FRERTHEELR E LA TS B RS

%

RELTET A S L AH SRR Jn2 2]
(U3)

s T AR AR
33 %L ¢ NSC91-2213-E-009-079-

S YA 91E 08 OLp 3 924 07" 31p
REFE Rz2d A FFn1 88 %

PESE AR mEE AT 572 Foky BE N R
A AR AR
Mj‘gLéiﬁﬂg‘f’lﬁg@ﬁ'%ﬁé%’2_&1;?,\5}35;@

oE % R RES5T TP

PR F)

B 1 5 SR B AR

(1/3)

A Visua and Reuse-based paradigm for Software Construction
(1/3)
FEHAREE © NSC 91-2213-E-009-079
G 917 85 11045 75 31[]

A IRET,

N %%[
I ik

PP T LR S
g Jﬁ&ﬁg > JETH | #J/gﬂzg/f//ﬂ/ﬁuiﬂi fi I J}F%II
FSFERE - fIF) P R CRE P
gﬁﬁﬁj’ﬁﬂ AR VBl R AR H o Pof R sty
ﬁﬂ“’%fé‘%ﬁju 23 HIRLEPRIFGE [~ X\ ~ A
AT S » SRS T S PR e
FIRICRT o A 5T (AR R 02> 251
TSR R 1 e @ﬁliwﬁ@$ﬁ
oo R A R TR e
i 7. programming-in-the-small {1 [l {éﬁ'ﬁ“ 1Ry £
programming-in-the-very-large - £ " & E*ylﬁuﬁ
[25 (P EF g PP A RS FIR (= i)
e e lf[
I B SR R i
NG E‘~‘J €7 u»';j"éjjf&@ﬁfjl’@ BHEIAIE [ﬁjﬁﬁjﬂjﬁﬁ:
R] YRR o P S SRR
Al ORI B AR e S R
S R 17 PASEAIRPTS i
i+ LRI AR ﬂﬁ%ﬁﬁ@F%ﬂ 3
JB‘ALHE“ Pﬁ%?ﬁ‘ [A & A it h [ﬁ'l%ﬁliﬁﬁﬂp
TR IED“ SRR ~ B A, A
oo PR VS RGBSt - P
PR T%ﬂ T FCR TR T
ijfkj\;]ﬁ]fﬂﬁjk?ﬂ S)R R R hﬁgﬂ_ﬂ%

