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Abstract 

The hierarchical cubic network (HCN), which takes hypercubes as basic clusters, was first introduced in [6]. Compared 
with the hypercube of the same size, the HCN requires only about half the number of links and provides a lower diameter. 
This paper first proposes a shortest-path routing algorithm and an optimal broadcasting algorithm for the HCN. We then 
show that the HCN is optimal fault tolerant by constructing node-disjoint paths between any two nodes, and demonstrate that 
the HCN is Hamiltonian. Moreover, it is shown that the average dilation for hypercube emulation on the HCN is bounded by 
2. This result guarantees that all the algorithms designed for the hypercube. can be executed on the HCN with a small 
degradation in time performance. 

Keywords: Hypercube; InterconnecGon network; Shortest-path routin,, 0. Broadcasting; Fault tolerance; Hamiltonian; Emulation 

1. Introduction 

Advances in technology have made possible interconnection of a large number of computing elements to 
form a massively parallel computer system with control, processing, and information being distributed among 
these elements. One of the dominating factors that governs the performance of a parallel system is the 
underlying communication network. Hence, the choice of the topology of the interconnection network is critical 
in the design of massively parallel computer systems. For this reason, a lot of network topologies have been 
proposed in the literature [2,6,7,12,16,17], and a large amount of research has been focused on the design and 
evaluation of these networks [ 1,9,10,14]. 
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The n-dimensional hypercube (or n-cube) has been one of the most popular interconnection networks 
because it provides the logarithmic diameter, high connectivity, symmetry, and simple routing; it is also able to 
efficiently emulate many other topologies such as rings, trees, meshes, butterfly and shuffle-exchange networks 
[l 11. The hypercube has been used to design various commercial multiprocessor machines and has been 
extensively studied [ 1,14,151, while many efficient parallel algorithms for hypercubes have been implemented 
[31. 

However, the hypercube has been considered unsuitable for building large systems since the relatively high 
node degree results in an additional difficulty in interconnection and an extra complexity in processor design. As 
the dimension n of the hypercube increases, the number of communication ports and links per processor grows 
rapidly so that the feasibility of higher dimensional hypercube machines becomes questionable. Therefore, there 
is a substantial interest in interconnection networks with hypercube characteristics but with a reduced node 
degree; consequently, some hierarchical topologies of the hypercube structure have been investigated in recent 
years [7,8,12,17]. 

The hierarchical cubic network (HCN) has been proposed and analyzed by Ghose and Desai in [8-101. The 
HCN takes hypercubes as basic clusters, which are connected in a complete manner. An HCN that consists of 2” 
basic clusters - each of which is an n-cube - is referred to as HCN(n,n). Compared with the hypercube of the 
same size, the HCN requires only about half the number of links and has a considerably lower diameter. 
However, the routing algorithm for the HCN proposed in [lo] is not optimal in distance wise, and thus its 
diameter obtained from the path determined by the routing algorithm is just an upper bound. 

This paper is organized as follows. Section 2 defines the topology of an HCN(n,n) formally. Section 3 
presents a shortest-path routing algorithm for an HCN(n,n), deriving a very tight bound for the diameter, 
(n + [n/31 + 1). Section 4 gives a lower bound of time complexity of any broadcasting on an HCN(n,n) and 
develops an optimal broadcasting algorithm. In Section 5, we show that an HCN(n,n) is optimal fault tolerant 
by constructing node-disjoint paths between any two nodes and give an upper bound for the fault-diameter, 
(2n + 6). In Section 6, we demonstrate that an HCN(n,n) has a Hamiltonian cycle. Section 7 describes how to 
emulate the hypercube on the HCN with a small performance degradation. Finally, in Section 8 the conclusion 
of this research and topics for future research are given. 

2. The hierarchical cubic network 

Throughout this paper (unless stated otherwise), we use the lower-case letters a, 6, c and d to denote binary 
bits and the capital letters A, B, C and D to denote n-bit binary sequences. For example, A = u,- , . . . a, and 
ui E (0,l) for 0 I i < n. Let zij denote the complement of ai. For simplicity, let A’ = a,-, . . . a,. . . u. and 
A=ii,-,...iii...Zi,. 

