
行政院國家科學委員會專題研究計畫  期中精簡報告

視覺化可再用軟體元件為基礎的軟體建構環境系統之建置

(1/3)

NSC91-2213-E-009-079-
91 08 01 92 07 31

2

92 5 7



視覺化可再用軟體元件為基礎的軟體建構環境系統之建置

(1/3)

A Visual and Reuse-based paradigm for Software Construction 
(1/3)

計畫編號：NSC 91-2213-E-009-079
執行期限：91 年 8 月 1 日至 94 年 7 月 31 日
主持人：陳登吉  交通大學資訊工程系教授

一、摘要

中文摘要
軟體生產力與軟體品質是發展軟體系統時面

臨的最大問題，運用軟體再利用的方法可以有效改

善這些問題，可再用軟體元件是應用軟體再用技術

發展軟體系統時的基本建構單元。物件導向技術包

含四種機制，分別是資料抽象化、資訊隱藏、繼承、

和動態繫結，這些機制將可協助我們設計和製作可

再用軟體元件。經由視覺化程式環境之協助，我們

可將這些軟體元件使用一個視覺化的圖像來代

表，藉由組合這些圖像來開發軟體系統，可以改變

過去 programming-in-the-small 的思維模式而成為

programming-in-the-very-large 。 為 了 達 成 這 個 目

的，我們必須定義出這種程式思維模式和製作出視

覺化輔助語言。

多媒體技術在現代電腦軟體應用上佔有重要

之角色，它具有較佳的使用者親和性，同時也較能

反映出真實世界的模式。因此，我們將多媒體資料

結合可再用軟體元件而發展出多媒體可再用元

件，這一類軟體元件除了包含程式碼和說明文件之

外，它還包含媒體資料、運作程序和訊息機制。基

於這些多媒體可再用元件，我們提出革新的軟體需

求表示方式 -- 使用一系列的動畫、影像和聲音表

示一段軟體需求，取代傳統大量的文字描述。此種

軟體需求表示方式可以提供使用者一個視覺化的

方式來檢視軟體需求以及早獲致使用者對該軟體

需求的回饋，同時，此方式也提供一個更自然的溝

通模式給系統分析者和系統使用者。

本計劃提出一為期三年的研究 ( 包含下列主

題 )：

1) 設計及製作可再用軟體元件及多媒體可再用元

件，並以 icon 方式表達。

2) 提出一個基於可再用軟體元件的視覺化軟體建

構思維模式。

3) 提出新的軟體需求描述模式並製作其輔助工具。

4) 評估上述軟體需求描述輔助工具之效益。

5) 製作以視覺化可再用軟體元件為基礎的軟體建

構環境系統。

第一年將專注於第 1)和 2)項的研究，第二年專
注於 3)和 4)項的研究，第三年則將專注於 5)的研究
並完成整個軟體建構環境系統。這五項主題不只關
係到軟體發展者是否能將軟體發展的策略提升到
programming-in-the-very-large 的層次，本研究成果
更可將軟體建構提升到視覺化需求表示的方式及視
覺化的程式產生方式。這對軟體生產力和軟體品質
有正面的助益。此系統的完成將可讓軟體需求的表
達方式透過多媒體元件方式的組合而成為類似互動
動畫說明軟體需求。如此軟體設計者和使用者之間
的鴻溝得以有效的填補。這將是一項創新的軟體需
求表達方式。此系統的完成將協助程式設計者以元
件化的方式透過視覺化的組裝工具來建構應用軟體
系統。這將對軟體的生產力及品質有相當大的助益。

關鍵詞：軟體生產力；軟體品質；軟體再利用；



3

軟 體 元 件 ； 多 媒 體 軟 體 元 件 ； 物 件 導 向 技 術
（Object-oriented Technology）；視覺化程式；視覺
化軟體需求

英文摘要

Software reuse has been considered an 

effective approach to improve software productivity

and software quality. Reusable Software Components 

(RSC) are the basic building blocks for software 

construction based on the software reuse practice. 

Object-oriented mechanisms-data abstraction, 

information hiding, inheritance and dynamic 

binding-are the base for the design and 

implementation of software reusable components. 

With the aid of a visual programming model, one can 

treat each reusable component as an icon. The 

programming paradigm can therefore be moved from 

programming-in-the-small to 

programming-in-the-very-large by visually 

manipulating these available icons (reusable 

components). To accomplish this objective, a visual 

programming paradigm and an icon interconnection 

language must be defined and implemented.

