sequence ,and denoted 

by Numo(u0,u1, L ,un). Similarly, The number of 
monotone interval of f on the interval [t0,t] is denoted by 
Numo(f ;[t0,t]).

Observing the systems those inputs and outputs has 
the relation of monotone and time inertia, we can find the 
common characteristic as follows: no matter the inputs are changed continuously or 
step-like, the system outputs is always continuous;  When the system output are 
moving up (or going down), any control action that make the output convert to its 
opposite trend is applied to the system, the output will still maintain the moving up (or 
going down) trend for some time; If the input changes in step with various initial 
states, the ordinary output response of the system are just like the cases (a), (b) and 



(c)showed in Figure 5.1. Please note the convex and concave features of the curves. 
The case (d) in figure 5.1 is unordinary, which in succession presents two processes of 
the output change speed from increasing to decreasing. Such systems are not taken 
into count in this paper;  If two different step inputs is taken under same initial state 
respectively, then the two response will keep the same relation in magnitude at any 
time (i.e. the output state of one response is always larger (or smaller) than that of 
another); The inertia of the system presents filter function to the inputs; System can 
automatically reach to an equilibrium state. That means that, if the control input is 
fixed then the system outputs can automatically reach an equilibrium state in a time 
which is not long than the inertia time T, and the final equilibrium state only depends 
on the last term of the control input sequence; Starting from the time instant where the 
input changes in step, the system output have no equilibrium state except the final 
one. 

Considering the all the ordinary features, we suggest the next definition about the 
above system from a qualitative point. For simplicity of description, we only depict it 
with respect to the SISO system.  For the MIMO systems, we can convert it to the 
situation that only one output component of the response function is considered and 
only one of the control inputs changes while let other inputs be fixed. So it can be 
converted to the case as a SISO system.

Definition 5.3 [20] Let S be a observation variable and u a control input of the 
controlled system P. P is said to be a monotone increasing inertial system with respect 
to S and u if it satisfies the following conditions:

   (1) S is monotonic continuous function of u such that  
       ∀ u0,u1,u2∈U  and u1≤u2,∀t≥ t0 implies 

                 S(t,u | u0,u1)≤ S(t,u| u0,u2)                                     
(5.2)

(2) For any step control sequence sequence u0,u1, L,un of u with initial value u0, 
the response function S(t,u| u0,u1,L,un) starting at equilibrium state S(t0,u0) is 
twice differentiable with respect to t and satisfies that 

(a) ∀n=1,2,L, the monotone interval number of S(t,u| u0,u1,L,un) in [tn, tn+T]is 
smaller than or equal to 2 . And, S(t,u| u0,u1,L,un-1) and S(t,u| u0,u1,L,un) have 
the same strict monotonicity at point tn.

(b) For a response function S(t,u| u0,u1,L,un) starting from a equilibrium state
S(t0,u0),the following inequality holds:

Numo(S; [t0, tn+T]) ≤ Numo(u0,u1,L,un)                            
(5.3)

(c)              ∀t ≥ tn+T ,S(t,u|u0,u1,L,un)=S(un)                                    
(5.4)



   where T is the inertia time of observation variable S with respect to control 
input u.

(d) Let τn=inf{t |S(t,u|u0,u1,L,un)=S(un), t>tn}, if un≠un-1 then there is no 
equilibrium point of S on the open interval (tn τn)

(e) There are at most two times converting from concave to convex or from 

concave to convex on the curve S(t,u|u0,u1,L,un) over the interval [tn, tn+T].
Some times we simply write S(t,u| u0,u1,L,un) as S (t,u) when we don’t mind 

what the specific control input sequence u0,u1,L,un is.

Figure 5.2 shows a sketch map to the response process of a monotone increasing 
inertial system. On the picture, we can see the relation between the monotone number 

of the control input sequence u0, u1, L, u6 and the monotone interval number of the 
response function and how the system output moves up and goes down with the input 
sequence. Case (a) presents a process of a control input sequence changed in step 
along time t and its corresponding curve connected by the piecewise-line, where the 

coordinate of pk is (tk,uk), k=0,L,6. Case (b) presents the system response 
corresponding to the input sequence u0,L,u6.  Noting that the moving up interval on 
case (a) from p5 to p6 disappeared on case (b) , i.e. some chattering or the oscillations 
of the input sequence are filtered by the inertia of the system . Obviously, 

Numo(u0,L,u6)=5 and Numo(S;[t0,t6+T])=4, So the latter number of monotone 
interval is less than that of the formers.