(SRS A g TR

R I Bl i S
SRS) TR AR
FFRIF - RS P (EIJ’““ 1=
I) .
1) FEE SIS R 1 2
[> 0] icon H7 S -

2) HH- RS SR (O
*ﬁﬁ[\ﬂ@@?c °
3) e h%ﬂiﬁf«?ﬁ‘ AR T B PR S
Y i I Fiﬁiﬁﬂﬁl—ﬂ‘ﬁdﬁ [EBEEE s
5) B PRTE [~ F R IR R LR i
(ERIU RS
a~ﬁﬁﬁﬁ#¥nwapr%aJE%
AT QA1 A)EIpVIFAL » BT ?FE]J}{"’jﬁ S B)fTA
*ﬁ%ﬁﬁﬁ?ﬁ#%ﬁfﬁ SR %Ww
[—Uﬁiﬁgéﬁﬁ?{i7 =t P 'fkﬁirj Fe AL 2]
programming-in- the-very large [i'gH~ i’pﬁ” A AN
[ﬂﬂ’j’ﬁ‘ﬁ'ﬁﬁg%ﬂ E[EE (= SR g 2 i)
?lw%“@i%foﬁﬁﬁ%iéjﬁﬁ%@
FILFIAVINET o Pl st nsR %,;ﬁj?ﬂ =R J%‘
e I | f/ﬁ%‘%‘%‘m REEaE ’M g%lﬂ
z;J%lﬂpF ﬁj?ﬂ%‘j« y[lllﬁﬁjﬁﬂ%ﬁﬂﬁl[@ HH R IE
i JTE“,?F HIE J;fsr]a Jj:g%g lﬂf‘i"'ﬁ_ CE Al ngpﬂﬂ
FFREF IF“‘w’M”i‘L’?‘/ﬂ’j’ﬁlﬁE*%%
Hfl SR TSR [A AT 2 1%*—%” i
~~~~~ lﬁﬂzj';fgjﬁﬂgui % ﬂny ﬁlfgﬁxpu T e
PR PR 3]s R R A

RIFT ﬂﬁglfﬁ%



FOBR o B R Py
( Object-oriented Technology ) 5 /2% [“F =" 5 w3
PR

Software reuse has been considered an
effective approach to improve software productivity
and software quality. Reusable Software Components
(RSC) are the basic building blocks for software
construction based on the software reuse practice.
Object-oriented abstraction,

information inheritance and dynamic

mechani sms-data
hiding,
binding-are the base for the desgn and
implementation of software reusable components.
With the aid of avisual programming model, one can
treat each reusable component as an icon. The

programming paradigm can therefore be moved from

programming-in-the-small to
programming-in-the-very-large by visually
manipulating these available icons (reusable

components). To accomplish this objective, a visual
programming paradigm and an icon interconnection
language must be defined and implemented.

Multimedia technology has played an important
role in today’s application software due to its friendly
user interaction as well as its naturally fitting on red
world modeling. We, therefore, extended reusable
software components to incorporate with multimedia.
In other words, the reusable software components
include not only code and documents, but also voice
narration, animation sequences and message
mechanisms. We called such software components as
Multimedia Reusable Components (MRCs). Based on
these developed MRCs, a novel software requirement
representation paradigm is introduced. With this novel
representation paradigm for requirement
representation, one can view the software requirement
representation as sequences of animation instead of

reading voluminous software requirements. Such a

novel software requirement representation paradigm
will provide users a visual effect and to have an
earlier feedback from users. Also, it will provide an
easy and natura form of the communication between
designers and users.

Thus, in this project research, we focus our study
on the following issues:

1) Discuss reusable software components and propose
the multimedia reusable components.

2) Propose a visual software construction paradigm
based on multimedia reusable components.

3) Propose a new software requirement representation
paradigm and implement a supporting tool.

4) Evaluate the requirements representation tool.

5) Design and Implement a visua programming
paradigm and evaluate the feasibility of such a
visual programming environment.

Issues 1) and 2) will be studied in the first year project;
issues 3) and 4) will be covered in the second year
study; while issue 5) will be focused in the third year
and eventually, the visual software construction
environment will be established.

Based on these
construction can then be conducted at the level of

research results, software

programming-in-the-super-large.  These  research

results will contribute to the improvement of software
productivity and quality.

Keywords : Software Productivity, Software Reuse,
Reusable  Component, Reusable  Multimedia
Component, Object-oriented Technology, Visua
Programming, Visual Requirement.



C O FIEGRH R

The software productivity, quality, and
maintenance are still the major problems in modern
computer software industry. Software reuse is an
effective means of overcoming some of the problems.
With the evolution (or some may prefer revolution) of
the objected-oriented paradigm, software reuse has
been extensively studied. Notable examples include
Cox's Software IC [6], Booch's Ada components [4],
Freeman's classification of software reusability [10],
Prieto-Diaz's facet scheme for software reusability
classification [7], Chen's interface design for reusable
software components and C++ reusable components
[1], Common abject model (COM) [16], Java Bean,
Eric Gamma's Design Patterns [13], Grady Booch's
Application Framework [14], and Talph E. Johnson's
Frameworks [15]. Above results have subsequently
led to commercial software products such as Software
reusable

components, Booch's Components, and C++ reusable

IC by Stepstone Corporation, Ada

components.

Multimedia technology has played an important
role in today’s application software due to its friendly
user interaction as well as its naturally fitting on red
world modeling. We, therefore, extended reusable
software components to incorporate with multimedia.
In other words, the reusable software components