Multimedia technology has played an important 

role in today’s application software due to its friendly 

user interaction as well as its naturally fitting on real 

world modeling. We, therefore, extended reusable 

software components to incorporate with multimedia. 

In other words, the reusable software components 

include not only code and documents, but also voice 

narration, animation sequences and message 

mechanisms. We called such software components as 

Multimedia Reusable Components (MRCs). Based on 

these developed MRCs, a novel software requirement 

representation paradigm is introduced. With this novel 

representation paradigm for requirement 

representation, one can view the software requirement 

representation as sequences of animation instead of 

reading voluminous software requirements. Such a 

novel software requirement representation paradigm 

will provide users a visual effect and to have an 

earlier feedback from users. Also, it will provide an 

easy and natural form of the communication between 

designers and users.

Thus, in this project research, we focus our study 

on the following issues:

1) Discuss reusable software components and propose 

the multimedia reusable components.

2) Propose a visual software construction paradigm 

based on multimedia reusable components.

3) Propose a new software requirement representation 

paradigm and implement a supporting tool.

4) Evaluate the requirements representation tool.

5) Design and Implement a visual programming 

paradigm and evaluate the feasibility of such a 

visual programming environment.

Issues 1) and 2) will be studied in the first year project; 

issues 3) and 4) will be covered in the second year 

study; while issue 5) will be focused in the third year 

and eventually, the visual software construction 

environment will be established. 

Based on these research results, software 

construction can then be conducted at the level of 

programming-in-the-super-large. These research 

results will contribute to the improvement of software 

productivity and quality.

Keywords：Software Productivity, Software Reuse, 
Reusable Component, Reusable Multimedia 
Component, Object-oriented Technology, Visual 
Programming, Visual Requirement.



4

二、計畫緣由與目的

The software productivity, quality, and 

maintenance are still the major problems in modern 

computer software industry. Software reuse is an 

effective means of overcoming some of the problems. 

With the evolution (or some may prefer revolution) of 

the objected-oriented paradigm, software reuse has 

been extensively studied. Notable examples include 

Cox's Software IC [6], Booch's Ada components [4], 

Freeman's classification of software reusability [10], 

Prieto-Diaz's facet scheme for software reusability 

classification [7], Chen's interface design for reusable 

software components and C++ reusable components 

[1], Common object model (COM) [16], Java Bean, 

Eric Gamma's Design Patterns [13], Grady Booch's 

Application Framework [14], and Talph E. Johnson's 

Frameworks [15]. Above results have subsequently 

led to commercial software products such as Software 

IC by Stepstone Corporation, Ada reusable 

components, Booch's Components, and C++ reusable 

components. 

Multimedia technology has played an important 

role in today’s application software due to its friendly 

user interaction as well as its naturally fitting on real 

world modeling. We, therefore, extended reusable 

software components to incorporate with multimedia. 

In other words, the reusable software components 

include not only code and documents, but also voice 

narration, animation sequences and message 

mechanisms. We called such software components as 

Multimedia Reusable Components (MRCs). Based on 

these developed MRCs, a novel software requirement 

representation paradigm is introduced. With this novel 

representation paradigm for requirement 

representation, one can view the software requirement 

representation as sequences of animation instead of 

reading voluminous software requirements. Such a 

novel software requirement representation paradigm 

will provide users a visual effect and to have an 

earlier feedback from users. Also, it will provide an 

easy and natural form of the communication between 

designers and users.

Thus, in this project research, we focus our study 

on the following issues:

1) Discuss reusable software components and propose 

the multimedia reusable components.

2) Propose a visual software construction paradigm 

based on multimedia reusable components.

3) Propose a new software requirement representation 

paradigm and implement a supporting tool.

4) Evaluate the requirements representation tool.

5) Design and Implement a visual programming 

paradigm and evaluate the feasibility of such a 

visual programming environment.

Issues 1) and 2) will be studied in the first year project; 

issues 3) and 4) will be covered in the second year 

study; while issue 5) will be focused in the third year 

and eventually, the visual software construction 

environment will be established. Based on these 

research results, software construction can then be 

conducted at the level of 

programming-in-the-super-large. These research 

results will contribute to the improvement of software 

productivity and quality.

  In the next year NSC project (2003.8.1 –

2004.7.31), a novel representation system involving 

visual software requirements with a 



5

requirement-authoring tool based on MRCs will be 

studied (which are the issues 3 and 4 in the project 

proposal).