In general, for the MIMO system we 
have

Definition 5.3 A system (or plant) P 
to controlled is called a monotone 
increasing inertial system with respect to 

control inputs u1,L,um and outputs S1,L,Sn

if for all j and k ,the P is a monotone 
increasing inertial system with respect to 

control inputs uj and Sk ,where j=1,L,m,  
k=1,L,n .

Here we have some remarks on the 
definition.  When the relation between 
input and output is monotone decreasing, it 
can be converted to a monotone increasing one by taking a proper variable substitute.  
Systems inertia time depends on all inputs, so in practical systems it can take an 
average value or tradeoff value as a reference in design. 
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t6+T

Fig. 5.2 Monotone number of the step input
sequence and the corresponding system output
response of a monotone inertial system



For a lot of MIMO systems, it is very often decomposed to a SISO by control 
different input on different time segment. To implement this control strategy, it is 
usually to make the system state reach at some state at first, then to adjust only one 
input while keep others fixed. From the viewpoint of short time interval, the MIMO 
system can be regarded as a 
combination of SISO in time sequence. 
In the next, we mainly discuss the SISO 
systems.  

5.2. Refining of Pareto rule base on 
monotone iner tial system

For the monotone inertial system, 
the usual control objectives are rise time, 
overshoot and the settling time when 
setpoint is changed in a step mode. 
System setpoint usually is changed in a 
range, or according to a function of time. 
To obtain a good dynamic performance 
on all setpoints, the incremental of the 
system input is usually designed as the 
fuzzy controller ‘s outputs. So control 
rule base must balance all cases. On the 
other hand, if a fuzzy controller is 
implemented by microprocessor, to 
reduce the memory space is always a problem worth considering. Constructing a good 
rule base seems to be the most effective ways to reduce the memory space. As known, 
to evaluate something, we must base upon the knowledge or experience about it, so to 
construct a Pareto optimal rule base to a plant with only partial information being 
known, it is inevitable and absolutely necessary to acquaint ourselves with the 
performance of the plant. The method to get a the Pareto rule depicted bellow, is 
mainly motivated that if a control rule is applied to the plant, it must have an 
influence on every control objective, so its supporting degrees to the objectives can be 
defined in term of those influences. The main idea is that, first makes use of the 
features of the response curves to determine the supporting degree of the state and 
control incremental couples to the objective, and then to find the optimal couples in 
Pareto sense , finally to construct a Pareto rule-base whose input output base points is 
just the optimal couples. For simplicity, we only discuss the SISO system. 

The follows presents a method to construct a Pareto rule-base whose rule output 
is control incremental, and the control objectives are minimum overshoot and 

Fig 5.3 A response curve set of a monotone 
inertial system.



maximum rise-time at all setpoints located in a interval. Since relation between the 
plant input and output is nonlinear, so the final solution is to find the output 
incremental of the rule, which must be tradeoff between all control input position. 

Let [mref, Mref] and [a,b] are setpoint interval and the output range of the plant, 

respectively. Select a input set C={ c0,c1,L,cn} such that c0<c1<L<cn. For every 
c∈C ,we can get a response curve of the plant. Let Γ={S(t,u|u0,u1) |u0=0 u1=ci, 
i=,1,2,… ,n } be the curve set obtained, which looks like Fig 5.3. Let S(ci) express the 
equilibrium value, i=,1,2,… ,n . Let V={v1,v2}, such that v1= S(ci), v2= S(cj), i<j and v1, 
v2  are the nearest value to mref, Mref, respectively. Let E={e0, …  ,ep+1} be the error 
rank set such that e0<… <ep+1. To a reference point v∈V  and the setpopint v+ek ,
k=,1,2,… ,p, we define overshoot as a function with variable ∆ui=ci-cv  as follows.