An HCN(n,n) consists of 2” basic clusters, each of which is an n-cube. Each node in an HCN(n,n) is 
assigned a 2n-bit binary sequence A, A,. The most significant n bits, A,, identify the cluster to which this node 
belongs, and the least significant n bits, A,, form node addresses within the cluster. Let x be a don’t-care 
symbol, and X be a sequence of n don’t-care symbols, i.e., X = x”, where the superscript is the repetition 
factor. That is, we can use A, X to denote the cluster containing node A, A,. 

Within a cluster, the edge connections are in the same fashion as those in the hypercube, i.e., node A, A, is 
connected with nodes A, A;, 0 I i I n - 1. These links are referred to as focal edges of dimension i. The 
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Fig. I. An HCN(2.2). 

edges between these basic clusters are formed by connecting node A, A,, to node A, A, for all A, and A,, with 
A, # A,,. These edges are referred to as switch edges, because one node can be reached from the other node by 
switching its most significant n bits with its least significant n bits. In the case of A, = A,, node A, A, is -- 
connected to node A, A,. These edges in this case are referred to as complement edges. The degree of each 
node in an HCN(n,n) is (n + 1); each node is connected with n local edges plus either a switch edge or a 
complement edge. An HCN(2,2) is shown in Fig. 1. 

3. Shortest-path routing and diameter 

Message routing is a central problem to the application of an interconnection network. A good interconnec- 
tion network should facilitate message routing in a simple and efficient way. An efficient routing algorithm for a 
given network makes better use of the network and increases the overall performance of the multiprocessor 
system built on the network. In [lo], Ghose and Desai proposed a routing algorithm for an HCN(n,n) and 
established an upper bound for the diameter, (n + [n/2] + 1). In this section, we will present a shortest-path 
routing algorithm for an HCN(n,n), and then derive a tighter bound of the diameter, (n + ] n/31 + 1). 
Additionally, a conservative estimate of the average distance of an HCN(n,n) is also included. 

3.1. Shortest-path routing algorithm 

To make this paper self-contained, we first outline the routing algorithm for the hypercube in [ 141. Let A and 
B be any two nodes in a n-cube, where A and B represent two n-bit binary sequences. The routing from A to 
B can be done by crossing successively the nodes whose labels are those obtained by modifying the bits of A 
one by one in order to transform A into B. The distance between A and B is equal to the number of bits that 
differ between A and B, i.e., to the Hamming distance H( A,B) which is defined as follows. The Hamming 
distance between A = a,,-, . . . a,~,, and B = b,- , . . . 6, b, is defined as 

n- 1 

H( A-B) = c h(a;,b;), 
i=O 

where 

h( a;,bi) = 
1 if a;#b,; 

0 if a;= b;. 

The next lemma related to the Hamming distance is useful for our analysis that follows. 
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Lemma 3.1. H( A,B) + H( A,C) I 2n - H(B,C), where A, B, and C are n-bit binary sequences. 

Proof. By the definition of the Hamming distance, we have three equations below: 

H(A,@=n-H(A,B); 

H( A,B) +H( AC) 2 H( B,C); 

H( x,ii) = H( A,B). 

Therefore, 

H( A,B) +H( AK) bY WI 

=n-H(A,@+n-H(A,C) 

= 2n - {H( A$) + H( A,?)} [by (2)] 

I 2n - H( B,C) bY WI 
=2n-H(B,C). q 

(1) 
(2) 

(3) 

To clarify our representation, the term “hypercube routing” is used for the routing within a cluster of an 
HCN(n,n). The labels of nodes coupled with two symbols --) and * are used to denote specific paths in an 
HCN(n,n). The symbol + is used to represent a switch edge or a complement edge. The symbol * is used to 
represent a hypercube routing path within a cluster of an HCN( n,n), which is of length at most n. Let IPI 
denote the length of path P. 