三、結果與討論 (1/3)

The first year research of this 3-year integrated 
NSC research project will be focused on the 
following two issues:

1) Discuss reusable software components and 
propose the multimedia reusable components.

2) Propose a visual software construction 
paradigm based on multimedia reusable 
components.

In the following, we present the results from 
these studies.

3.1 Reusable software components
Reusable software component is a software 

module containing a standardized interface 
specification, a functional description on this 
component, a use format and an example. Most 
importantly this software module is designed and 
implemented based on object-oriented 
programming paradigm that can be repeatedly 
used in software construction.

 3.1.1 Features of reusable software components

A software product has different features than 
other products, among which include flexibility 
and extendibility; it must consider future 
modifications or changes for a user’s requirement 
as well. Thus, owing to the same reasons, an 
effective software component contains flexible 
and extendible features as well.

Parts in many software systems or application 
systems are frequently the same. During the 
software construction, many of these repeatable 
parts can be separated or extracted out for reuse. 

Thus, parts in software have repeatability and an 
effective software component does as well.

A software program designed on the basis of 
a conventional programming approach typically 
leads to difficulty in locating errors or faults due 
to global effects. Also, a software program 
designed using an unorganized structure will 
resolve the debugging problem. As generally 
known, effective software must be constructed 
from an effective software component possessing 
features such as data abstraction and information 
hiding.

Another important feature of effective 
software is that it provides a feasible means for 
programmers to accumulate repeatable parts. 
Consider the development of computer hardware. 
From the evolution of transistors, (SSI, MSI, LSI 
to VLSI), semiconductor technology not only 
integrates millions of logic circuits in a module, 
but also accumulates many reusable parts that 
provide a viable means for application designers 
to construct a complex and large hardware system 
without much difficulty. As mentioned earlier, 
Mcllory 1976 [9] recommended that the software 
not be constructed from the beginning every time. 
A more viable alternative is to use repeatable 
parts to construct the software. Thus, an effective 
software component technology must be 
developed.

Theoretically, a reusable software component 
or framework must be designed in so that it can 
be used to construct many different applications
(maximizing application) and can easily be 



6

reused or adapted by a software designer or 
programmer for his/her application  (easy for 
tailoring in a specific application). Herein, we use 
a 2-dimensional configuration to depict an ideal 
RSC or framework, as illustrated in Fig. 1.

Figure 1. An ideal Reusable Software Component

According to Fig 1, assume that an RSC is 
designed specifically for a certain application, 
making it quite adaptable for that particular 
application. However, such an RSC cannot be 
applied to other applications. On the other hand, 
if an RSC is designed too general, theoretically, it
can be extensively applied to various applications. 
However, such a design would be difficult to 
tailor for a specific application. Thus, how to 
design and implement an RSC so as to create a 
balance between generalization and specialization 
is a challenging task.

Figure 2 depicts a client and server model to 
demonstrate the role of reusable software 
components, allowing us to more thoroughly 
describe the preliminary design and 
implementation of RSCs. In addition, a 
component can be viewed as a server capable of 
providing services for its potential clients through 
the interfaces. A client, an application program, 
only needs to know the interface specifications 
but does not need to know how the server 
implements these services. A server can accept 
various kinds of requests submitted from clients. 
If the interface constraints are severely restricted, 
the servers can obviously assert that although the 

requests for service from clients conform to their 
interfacing condition, many potential clients may 
also be lost whose service requests are just 
statistically incompatible. On the other hand, if 
the interface constraints are relaxed, the servers 
accept various requests of service from clients. 
This circumstance is a tradeoff between interface 
compatibility and flexibility. Notably, a 
component can be a client, a server or a client 
and server. 

INTERFACECLIENT SERVER

Request service Provide service

request

return

Figure 2. A Client and Server model

The object-oriented approach allows us to 
construct RSCs. The generalization is achieved 
by using the multiple polymorphism (i.e. the use 
of dynamic binding for implementation) and 
specialization is achieved by using the refinement 
(i.e. the use of inheritance for implementation) 
while designing RSCs. Closely examining how to 
design and implement RSCs allows us to infer 
that an effective reusable software components 
possesses the following features: 1) ease of 
generalization, 2) ease of refinement 
(specialization), 3) clear interface specification, 4) 
complete encapsulation, and 5) complete testing. 
While designed on the basis of the above 
principles, the reusable software components are 
the ideal RSCs for accumulating the future reuse. 