A_overshoot(ek,∆ui,v) =


 >+−+−

otherwise
evcSifevcS kiki

0
0)()()()(

              

(5.5)

B_overshoot(ek,∆ui,v) =


 <+−+−

otherwise
evcSifevcS kiki

0
0)()()()(

             

(5.6)
Where A_overshoot(ek,∆ui,v) and B_overshoot(ek,∆ui,v) are the above overshoot 

function and below overshoot functons . 

Let Mk+=max{ A_overshoot(ek,∆ui,v)|i=0,… n} and 
Mk-=max{ -B_overshoot(ek,∆ui,v)| i=0,… n }, the supporting degree of a couple (ek,∆ui) 
with respect to the reference point v can be defind as a function with variable ∆ui as 
follows.

A_support(ek,∆ui,v)= 1-A_overshoot(ek,∆ui,v)/Mk+                               
(5.7)

Let Wk+=max{ risetime(ek,∆ui,v)|i=0,… ,n} and
Wk-=max{ downtime(ek,∆ui,v)|i=0,… n}, define that 

R_support(ek,∆ui,v)= risetime(ek,∆ui,v)/Wk+         
D_support(ek,∆ui,v)= downtime(ek,∆ui,v)/Wk-          

goal(ek,∆ui,v)=




<∆∧∆
>∆∧∆

0),,(),,(_
0),,(),,(

kkiki

kkiki

eifveuD_supportveusupportB
eifveuR_supportveuA_support

B_support(ek,∆ui,v)=1+B_overshoot(ek,∆ui,v)/Mk-                               
(5.8)

Note that the supporting degrees are bounded by 0 and 1. Similarly, we can deal 
with the rise-time and down-time by a function with variable ∆ui as follows.  



risetime(ek,∆ui,v)=


 >>−−

otherwise
eandvcSifvcS kiiT

0
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(5.9)

downtime(ek,∆ui,v)=


 <−−

otherwise
eandvcSifcSv kiiT

0
0)]()([))]([1

               

(5.10)
Let Wk+=max{ risetime(ek,∆ui,v)|i=0,… ,n} and

Wk-=max{ downtime(ek,∆ui,v)|i=0,… n}, define that 

R_support(ek,∆ui,v)= risetime(ek,∆ui,v)/Wk+                                       
(5.11)

D_support(ek,∆ui,v)= downtime(ek,∆ui,v)/Wk-                                                              

(5.13)

goal(ek,∆ui,v)=




<∆∧∆
>∆∧∆

0),,(D_support),,(B_support
0),,(R_support),,(A_support
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(5.14)
To select the effective control incremental relative to reference point v∈V, a 

effective index ϑ is defind by

ϑ(ek,∆ui,v)=


 +−<+−∆+

otherwise

evcSevucSif kikii

0

|)()(||)()(|1
              

(5.15)
By equalities (5.5) –(5.15), we can formula the Pareto optimal couple of (ek,∆ui) 

as the solution of the optimal problem :

Maximize Objective:  Goal(ek,∆ui)= α⋅goal(ek,∆ui,v1)+β ⋅goal(ek,∆ui,v2),                  
(5.16)

Subject to:  ∆ui ∈{ ci-cv1| i=0,… n }�{ ci-cv2| i=0,… n },                       
(5.17)

         ϑ(ek,∆ui,v1)∧ϑ(ek,∆ui,v2)=1                                      
(5.18)

Where α,β are the weight parameters, and α,β≥0, α+β=1.
By resolving the problem , we can get a Pareto optimal couple set Ξ={(ek,∆uk)| 

k=1,… p}. Partition the interval [ e0, ep+1] with triangle fuzzy number into p ranks, and 
let Ak be the k-th rank fuzzy number, which is defined by 

Ak=cut[(x-ek-1)/ (ek-ek-1)])∧cut[(x-ek)/ (ek+1-ek)],                    (5.19)
Where k=1,… ,p, and “cut [25]” function is difined as



 cut(x)=


 ∈

otherwise
xifx

0
]1,0[                                                 

(5.20)
Further more,  Let ∆U={∆uk, k=1,…,p} be a rank set of the control incremental,  
and w=min∆U, 

Ck= cut[(x-∆uk-+w)/w])∧cut[(∆uk+w- x)/ w]                                     
(5.20)

Where k=1,… ,p,
According to the rule-base definition, we get a rule-base ℜ={ (Ak;Ck)|k=1,… ,p}.