Lemma 3.2. Given node A, A, and node B, B, with A, = B, in an HCN(n,n), path P,: A, A, =S A, B, is the 
shortest path between them, which can be determined by hypercube routing. 

Lemma 3.3. Any shortest path between any two nodes in an HCN( n,n) contains at most one complement edge. 

Proof. To prove this lemma, by contradiction, assume that there is a shortest path containing more than one 
complement edge between two nodes in an HCN(n,n). Let P : AA + AA.. . E + BB be a subpath between 
any two complement edges in this shortest path, which is of length k. By the assumption, P is a shortest path 
between AA and BB. Now, if we complement the labels of all the nodes on P, then the resulting path is 
F: AA-AA... BB --) Bg, which is also of length k. So, there is a shorter path of length (k - 2) between AA 
and BB. This is a contradiction. Therefore, a shortest path between two nodes in an HCN(n,n) contains at most 
one complement edge. 0 

Lemma 3.4. If a shortest path between two nodes in an HCN( n,n> does not traverse any complement edge, 
then the path contains at most two switch edges. 

Proof. To prove it, we need to show that given two nodes A, A, and B, B,, any path containing three switch 
edges between them can be reduced to a shorter path containing only one switch edge. Let P : A, A, 5 A,C + 
CA, * CD + DC * DB, + B, D * B, B, be a path containing three switch edges, where 1 PI = H( A,,C) + 1 + 
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H(A,,D)+ 1 +H(C,B,)+ 1 +H(D,B,)z 3 +H(A,,B,)+H(A,,B,). Then P can be reduced to P* : A,AO 
=+A,B, +B,A, *BIB0 which is of length H( A,,B,) + 1 + H( A,,&) < I P( and traverses only one switch 
edge. Hence, any shortest path which does not traverse any complement edge contains at most two switch 
edges. 0 

Lemma35 Given nodeA,AO andnodeB,BO withA, ZB, in anHCN(n,n),path P,: A,AO-A,B, +BIA, 
* B, B, is the only path containing one switch edge. 

Lemma 3.6. Given node A, A, and node B,B, with A, # B, in an HCN(n,n), path Pp : A, A, -+A,A, =+A,B, 
+ B, A, * B, B, is a shortest path among all the routing paths containing two switch edges. 

Proof. Let P:A,A,~A,C4CA,~CB,-,B,C = B,B, be a path containing two switch edges. Since 
IPI=H(A,,C)+ 1 +H(A,,B,)+ 1 +H(C,B,)T~+H(A,,B,)+H(A,,B,)=IP~I, P can be replaced by Pp 
with no more length. 0 

Lemma 3.7. If a shortest path between two nodes in an HCN( n,n) traverses a complement edge, each of the 
two subpaths separated by the complement edge contains at most one switch edge. 

Proof. From Lemma 3.4, each subpath separated by the complement edge contains at most two switch edges. 
Here, we only need to show that there is no shortest path containing one complement edge such that one of its 
subpaths separated by the complement edge contains two switch edges. By contradiction, assume that there 
exists such a shortest path. Let P : AA *AC + CA j CB, + B,C =+ B,B, be a separated subpath of the 
shortest path, implying that P is the shortest path between AA and B,&. The length of path P is 
IPI=H(A,C)+l+H(A,B,)+l +H(C,B,).However, P’:AA~AB,-,B,A~B,Boisashorterpaththan 
P, which produces a contradiction. 0 

Let Pc:A,AOdA,C-,CA,*CC+CC * &, + B,C * B,B, be a path containing one complement 
edge and two switch edges, then IPcI = 3 + H( A,,C) + H(A,,C) + H(B,,C) + H(B,,?). Let AC> = lP,I. If 
wechooseanodeC*C* suchthatflC*)=minflC),t.hentheresultingpath Pc.:A,AO=AIC*+C*A,- 
C * C * --) I?* c * * ?? * B, --) B,c * j B, B, is a shortest path among all paths containing one complement edge 
and two switch edges. 