include not only code and documents, but also voice
narration, animation sequences and message
mechanisms. We called such software components as
Multimedia Reusable Components (MRCs). Based on
these developed MRCs, a novel software requirement
representation paradigm is introduced. With this novel
representation

paradigm for requirement

representation, one can view the software requirement

representation as sequences of animation instead of
reading voluminous software requirements. Such a
novel software requirement representation paradigm
will provide users a visua effect and to have an
earlier feedback from users. Also, it will provide an
easy and naturd form of the communication between
designers and users.

Thus, in this project research, we focus our study
on the following issues:

1) Discuss reusable software components and propose
the multimedia reusable components.

2) Propose a visual software construction paradigm
based on multimedia reusable components.

3) Propose a new software requirement representation
paradigm and implement a supporting tool.

4) Evaluate the requirements representation tool.

5) Design and Implement a visua programming
paradigm and evaluate the feasbility of such a
visual programming environment.

Issues 1) and 2) will be studied in the first year project;
issues 3) and 4) will be covered in the second year
study; while issue 5) will be focused in the third year
and eventually, the visual software construction
environment will be established. Based on these
research results, software construction can then be
conducted at the level of
programming-in-the-super-large.  These  research
results will contribute to the improvement of software

productivity and quality.

In the next year NSC project (2003.8.1 —
2004.7.31), a novel representation system involving
software

visual regquirements with a



requirement-authoring tool based on MRCs will be
studied (which are the issues 3 and 4 in the project

= ?E’?F)Jé‘@ﬁj‘lﬁ (1/3)

The first year research of this 3-year integrated
NSC research project will be focused on the
following two issues:

1) Discuss reusable software components and
propose the multimedia reusable components.

2) Propose a visua software construction
paradigm based on multimedia reusable
components.

In the following, we present the results from
these studies.

3.1 Reusable software components

Reusable software component is a software
module containing a standardized interface
specification, a functional description on this
component, a use format and an example. Most
importantly this software module is designed and
implemented based on  object-oriented
programming paradigm that can be repeatedly
used in software construction.

3.1.1 Features of reusable software components

A software product has different features than
other products, among which include flexibility
and extendibility; it must consider future
modifications or changes for a user’s requirement
as well. Thus, owing to the same reasons, an
effective software component contains flexible
and extendible features as well.

Parts in many software systems or application
systems are frequently the same. During the
software construction, many of these repeatable
parts can be separated or extracted out for reuse.

proposal).

Thus, parts in software have repeatability and an
effective software component does as well.

A software program designed on the basis of
a conventional programming approach typicaly
leads to difficulty in locating errors or faults due
to globa effects. Also, a software program
designed using an unorganized structure will
resolve the debugging problem. As generaly
known, effective software must be constructed
from an effective software component possessing
features such as data abstraction and information
hiding.

Another important feature of effective
software is that it provides a feasible means for
programmers to accumulate repeatable parts.
Consider the development of computer hardware.
From the evolution of transistors, (SSI, MSI, LS
to VLSI), semiconductor technology not only
integrates millions of logic circuits in a module,
but also accumulates many reusable parts that
provide a viable means for application designers
to construct a complex and large hardware system
without much difficulty. As mentioned earlier,
Mcllory 1976 [9] recommended that the software
not be constructed from the beginning every time.
A more viable alternative is to use repeatable
parts to construct the software. Thus, an effective
software component technology must be
developed.

Theoretically, a reusable software component
or framework must be designed in so that it can
be used to construct many different applications
(maximizing application) and can easily be



reused or adapted by a software designer or
programmer for his/her application (easy for
tailoring in a specific application). Herein, we use
a 2-dimensional configuration to depict an ideal
RSC or framework, asillustrated in Fig. 1.

A Anideal RSCsisina way

of balance between
generalization and

? specialization.
Specialization Q

—
Generalization

\/

Figure 1. An idea Reusable Software Component

According to Fig 1, assume that an RSC is