From the process of its construction, we know whose input output base point are 
optimal matched in Pareto sense relative to the control demand on overshoot and 
rise-time,  so ℜ is can be regarded as a pareto rule-base.  Since Ck  is isosceles 
triangle fuzzy number, so the CFCA based on it is pareto control algorithm.  The 
constraint of effective index can guarantee the control output converges to the setpoint, 
so the fuzzy control system are stable. However,  a fact must be pointed out that if 
the plant is only controlled by the CFCA based the rule-base obtained, a steady-error 
maybe exist. But which can be compensated easily by intelligent bisection control 
method even a directive bisection control method, and can reached at a error to the 
setpoint in any precision. Although the rule-base is constructed only based on the 
error and without considering the change of error, the controller‘s output is the plant 
input’s incremental, so it is more adaptive and robust than the fuzzy controller with 
position output mode. The simulation on a nonlinear plant shows that the controller 
not only can adapt a very wide range of the setpoint ,but also presents a good tracking 
behavior to the change of setpoint. 

5.3 Simulation results

Considering a plant with a nonlinear model as follows. 
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+−−=

=

2
21

2

2
1

1.075.0125.0 uyy
dt
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y
dt
dy



The method suggested in this paper is used to the plant. Fig 5.3 is the plant output 

response curves yielded by taking input u in steps with an equal space ∆u=0.2. The 
plant can be regarded as a monotone inertial system. From Fig 5.2, it can be see that 
the plant output is more sensitive at larger input than that at the smaller input relative 
to the same incremental. So the nonlinearity of plant is obvious. In this situation, if a 
fuzzy controller with position output mode is adopted, to obtain a good control 
features in different setpoints, it have to divide the setpoint interval to several 
segments, and , for each segment a special rule-base is constructed. The problem 
along with it is more memory space is needed to save the rule-bases. The method 
presented in this paper can resolve this problem on some extent. Fig 5.4 gives the 
simulation results with different preferences on overshoot and rise-time at three 
setpoints, the preferences include that the rise-time is top-priority and small overshoot 
is top-priority as well as a tradeoff between the two objectives with same importance. 
Fig 5.5 gives the tracking results that the setpoint are time-varying in different 
function over time. All the simulation results are obtained only by the same one 
simple CFCA with only a same one rule-base including eleven rules. The design 
reference points is y=20 and y=50, but the controller present a good behaviors at other 
setpoints and time-varying situation. 

6. Conclusions

      
       Fig 5.4 Simulation results at three setpoint with different 
preferences. 



There are many difficult problems in deal with nonlinear unknown system with 
multiobjective control optimization. This paper proposes a mathematical description 
by means of the system output response function based on control input sequence. 
Which can be easily realized by the input-output data of the system. The proposed 
concepts of support degree of a rule to an objective, the Pareto rule-base and the 
approximate Pareto control algorithm give ideas and approaches to build an optimal 
fuzzy controller. All these concepts can be quantified easily in practical controller 
design. Moreover, some sufficient conditions are presented for a conventional fuzzy 
control algorithm to be an approximate Pareto control method. To verify the theory 
suggested in this paper, we put forward to a qualitative model of Monotone Inertial 
System and a method to construct a pareto optimal rule-base compromising the 
rise-time and overshoot with some other constraints for it. Research shows that the 
CFCA based on that rule base is an approximate control method, and the method 
together with a monotone inertial system is a stable control system. Simulation on a 
nonlinear plant supports the theories presented in this paper.  Since the rule’s output 
is incremental way, simulation sows that the controller presents very good behaviors 
in adaptivity, robustness and tracking with time-varying setpoint process. Analysis 
and simulation also give a conclusion that by using finite knowledge about an 
unknown system to construct an optimal rule-base relative to the finite knowledge and 

Fig 5.5 Simulation results on tracking the setpoint with time-varying



mutiobjective is an effective approach to resolve multiobjective optimization control 
problem.
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