Let x denote a don’t-care symbol. If some bit in a sequence corresponds to symbol X, then this bit can be 
assigned 0 or 1 arbitrarily. As an example, a sequence 0x00~ can be assigned as 00000, 01000, 00001, or 
01001. Two sequences are said to match each other if their corresponding bits except don’t-care symbols are 
identical. For instance, 0100x matches 0x001. 

The search for a chosen node C * C * can be achieved by defining an operation 8 as follows: 

c* = e( A,,A,,B,.B,), 

where 

ci* =Oif a,,+aOi+b,j+bOiS 1; 

ci * =x if ~,i+a0i+b,j+b,i=2forO~iSn- 1; 

cj* = 1 if a,i +a,, +b,; +boi 13. 
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Lemma 3.8. Given node A,& and node B,B, with A, ZB, in an HCN(n,n), path PY: A,AO*A,C* --) 
C *A, a C * C * + I?* z * * C * B, -+ B, c * =S B, B, is a shortest path among all the routing paths containing 
one complement edge and two switch edges, where C * = EI (A,, A,,B,,&,). 

Example 3.1. A shortest path with one complement edge and two switch edges between node (0001 ,lOOO) and 
node (1011,1101) in an HCN(4,4), based on Lemma 3.8, is [(0001,1000),(0001,0000),(0000,0001),(0000,0000), 
(1111,1111),(111 1,1011),(1011,1111),(1011,1101)], which is a path of length 7. Note that the chosen node is 
N)ooo,oooo>. 

Lemma 3.9. Given node A, A, and node B, B, with A, + B, in an HCN(n,n), ifA, (or B,) matches C * , then 
let C’ =A, (or-E,) such that Ps (or P,> is of fength (lP,l- 1) where 

C* = Q(A,,A,,~,,B,), 

-- 
P,‘: A,AO*AIB, +B,A, ‘B,B, +B,B, qB,B,. 

Proof. When A, (or B,) matches C * , Ps (or P,) contains only one switch edge; that is, we can reduce one 
switch edge while keeping the property of minimum AC). •I 

Notice that PS (or P,> is a shorter path than P,, only when A, (or B,) matches C * ; in other cases, Ps (or P,> 
is a longer path than P,,. However, either Ps or P, is the shortest path with one complement edge and one 
switch edge between A,A, and B,B, in an HCN(n,n). 

Example 3.2. The routing path from (0001,1000) to (1011,1101) in an HCN(4,4), by using PS in Lemma 3.9, is 
[(0001,1000),(0001,0000),(0001,0001),(1110,1 110),(1110,111 I),(1 110,101 l),(lOl I,1 1 10),(1011,111 I),(101 1, 
1 lOl>], which is a path of length 8. This path is longer than that path using P, in Example 3.1. 

Lemma 3.10. Given node A, A,, and node B,B, with A, #B, in an HCN(n,n), if A, = B,, then path 
Ph : A, A, 3 A, A, + A, A, *B, B, is the only path containing one complement edge and no switch edge 
between them. 

Theorem 3.1. A shortest path between node A, A, and node B, B, with A, ;f B, in an HCN(n,n) is the path 
whose distance is the smallest of the following six paths (if exists): 

P,:A,AojA,B,jB,A,~B,Bo, 

Pp: A,AO-,AOA, =+A,B, -+B,AO*B,B,,, 

PY: A,AO”AIC * +C’A, =C’C* +I?*?* *C*B, +B,? aB,B,, 

if A, matches C * , 
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if B, matches C * , 
-- 

P,: A,Ao-A,& -+&A, -B,B, +B,B, *B,B,, 

if A, = B,, then 
-- 

P,:A,A,~A,A,~A,A,~B,B,, 

where 

C- = O(A,,A,,&,&). 