designed specifically for a certain application,
making it quite adaptable for that particular
application. However, such an RSC cannot be
applied to other applications. On the other hand,
if an RSC is designed too general, theoreticaly, it

can be extensively applied to various applications.

However, such a design would be difficult to
tailor for a specific application. Thus, how to
design and implement an RSC so as to create a
bal ance between generalization and specialization
isachallenging task.

Figure 2 depicts a client and server model to
demonstrate the role of
components, alowing us to more thoroughly
describe  the  preliminary design  and
implementation of RSCs. In addition, a
component can be viewed as a server capable of
providing services for its potential clients through
the interfaces. A client, an application program,
only needs to know the interface specifications
but does not need to know how the server
implements these services. A server can accept
various kinds of requests submitted from clients.
If the interface constraints are severely restricted,
the servers can obviously assert that although the

reusable software

requests for service from clients conform to their
interfacing condition, many potential clients may
aso be lost whose service requests are just
statistically incompatible. On the other hand, if
the interface constraints are relaxed, the servers
accept various requests of service from clients.
This circumstance is a tradeoff between interface
compatibility and flexibility. Notably, a
component can be a client, a server or a client
and server.

request T T T T
CLIENT INTERFACE ' SERVER

Request service Provide service

Figure 2. A Client and Server model

The object-oriented approach alows us to
construct RSCs. The generdization is achieved
by using the multiple polymorphism (i.e. the use
of dynamic binding for implementation) and
specialization is achieved by using the refinement
(i.e. the use of inheritance for implementation)
while designing RSCs. Closely examining how to
design and implement RSCs allows us to infer
that an effective reusable software components
possesses the following features. 1) ease of
generalization, 2) ease of  refinement
(speciadization), 3) clear interface specification, 4)
complete encapsulation, and 5) complete testing.
While designed on the basis of the above
principles, the reusable software components are
theideal RSCs for accumulating the future reuse.

3.1.2 Categories of software components

Five kinds of software components for
construction can generaly be
considered as reusable software components,
starting from high level down to the lowest level:

software

1). Requirement specification components

In addition to belonging to a segment of the



user requirement, this kind of component can be
considered as the analysis level components
(reusable analysis components). It has the highest
reusability with the lowest applicability property.

2). Design patterns

A design pattern is an abstract design concept
that focuses on the particular problem which
solutions reuse. According to Erich Gamma's
definition, "Design patterns are descriptions of
communicating objects and classes that are
customized to solve a general design problem in
a particular context” [13]. Erich Gamma aso
addressed twenty-three design patterns based on
object-oriented design issues. In genera, a
programming language cannot represent a design
pattern itself. It is more abstract than the design
framework.

3). Design frameworks

This kind of components is the reuse of
design attributed to particular analysis results and
it is called reusable software design framework
(RSDF) in [1]. The framework is commonly
defined as "a reusable design of all or a part of a
system that is represented by a set of abstract
classes and the way ther instances interact.”
Grady Booch defined a framework as "a
collection of classes that provide a set of services
for a particular domain” [14]. Another definition
by [15] is "a framework is the skeleton of an
application that can be customized by an
application developer”. These definitions
obviously revea that frameworks can be
components plus patterns for a particular
application domain [15]. A design framework is a
design redlization, as represented by an
object-oriented programming language.
Frameworks are more customizable than most

components, and have more complex interfaces
as well. Programmers must learn these interfaces
before they can use them. In general, learning a
new framework is difficult.

Frameworks differ from  components
primarily in that 1). Frameworks provide a
reusable context for components. Framework not
only implements a design pattern, but also
provides standard interfaces for components
composition that enables existing components to
be reused; 2). Frameworks and components
function collaboratively so that frameworks can
more easily develop new components;, and 3).
Frameworks provide the specifications for new
components and a template for implementing

them.
4). Code components

This component is the primary reusable part
in our proposed construction approach. A code