3.1.2 Categor ies of software components

Five kinds of software components for 
software construction can generally be 
considered as reusable software components, 
starting from high level down to the lowest level:

1). Requirement specification components

 In addition to belonging to a segment of the 

G e n e r a l i z a t io n

S p e c ia l i z a t i o n

A n  i d e a l R S C s  is  i n  a  w a y
o f  b a la n c e  b e t w e e n
g e n e r a l iz a t io n  a n d
s p e c ia liz a t io n .



7

user requirement, this kind of component can be 
considered as the analysis level components 
(reusable analysis components). It has the highest 
reusability with the lowest applicability property.

2). Design patterns

A design pattern is an abstract design concept 
that focuses on the particular problem which 
solutions reuse. According to Erich Gamma's 
definition, "Design patterns are descriptions of 
communicating objects and classes that are 
customized to solve a general design problem in 
a particular context" [13]. Erich Gamma also 
addressed twenty-three design patterns based on 
object-oriented design issues. In general, a 
programming language cannot represent a design 
pattern itself. It is more abstract than the design 
framework. 

3). Design frameworks

This kind of components is the reuse of 
design attributed to particular analysis results and 
it is called reusable software design framework 
(RSDF) in [1]. The framework is commonly 
defined as "a reusable design of all or a part of a 
system that is represented by a set of abstract 
classes and the way their instances interact."
Grady Booch defined a framework as "a 
collection of classes that provide a set of services 
for a particular domain" [14]. Another definition 
by [15] is "a framework is the skeleton of an 
application that can be customized by an 
application developer". These definitions 
obviously reveal that frameworks can be 
components plus patterns for a particular 
application domain [15]. A design framework is a 
design realization, as represented by an 
object-oriented programming language. 
Frameworks are more customizable than most 

components, and have more complex interfaces 
as well. Programmers must learn these interfaces 
before they can use them. In general, learning a 
new framework is difficult. 

Frameworks differ from components 
primarily in that 1). Frameworks provide a 
reusable context for components. Framework not 
only implements a design pattern, but also 
provides standard interfaces for components 
composition that enables existing components to 
be reused; 2). Frameworks and components 
function collaboratively so that frameworks can 
more easily develop new components; and 3). 
Frameworks provide the specifications for new 
components and a template for implementing 
them.

4). Code components

This component is the primary reusable part 
in our proposed construction approach. A code 
component can be considered as a class, from 
object-oriented paradigm, which includes a 
complete set of member functions and data 
structure. Code component differs from the 
conventional (or functional) library in that it has a 
well-defined and well-designed interface with
data abstraction and information hiding the 
semantic meaning. Inheritance mechanism in 
code components provides flexible usage of 
components. These object-oriented features not 
only encourage components reuse, but also 
improve reusability.

5). Data components

Computer data include numerical data and 
multimedia data. In computer application domain, 
multimedia data include factors such as text, 
image, animation, video, and voice, which can be 
manipulated by the computer. Based on the 



8

different kinds of data, a data component can be 
classified into six types: 1) numerical data such 
as an electronic constant, 2) text data such as a 
document, 3) image, 4) animation: 2-D and 3-D 
animation, 5) video, and 6) voice.

The above types of data can be packaged as 
reusable data components. These components can 
be referred to as passive data component since 
the component is simply a group of constant data 
definition. 

3.2 Multimedia reusable components 
(MRCs)

Among the control operations on multimedia 
data include capture, manipulate, edit, store, and 
display. These multimedia data along with its 
control operations can be encapsulated as a 
component. Such a component is called 
Multimedia Reusable Component (MRC). Based 
on the features of each type of multimedia data, 
the data itself and related operations to a 
component can be composed. With the assistance 
of the object-oriented paradigm, the message 
mechanism can be embedded into the component, 
and then, the component acts similar to an active 
object. 

3.2.1 Features of multimedia data

Compiling multimedia data into MRC hinges 
on understanding the features of multimedia data. 
In the following, we thoroughly discuss the 
multimedia data presented in [8]. The following 
points can be summarized as follows:

1) Text always uses the standard text format such 
as ASCII code,

2) Image is a single picture. Images must always 
be aggregated with another MRC. By doing so, 
an image’s background must be set to 
transparent. Most of the image format follows 
the Microsoft Windows' standard, bitmap 
(BMP), DIB (Device Independent Bitmap), 
JPEG and GIF,

3) Animation is a sequence of pictures. Like the 
image, the background of animation also has to 
be set to transparent. The data formats include 
bitmap, FLI/FLC, MOV and AVI in computer,

4) Video is a digitized data from analog video 
signal that can be controlled as animation. The 
data formats include MOV, AVI and MPEG, 

5) Voice (or Sound) is a digitized data from 
analog voice signal. The data format includes 
WAV and MIDI.