component can be considered as a class, from
object-oriented paradigm, which includes a
complete set of member functions and data
structure. Code component differs from the
conventional (or functional) library in that it has a
well-defined and well-designed interface with
data abstraction and information hiding the
semantic meaning. Inheritance mechanism in
code components provides flexible usage of
components. These object-oriented features not
only encourage components reuse, but aso
improve reusability.

5). Data components

Computer data include numerical data and
multimedia data. In computer application domain,
multimedia data include factors such as text,
image, animation, video, and voice, which can be
manipulated by the computer. Based on the



different kinds of data, a data component can be
classified into six types. 1) numerical data such
as an electronic constant, 2) text data such as a
document, 3) image, 4) animation: 2-D and 3-D
animation, 5) video, and 6) voice.

The above types of data can be packaged as
reusable data components. These components can
be referred to as passive data component since
the component is simply a group of constant data
definition.

3.2 Multimedia reusable components
(MRCs)

Among the control operations on multimedia
data include capture, manipulate, edit, store, and
display. These multimedia data along with its
control operations can be encapsulated as a
component. Such a component is called
Multimedia Reusable Component (MRC). Based
on the features of each type of multimedia data,
the data itsdf and related operations to a
component can be composed. With the assistance
of the object-oriented paradigm, the message
mechanism can be embedded into the component,
and then, the component acts similar to an active
object.

3.2.1 Features of multimedia data

Compiling multimedia data into MRC hinges
on understanding the features of multimedia data.
In the following, we thoroughly discuss the
multimedia data presented in [8]. The following
points can be summarized as follows:

1) Text always uses the standard text format such
as ASCII code,

2) Image is a single picture. Images must always
be aggregated with another MRC. By doing so,
an image's background must be set to
transparent. Most of the image format follows
the Microsoft Windows standard, bitmap
(BMP), DIB (Device Independent Bitmap),
JPEG and GIF,

3) Animation is a sequence of pictures. Like the
image, the background of animation also hasto
be set to transparent. The data formats include
bitmap, FLI/FLC, MOV and AVI in compuiter,

4) Video is a digitized data from analog video
signa that can be controlled as animation. The
dataformatsinclude MOV, AVI and MPEG,

5) Voice (or Sound) is a digitized data from
analog voice signal. The data format includes
WAV and MIDI.

Table 1 summarizes the features of
multimedia data. In actua applications, the
above-mentioned multimedia are transformed
into another format due to the compression and
security considerations.

Table 1. Summary of multimedia data



Media || Format Characteristics Related Information

type

Text | Ascll |1 canbeaggregated |Fjegze
with other types of data

BMP, DIB tlrén spt:gﬁg;ound Fo&ma; Ffzesolulnon
of colors
Image |JPEG, GIF (5 can be aggregated with |Height, Width, Fil
other types of data Size
3. time independent
BMP, Avl, |1 background Format, Resolution
FLIELC transparency and # of colors
v [2. canbeaggregated |Height, Width, Total

Animati| MOV, |with other types of deta |frame,  Frame rate,

on MPEG |3.  time dependent Flesze
4.  needing
synchronous with voice.
MOV, 1. can't beaggregated |Format, eight,

with other types of data  |Width, Total d|sp

Video |AVI, 2. timedependent  [time, Framerate, Ay
MPEG 3. voiceisapart of the|size
data
V((J)I::e WAV, Format, Quality(bits]

1. canbeaggregated ¥|n
Sound [MIDI with other types of data &m pling rate, To?al
tlme Filesize

3.2.2 Object-oriented paradigm and reusable
multimedia components

Object-oriented paradigm is a natural model for
computer animation [17]. In general, object-oriented
paradigm is quite appropriate for computer
multimedia. Consider a multimedia presentation
system. An animation object and a voice object are
presented simultaneously, and should be synchronized
as well. Restated, these two objects start and end at
the same time point. By mapping the situation to real
world model, these two objects are “dive’ and can
communicate with each other. In an object-oriented
system, objects communicate with each other via a
message mechanism. The message mechanism is also
used to perform entities, execute concurrently and
synchronize between entities. Based on the
object-oriented paradigm and technology, multimedia
reusable component is defined herein as a
composition of media data, possible operations, and

message mechanism.

Incoming < COutgoing
Message Message
Start Finish
Stop Status

FPause

Set Properties
Duery Status
Appear
Disappear
FPass

Collision
Passed Wessage

Figure 3. Possible messages for an MRC

An MRC object can receive messages and send
messages, as indicated in Fig. 3. The most common
incoming messages include start, stop, pause, set