Table 1 summarizes the features of 
multimedia data. In actual applications, the 
above-mentioned multimedia are transformed 
into another format due to the compression and 
security considerations. 

Table 1. Summary of multimedia data



9

3.2.2 Object-or iented paradigm and reusable 

multimedia components

Object-oriented paradigm is a natural model for 

computer animation [17]. In general, object-oriented 

paradigm is quite appropriate for computer 

multimedia. Consider a multimedia presentation 

system. An animation object and a voice object are 

presented simultaneously, and should be synchronized 

as well. Restated, these two objects start and end at 

the same time point. By mapping the situation to real 

world model, these two objects are “alive” and can 

communicate with each other. In an object-oriented 

system, objects communicate with each other via a 

message mechanism. The message mechanism is also 

used to perform entities, execute concurrently and 

synchronize between entities. Based on the 

object-oriented paradigm and technology, multimedia 

reusable component is defined herein as a 

composition of media data, possible operations, and 

message mechanism.

Figure 3. Possible messages for an MRC

An MRC object can receive messages and send 

messages, as indicated in Fig. 3. The most common 

incoming messages include start, stop, pause, set 

properties, query status, appear, and disappear. The 

MRC responds when a message arrives. For instance, 

the start message causes the MRC object to present its 

media data. The disappear message causes the MRC 

to hide its media data from display area regardless of 

whether or not the object is active. Notably, some 

messages force the MRC object to respond by a send 

out message, such as query status message. The 

outgoing messages include finish, object status;

collision with other objects and, then, pass the 

incoming message. For instance, while the object 

completes its presentation, it post finishes a message 

to a system or other objects. System and MRC objects 

are communicated via such messages. In addition, the 

sequential objects presentation and parallel objects 

presentation can be performed as well.

MRCs have different features than reusable 

software components since multimedia data differ 

from other conventional computer data:

1) Multimedia data always require a larger storage 

space and the retrieval depends on the data 

content. The component storage and management 

problem must be considered as well;

2) Multimedia data are retrieved on the basis of the 

data content;

3) Each type of multimedia data has its own features. 

For instance, the display of text or image is time 

Media 

type

Format Characteristics Related Information

Text ASCII 1. can be aggregated 
with other types of data

File size

Image
BMP, DIB
JPEG, GIF

1. background 
transparency
2. can be aggregated with 
other types of data
3. time independent

Format, Resolution 
and # of colors, 
Height, Width, File 
size

Animati
on

BMP, AVI, 
FLI/FLC,
 MOV, 
MPEG

1. background 
transparency
2. can be aggregated 
with other types of data
3. time dependent
4. needing 
synchronous with voice.

Format, Resolution 
and # of colors, 
Height, Width, Total 
frame, Frame rate, 
File size

Video
MOV, 
AVI, 
MPEG

1. can‘t be aggregated 
with other types of data
2. time dependent
3. voice is a part of the 
data 

Format, Height, 
Width, Total display 
time, Frame rate, File 
size

Voice
Or 

Sound
WAV, 
MIDI 

1. can be aggregated 
with other types of data 

Format, Quality(bits 
per sampling), 
Sampling rate, Total 
time, File size



10

independent but voice, animation and video are 

time dependent;

4) Several MRCs must be synchronized while they 

are displayed at the same time. For instance, to 

show an animation and voice simultaneously, they 

must start and end at the same time point;

5) MRCs not only include multimedia data itself, but 

also the operations, which can manipulate them; 

and

6) MRCs are implemented by the object-oriented 

technique. Multimedia data and related attributes are 

encapsulated and protected in an MRC. Media data 

cannot be manipulated from outside of the MRC. 

Message mechanism provides a feasible means of 

controlling and communicating with MRCs. An MRC 

is reacted according to what message has arrived. For 

instance, an MRC starts to appear while receiving a 

start message. MRCs can also be organized by a 

message chain, such as MRCs synchronization, serial 

presentation, and parallel presentation.

In addition, MRCs aggregate as a coding process, 

which produces a software program. The program can 

be executed as a multimedia film. If the program 

represents a software requirement, then the 

aggregation of MRCs is a process in writing a 

multimedia software requirement. 

 3.2.3 An MRC example

Figure 4 depicts an E-Cash MRC example. The 

animation is recorded as a bitmap picture that consists 

of several frames. The AnimMRC class is derived 

from the ActorMRC class. All the possible operations 

and attributes of logical actors are defined in the 

ActorMRC. Note that all physical control, such as 

display a frame on to screen, play a wave data by 

calling MCI, of a media data is defined in the 

BaseMRC class and the Component class. Parts of the 

class hierarchy definition are listed in table 2.

Figure 4 An MRC example: code component + media 

data

An E-Cash MRC is an animation, which consists 

of a bitmap picture (E-Cash.bmp), a code component 

(the AnimMRC class), and related attributes. Table 3 

depicts the attributes of the E-Cash MRC, including 

object name, visible flag, total frames in the bitmap 

picture, moving path, presentation speed, etc. These 

attributes are recorded in a script file. 

Table 2. Partial implementation of class AnimMRC
/* class vFramesMgr  */

class _export vFramesMgr {
public:
 vFramesMgr(int fCount, const TColor&transC, 
    HPALETTE hPal=0, BOOL 
tmpPal=FALSE);
 virtual ~vFramesMgr();
 virtual BOOL PtIn(const 
TPoint&testPos)=0;
 virtual TBitmap*FramesBmp(int 
fStart,int fEnd)=0;
 TBitmap*FramesBmp();
 TDib*   FramesDib(int fStart,int fEnd);
 TDib*   FramesDib();
 const TColor TransC();
 HPALETTE Palette();
 TSize FrameSize();
 virtual void ToSelFrame()=0;;
 BOOL ToFirstFrame();
 BOOL ToLastFrame();

BOOL ToPrevFrame();
BOOL ToNextFrame();
int operator==(const vFramesMgr&obj);

 void SelSeg(int id);
 void AddSeg(vExtent*pSeg,int id,BOOL sel=FALSE);
 int  SelSeg(); 
 int SelFrame();
 void SelFrame(int idx);
};

///////////////////////////////////////////////
/* class vBMPFramesMgr  */

/* class vVisual */
class _export vVisual {
public:
 vVisual(){ m_visual=TRUE; 
m_rect=TRect(0,0,0,0); m_redrawR=TRect(0,0,10000,100
00); }
 virtual ~vVisual(){}
 virtual BOOL PtIn(const TPoint&point) { return 
Visual()&& m_rect.Contains(point); }
 virtual void Draw(TDC&)=0; // before drawing, had better test if 
Visual() or not
 virtual void Rect(const 
TRect&newR) { m_rect=newR; } // set region of object
 const TRect&Rect() const { return m_rect; } // the region of 
the object
 // set the center point of the object 
( usually used to move the object )
 void TopLeftPos(const TPoint&pos) 
{ Rect(TRect(pos,Rect().Size())); }
 inline void CenterPos(const TPoint&pos);
 inline void CenterPos(const int x,const int y) { CenterPos(TPoint(x,y)); }
 inline TPoint CenterPos() const ; // return the center point of the 
object
 void Visual(BOOL visual) { m_visual=visual; }
 BOOL Visual() const { return 
m_visual; }
 int operator==(const vVisual&obj) { return 
this==&obj; }
 void NeedRedrawR(const TRect&r) { m_redrawR=r; }
};



11

class _export vBMPFramesMgr : public vFramesMgr {
public:

 virtual BOOL PtIn(const TPoint&testPos);
 void PtInType(int ptInType);
 virtual void ToSelFrame();
 virtual TBitmap*FramesBmp(int 
fStart,int fEnd);
 TBitmap *Bitmap();
 void     Bitmap(TBitmap*pBmp,BOOL 
autoDel);
 TRect    RectFrame(int idx) 
const;

TRect    RectSelFrame() const;
int operator==(const vBMPFramesMgr&obj);

};

#include "framesmg.h"
#include "vvisual.h"

// class AnimMRC
class _export AnimMRC : public vBMPFramesMgr, public vVisual {
public:
 AnimMRC(… );
 virtual void Draw(TDC&dc);
 virtual BOOL PtIn(const TPoint&point);
 void DrawGray(BOOL drawGray) 
{ m_drawGray=drawGray; }
};

Table 3.  Attr ibutes of E-Cash MRC

OBJ_NAME=E-Cash
VISIBLE=1
POSITION=0 0 0
TOTALSTEP=6
SIZE=160 101 100
ACTIVERGN=2
0  0 0 0 0  0 0  NULL -1 0 0  0 1 0
4  0 0 0 0  0 5  NULL  0 1 0  1 1 0
BMPFILE= E-Cash.bmp
ACTIONSPEED=6

[COMMENT]=0

3.3 Standardization of the component

Components without a corresponding 

organizational structure and format are extremely 

difficult for users to accumulate it and to reuse it for 

an application. In the following, we present the 

standardization of RSC and MRC. 