properties, query status, appear, and disappear. The
MRC responds when a message arrives. For instance,
the start message causes the MRC object to present its
media data. The disappear message causes the MRC
to hide its media data from display area regardless of
whether or not the object is active. Notably, some
messages force the MRC object to respond by a send
out message, such as query status message. The
outgoing messages include finish, object status;
collison with other objects and, then, pass the
incoming message. For instance, while the abject
completes its presentation, it post finishes a message
to a system or other objects. System and MRC objects
are communicated via such messages. In addition, the
sequential objects presentation and parallel objects
presentation can be performed as well.

MRCs have different features than reusable
software components since multimedia data differ
from other conventional computer data:

1) Multimedia data always require a larger storage
space and the retrieval depends on the data
content. The component storage and management
problem must be considered as well;

2) Multimedia data are retrieved on the basis of the
data content;

3) Each type of multimedia data has its own features.
For instance, the display of text or image is time



independent but voice, animation and video are
time dependent;

4) Several MRCs must be synchronized while they
are displayed at the same time. For instance, to
show an animation and voice simultaneoudy, they
must start and end at the same time point;

5) MRCs not only include multimedia data itself, but
also the operations, which can manipulate them,
and

6) MRCs are implemented by the object-oriented
technique. Multimedia data and related attributes are
encapsulated and protected in an MRC. Media data
cannot be manipulated from outside of the MRC.
Message mechanism provides a feasible means of
controlling and communicating with MRCs. An MRC
is reacted according to what message has arrived. For
instance, an MRC dtarts to appear while receiving a
start message. MRCs can aso be organized by a
message chain, such as MRCs synchronization, serial
presentation, and parallel presentation.

In addition, MRCs aggregate as a coding process,
which produces a software program. The program can
be executed as a multimedia film. If the program
the
aggregation of MRCs is a process in writing a

represents a software requirement, then

multimedia software requirement.

3.2.3 An MRC example

Figure 4 depicts an E-Cash MRC example. The
animation is recorded as a bitmap picture that consists
of severa frames. The ANimMMRC class is derived
from the ActorMRC class. All the possible operations
and attributes of logical actors are defined in the
ActorMRC. Note that all physical control, such as
display a frame on to screen, play a wave data by
caling MCI, of a media data is defined in the
BaseMRC class and the Component class. Parts of the

10

class hierarchy definition are listed in table 2.

P

iy
[(anme | Lr;olm ] |_m<'%m§ ]
LWavMRC | | Gridbng | | AtV |

DIRC code class hierarchy

Figure 4 An MRC example: code component + media
data

An E-Cash MRC is an animation, which consists
of a bitmap picture (E-Cash.bmp), a code component
(the AnimMRC class), and related attributes. Table 3
depicts the attributes of the E-Cash MRC, including
object name, visible flag, total frames in the bitmap
picture, moving path, presentation speed, etc. These
attributes are recorded in a script file.

Table 2. Partial implementation of class AnimMRC

* classvVisual */
class _export vVisua {
public:

vVglé QFOIO

VI rtual ~vV| sual(){}

2% Pt
é)ntal ns(p0| nt); }

/* classvFramesMgr */

class_export vFramesMgr {
public:

T\@%}W a%gnt fCount, const
mprH2RREGE, "Pal=0, BOOL

vi rtual ~vFramesM or();

TRUE;
,10000,100

L %H}(const
rtual void Dr & y
F&it%?fﬁrwmpﬂm ?f* g

TBltmap* FramesBmp(); ]’%%@ Yol (é??ggnqcoeg—newR }

D|b é:dfjm%D'b('”t reg|on 0 Ject

SBifhnt copst TRect e‘EﬁRﬁP( const,
Tle* FramesDib():; s Eeregion o
const TColor TransC(); /] st }he G ter oint %:t
HPALETTE Palette(); ( usual yu 0
TSize FrameSize(); %;T’E%Sj tF’OS(00nst
virtual void ToSelFrame()=0;; t(pos,Rect().Size())); }
BOOL ToFirstFrame(); _I_llgoln? yoid, CenterPos(const
BOOL ToLastFrame();

BOOL ToPrevFrame();
BOOL ToNextFrame();

|n||n§ v0|d CenterPos(const int
P0| nt(x.y)); }

/ / neT int (%enter onst ;

VE t ober °r=={)c9nst r n the center poin e

vo!d SelSeg(int id); . {Vr%m\'/ |\st‘an| 6.8999'}"' sual)
|3@8§Eds§gﬁ)&%g§'t* pSegiint BﬁOL V'asual () const { return

intSelSeg(); nt 0 ——{, nst

int SelFrame(); |sug§‘8811{ &um

void SelFrame(int idx);
b T\‘«pegyeﬁmedr

///////////////////////////////////////////////
/* classvBM PFramesMgr */




#include "framesmg.h"

cl ort vBM PEramesMgr :
pUbiCY rames%%rf #include "vvisual.h"

public:
/I class AnimMRC
T%}H%?&g%sfﬂn(const cgﬁpe(g%%pMﬁl \RH Ilacl {

void PtInType(int ptinType);

i . public:
Vi r;ual void ToSelFrame(); AnimMRCL(...):
Fﬁart ' {EapesBmp(int vi rtual v0|d Drg\tflvr(]'(rcl:())ﬁgdc);
TBitmap *Bitmap(); B0

void . "
gljﬁr;@gg!'&tmap pBmp,BOOL

TR

JF RectFrame(int idx) |};
TR

odf RectSelFrame()

v raafngMg%:'cs)E)j);
1