3.3.1 Classification and naming

An effective organizational structure and a 

effective naming system are a prerequisite for 

reusable components. These facilitate the user in 

looking for the necessary components. Moreover, 

complicated organizational structures and naming 

systems create unnecessary difficulty for locating an 

appropriately designed RSC and MRC.

In the following, we describe the approach to 

classify RSCs and MRCs. Basically; a software

program can be modeled as a composition of data 

structures and algorithms by using various tools and 

subsystems in a computer system (e.g., operating 

system, compilers and other useful software). 

Logically, the following hierarchy can be used to 

classify RSCs and MRCs, as illustrated in Fig. 5. 

Such a classification is made herein for the 

organization. The first level is a domain, and the 

second level is the component's type, i.e. structures, 

tools, and subsystem. 

Domain

Database management

User interface

Game
CAI/CAD
Network Application

Electronic Book

Numerical
Data structure
Multimedia application

(a). Category by domain

Domain structures

tools

subsystems standard
subsystems

user defined 
subsystems

(b). Catalog by component's type

General purpose

Figure 5. Component categories

Also, a naming system for the RSC and MRC is 

necessary. Component naming allows the user know 

the component function by examining the 

component's name. A relatively easy means of 

performing this task is to separate component name 

into three parts. By using the first letter to represent 

the application domain, the second letter to represent 

the catalog of the component, and the remaining one 

is the component function name. The illustrative 

example in Fig. 6 indicates that the component is a 

windows game component, which is used for playing 

a video.

g w V i d e o P l a y

Domain:
   g: game
   e: electronic
   n: network
   d: database

Catalog:
   w: windows
   c: control
   s: data structure

Function

Figure 6. An illustrative example for the naming system

3.3.2 Components information

Component standardization facilitates the users in 

retrieving, managing and presenting the component. 

In the following, we present an architectural layout 



12

for the reusable software components [2]. Basically, it 

has three major parts: 1) reusable software component 

specification, 2) reusable software component body, 

and 3) component layout. Detailed information 

regarding these three parts are described thereafter.

Figure 7. Component information

Specification

1). Search information: consists of the component 

name, author, taxonomy code, application domain, 

creation date, and modification history. Some of 

this information can be used as the keyword 

during component searching.

2). Basic information: consists of the component size, 

component type, version, and file name in system.

3). Overview: describes the basic functionality and 

features of the component. For an MRC, the 

component overview presents the media data.

4). User  interface: describes the public interfaces 

(public member functions) supported in the 

component for user application and all operations 

on the media for MRC.

5). Input/Output message: describes the meaning 

and format of parameters that are passed onto the 

component through user interface. For an MRC, 

the I/O message also includes types of events, 

which the component can accept and submit.

6). Use format: consists of an example program 

segment that demonstrates how one can use the 

component.

Component body

Component body is the implementation part of 

the component. Following the compilation, the object 

code of the body is included into a library (the 

extension file name is lib). It is directly linked at 

linking phase with the main program to produce an 

execution code. In this manner, the implementation 

body can be hid from the users. For an MRC, the 

component body includes the code component and 

multimedia data.

Component layout

 Component layout uses multimedia data to 

represent the component in visual form. This part of 

the component is useful in visual programming 

environment. The extension file depends on media 

data type, such as bmp, wav, and avi.

For MRC, each component should have the 

above-mentioned related file and some extra 

information for the use of MRC during 

implementation, which can be summarized as follows:

1). Script, each MRC has its own properties based on 

the media data. These properties are recorded in a 

separate file named script file. While compiling 

MRCs into a scene, this script file is included into 

the scene script. Chapter 4 elucidates the script 

design and the use of MRC. The extension file is 

spt;

2). Demo scene, how to use the MRC to represent a 

requirement scenario is demonstrated. More detail 

will be discussed in section 4;  

3). Formal requirement specification, denote the 

possible requirement specification while using the 

MRC to represent a requirement segment. The 

extension file name is spc; and 

4). Framework, denote the possible framework while 



13

using the MRC to represent a requirement 

segment. The extension file name is cpp.

Above information provides the basis for users to 

retrieve and to use the existing components for their 

application.