VOi Gray(BOOL
? rm_%rDéisﬁ:ray:drawGray; }

Table3. Attributesof E-Cash MRC

OBJ_NAME=E-Cash

VISIBLE=1

POSITION=000

TOTALSTEP=6

SIZE=160 101 100

ACTIVERGN=2

0 0000 00 NULL-100 010
4 0000 05 NULL 010 110
BMPFILE= E-Cash.bmp
ACTIONSPEED=6

[COMMENT]=0

3.3 Standar dization of the component

Components without a corresponding
organizational structure and format are extremely
difficult for users to accumulate it and to reuse it for
an application.

standardization of RSC and MRC.

In the following, we present the

3.3.1 Classification and naming

An effective organizational structure and a
effective naming system are a prerequisite for
reusable components. These facilitate the user in
looking for the necessary components. Moreover,
complicated organizational structures and naming
systems create unnecessary difficulty for locating an
appropriately designed RSC and MRC.

In the following, we describe the approach to
classify RSCs and MRCs. Basically;, a software
program can be modeled as a composition of data
structures and agorithms by using various tools and
subsystems in a computer system (e.g., operating

11

system, compilers and other useful software).
Logically, the following hierarchy can be used to
classify RSCs and MRCs, as illustrated in Fig. 5.
the

organization. The first level is a domain, and the

Such a classification is made herein for

second level is the component's type, i.e. structures,
tools, and subsystem.

— General purpose

—— User interface

—— Game

[—— CAI/CAD

|— Network Application

Domain

Domain

— structures
[—— tools
standard
bsy
subsystems subsys tems
user defined
su ems

(b). Catalog by component's type

(a). Category by domain

Figure 5. Component categories

Also, a naming system for the RSC and MRC is
necessary. Component naming allows the user know
the the
component's nhame. A relatively easy means of

component function by examining
performing this task is to separate component name
into three parts. By using the first letter to represent
the application domain, the second letter to represent
the catalog of the component, and the remaining one
is the component function name. The illustrative
example in Fig. 6 indicates that the component is a

windows game component, which is used for playing

avideo.
gwVideoPlay
Domain: \
g: game Catalog:
e: electronic w: windows
n: network c: control Function
d: database s: data structure

Figure 6. An illustrative example for the naming system

3.3.2 Componentsinformation

Component standardization facilitates the users in
retrieving, managing and presenting the component.
In the following, we present an architectural layout



for the reusable software components [2]. Basically, it

has three mgjor parts: 1) reusable software component

specification, 2) reusable software component body,

and 3) component layout.

Detailed information

regarding these three parts are described thereafter.

Component body

Component body is the implementation part of

the component. Following the compilation, the object

code of the body is included into a library (the

extension file name is lib). It is directly linked at

[_Search Info rmatia n

Specification Compomnent body

component

| adapter 1§
exp ander m| adapier 1f
template

: \'I'

expander |

Compomnemnt layotﬁn

ex

o

CcO

king phase with the main program to produce an
ecution code. In this manner, the implementation
dy can be hid from the users. For an MRC, the
mponent body includes the code component and

multimedia data.

Figure 7. Component information

Specification

1).

2

~—

3).

~—

4).

~—"

NS

N

Search information: consists of the component
name, author, taxonomy code, application domain,
creation date, and modification history. Some of
this information can be used as the keyword
during component searching.

. Basicinformation: consists of the component size,

component type, version, and file name in system.

Overview: describes the basic functionality and
features of the component. For an MRC, the
component overview presents the media data.

User interface: describes the public interfaces
(public member functions) supported in the
component for user application and all operations
on the mediafor MRC.

. Input/Output message: describes the meaning

and format of parameters that are passed onto the
component through user interface. For an MRC,
the 1/0 message also includes types of events,
which the component can accept and submit.

. Use format: consists of an example program

segment that demonstrates how one can use the
component.

12

Component layout

Component layout uses multimedia data to

represent the component in visual form. This part of

the component is useful in visua programming

environment. The extension file depends on media

data type, such as bmp, wav, and avi.

above-mentioned

inf

For MRC, each component should have the
related file and some extra

ormation for the use of MRC during

implementation, which can be summarized as follows:

1).

2).

3).

4).

Script, each MRC has its own properties based on
the media data. These properties are recorded in a
separate file named script file. While compiling
MRCs into a scene, this script fileisincluded into
the scene script. Chapter 4 elucidates the script
design and the use of MRC. The extension file is

Spt;
Demo scene, how to use the MRC to represent a

requirement scenario is demonstrated. More detail
will be discussed in section 4;

Formal requirement specification, denote the
possible requirement specification while using the
MRC to represent a requirement segment. The
extension file nameis spc; and

Framework, denote the possible framework while



using the MRC to represent a requirement
segment. The extension file nameis cpp.

Above information provides the basis for users to
retrieve and to use the existing components for their
application.

pe. SRS (13)

Software reuse is an effective approach to improve
software productivity and quality. Many reusable
components have been designed and used for various
applications. These reusable components include
many commercialized application frameworks, design
patterns, and code components (both in source code
form and binary code form). In this study, we propose
the concepts of RSCs and MRCs. A reusable software
component (RSC), a software module, isimplemented
on the basis of object-oriented programming
paradigm that can be repeatedly used in software
construction. Five kinds of software components for
software construction can be considered as reusable
software components. requirement  specification
components, design patterns, design frameworks,
code components, and data components. This year's
study extends reusable software components to
incorporate with multimedia data as Multimedia
Reusable Components (MRCs). In other words, the

MRCsinclude not only code and

documentation, but also voice narration and possible
animation sequences. An MRC should handle the
media data itself, such as start and stop presentation,
and edit,
components via a message. With the employment of
an object-oriented paradigm, MRC is defined herein
as a composition of media data, possible operations,

and should communicate with other

and message mechanism. An MRC can be viewed as

13

an active object and can be mapped to rea world
model. MRCs can be aggregated into a multimedia
film, which represent a software requirement. As
planned, we have achieved the goals of the first year.
And we will focus on the issues 2 and 3 for the next

year project. Specificaly, a script language to

represent the visual representation is proposed and an
authoring tool to create a multimedia representation
will be designed and implemented.

L BYLR

[1] D.J. Chenand David T. K. Chen, "An experimental
study of using reusable software design frameworks to
achieve software reuse”, The Journal of
Object-Oriented Programming, May 1994, pp. 56-68

P. F Chen, On the Study of Using Software IC
Construction Approach to Achieve Software Reuse
Master Thesis of N.C.T.U. Taiwan, June 1991D. J.
Chen and P. J. Lee, "On the Study of Software Reuse
Using Reusable C++ Components', The Journal of
System and Software, Vol. 20, No. 1, Jan 1993

Grady Booch, Software Components with Ada,
Benjamin/Cummings, California, 1987

M. Lenz, H. A. Schmid and P. W. Wolf, "Software
Reuse through Building Blocks', |IEEE Software, July
1987, pp. 34-42

Brad J. Cox, “Object Oriented Programming-An
Evolutionary ~ Approach”, Productivity Products
International, Inc. 1986.

Ruben Prieto-Diza and peter Freeman, “Classifying
Software for Reusability”, |IEEE Software, January
1987.

Chung-Chien Hwang, The Design and I mplementation
of Multimedia Resource Components for Electronic
Story Book, Master Thesis of N.C.T.U. Taiwan, 1995.

[8] M. D. Mcllroy, “Massproduced Software
Components’, in Software Engineering Concepts and
Techniques (1968 NATO Conf. On Software
Engineering), J. M. Buxon, P. Naur and B. Randell,
1976.

Peter Freeman, “A perspective on Reusability”, The
Computer Society of the |IEEE, 1987, pp.2-8.

[10]Pascoe, Geoffery A., “Elements of Object-oriented
Program.”, Byte, Vol. 11, No. 5, June 1992.

[11]Mitchell D. Lubbars, “Wide-Spectrum Support for
software Reusabhility”, Proceedings of the Workshop on
Software Reusability and Maintainability, October
1987.

(2]

(3]

(4]

(5]

(6]

(7]

(9]



[12]Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, Design Patterns — Elements of
Reusable Object-Oriented Software, Addison Wedley,
October 1994

[13]Grady Booch, “Designing an  Application
Framework”, Dr. Dobb’s Journal, February 1994, pp.
24-31

[14]Ralph E. Johnson, “How frameworks compare to
other object-oriented reuse techniques. Frameworks =
Components + Patterns’, Communications of the
ACM, Val. 40, No. 10, October 1997, pp. 39-42

14

[16] Dale Rogerson, Inside COM, Microsoft Press, 1996

[17] Breen David E., Getto Phillip H., Apocada Anthony A.,
Schmidt Daniel G., Sarachan Brion D., “The
Clockworks:  An  Object-Oriented  Computer
Animation System”, Proceedings of Eurographics,
pp. 275-282, 1987

[18] W.C. Chen, “A Visual and Reuse-based Paradigm for
Software Construction,” Ph.D. dissertation, Computer
Science and Information Engineering Dept., National
Chiao Tung University, Taiwan. June 1998



	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14