四. 計畫成果自評 (1/3)

Software reuse is an effective approach to improve 

software productivity and quality. Many reusable 

components have been designed and used for various 

applications. These reusable components include 

many commercialized application frameworks, design 

patterns, and code components (both in source code 

form and binary code form). In this study, we propose 

the concepts of RSCs and MRCs. A reusable software 

component (RSC), a software module, is implemented 

on the basis of object-oriented programming 

paradigm that can be repeatedly used in software 

construction. Five kinds of software components for 

software construction can be considered as reusable 

software components: requirement specification 

components, design patterns, design frameworks, 

code components, and data components. This year’s 

study extends reusable software components to 

incorporate with multimedia data as Multimedia 

Reusable Components (MRCs). In other words, the 

MRCs include not only code and

documentation, but also voice narration and possible 

animation sequences. An MRC should handle the 

media data itself, such as start and stop presentation, 

and edit, and should communicate with other 

components via a message. With the employment of 

an object-oriented paradigm, MRC is defined herein 

as a composition of media data, possible operations, 

and message mechanism. An MRC can be viewed as 

an active object and can be mapped to real world 

model. MRCs can be aggregated into a multimedia 

film, which represent a software requirement. As 

planned, we have achieved the goals of the first year. 

And we will focus on the issues 2 and 3 for the next 

year project. Specifically, a script language to 

represent the visual representation is proposed and an 

authoring tool to create a multimedia representation 

will be designed and implemented.

五. 參考文獻

[1] D. J. Chen and David T. K. Chen, "An experimental 
study of using reusable software design frameworks to 
achieve software reuse", The Journal of 
Object-Oriented Programming, May 1994, pp. 56-68

[2] P. F. Chen, On the Study of Using Software IC 
Construction Approach to Achieve Software Reuse, 
Master Thesis of N.C.T.U. Taiwan, June 1991D. J. 
Chen and P. J. Lee, "On the Study of Software Reuse 
Using Reusable C++ Components", The Journal of 
System and Software, Vol. 20, No. 1, Jan 1993

[3] Grady Booch, Software Components with Ada, 
Benjamin/Cummings, California, 1987

[4] M. Lenz, H. A. Schmid and P. W. Wolf, "Software 
Reuse through Building Blocks", IEEE Software, July 
1987, pp. 34-42

[5] Brad J. Cox, “Object Oriented Programming-An 
Evolutionary Approach”, Productivity Products 
International, Inc. 1986.

[6] Ruben Prieto-Diza and peter Freeman, “Classifying 
Software for Reusability”, IEEE Software, January 
1987.

[7] Chung-Chien Hwang, The Design and Implementation 
of Multimedia Resource Components for Electronic 
Story Book, Master Thesis of N.C.T.U. Taiwan, 1995.

[8] M. D. Mcllroy, “Mass-produced Software 
Components”, in Software Engineering Concepts and 
Techniques (1968 NATO Conf. On Software 
Engineering), J. M. Buxon, P. Naur and B. Randell, 
1976.

[9] Peter Freeman, “A perspective on Reusability”, The 
Computer Society of the IEEE, 1987, pp.2-8.

[10]Pascoe, Geoffery A., “Elements of Object-oriented 
Program.”, Byte, Vol. 11, No. 5, June 1992.

[11]Mitchell D. Lubbars, “Wide-Spectrum Support for 
software Reusability”, Proceedings of the Workshop on 
Software Reusability and Maintainability, October 
1987.



14

[12]Erich Gamma, Richard Helm, Ralph Johnson, and 
John Vlissides, Design Patterns – Elements of 
Reusable Object-Oriented Software, Addison Wesley, 
October 1994

[13]Grady Booch, “Designing an Application 
Framework”, Dr. Dobb’s Journal, February 1994, pp. 
24-31

[14]Ralph E. Johnson, “How frameworks compare to 
other object-oriented reuse techniques: Frameworks = 
Components + Patterns”, Communications of the 
ACM, Vol. 40, No. 10, October 1997, pp. 39-42

[16] Dale Rogerson, Inside COM, Microsoft Press, 1996

[17] Breen David E., Getto Phillip H., Apocada Anthony A., 
Schmidt Daniel G., Sarachan Brion D., “The 
Clockworks: An Object-Oriented Computer 
Animation System”, Proceedings of Eurographics, 
pp. 275-282, 1987

[18] W.C. Chen, “A Visual and Reuse-based Paradigm for 
Software Construction,” Ph.D. dissertation, Computer 
Science and Information Engineering Dept., National 
Chiao Tung University, Taiwan. June 1998


	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14