Proof. Previous results, from Lemmas 3.3, 3.4 and 3.7, show a shortest path between any two nodes in an 
HCN(n,n) traverses at most two switch edges and at most one complement edge. The only path with one switch 
edge and no complement edge is given in Lemma 3.5 (P,). Although there may be a few paths with two switch 
edges, a shortest path among them is found in Lemma 3.6 <P,>. A shortest path with one complement edge and 
two switch edges is chosen in Lemma 3.8 (P,). Lemma 3.9 gives a shortest path with one complement edge and 
one switch edge ( Ps or P,). A path with one complement edge and no switch edge for a special case A, = B, is 
listed in Lemma 3.10 (PA>. Based on the above discussion, we obtain this theorem. 0 

Based on Theorem 3.1, we present a message routing strategy for an HCN(n,n). First, a procedure 
Route-Decision for determining the shortest path is given in Fig. 2, which is executed at the source node. In 
addition, a distributed routing algorithm Distributed-Route is given in Fig. 3, which is invoked by the node 
receiving the message. There are five arguments in this algorithm which are denoted as msg representing the 
message to be transmitted, character x indicating the name of path determined by procedure Route-Decision, 
Sourc, Dest and Choice indicating the labels of the source node, the destination nodes, and the chosen node. 

Procedure Route-Decis*onLr.A,A,B,B,.C*C’): 

(* Thtr pmredure woked by AlAO drrcrmincs the shonenparhfrom AlAo u) BIB,. *I 

t* .r path mr, A ,A” IDYICC. B,Bo: dtMzamn; CT UiSLI ifr = y ‘1 

if A, = 8, then I  = 0; (  l Send mrg llrrng hypercubt rourn.q onty ‘I 

else I.1 = H(A,B,): I2 := H(A,B& L3 := H(A$,): 

L4 ‘= H(A,.B,), L5 .= H(B,B& L6 := H&A,); 

C’ := @(A,.A,.B,.Br,k 

R,:= I rLI +,.2; 

Rp.=Z+L3+LA; 

R;= 3 + H(A,.C’) + H(A,,C’) + H@‘,.C’) + H&C); 

Rg=Zn+*-LI-L3+LS; 

R#:=2n+2-G-L3+l& 

R*:=n+l+L6-L2; 

Send ,mrgi.A,A,.B,B,,C’C’l dong parh Pz 

end. 

Fig. 2. A procedure for determining the shortest routing path in an HCN(n,n). 
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Note that the chosen node Choice exists only if Py is used for the routing; otherwise, symbol - is used for this 
argument. 

3.2. Diameter bounds 

The distance between two nodes in a network is the length of a shortest path joining them. The diameter of a 
network is the maximum distance among all pairs of nodes. Here, an upper bound and a lower bound for the 
diameter of HCN(n,n) are derived based on Theorem 3.1. 

Theorem 3.2. The diameter D,, of HCN( n,n) < n + [n/31 + 1, where [ p] denotes the smallest integer not fess 
than p. 

Proof. Consider the routing path between node A, A, and node B, B, in an HCN(n,n) under our shortest-path 
routing strategy. Theorem 3.1 gives six possible routing paths between them. Four of these six paths are used to 
derive an upper bound for the diameter, and their lengths are indicated below: 

If’,I=H(A,J,) + 1 +H(A,,B,), 

IPpt=l+H(A,,B,)+l+H(Ao,Bo), 

IP,I=H(A,,A,)+l+H(A,,B,)+l+H(A,,B,), 
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and 

&I=H(A&)+l+H(A,,~,)+l+H(B,,B,,). 

The sum of the lengths of three paths P,, PO, and PS is 

SUM1 = 2n+5+H(B,,A,)+H(A,,B,)+H(A,,A,) [byLemma3.1 

I 4n+5+H(A,,A,)-H(B,,B,). 

On the other hand, the sum of the lengths of three paths P,, Pp , and P, is 

SUM2 = 2n+5+H(A,,B,) +H(A,,B,) +H(B,,B,) [byLemma3.1] 

< 4n+5+H(B,,B,,)-H(A,,AO). 

297 

Since SUM1 + SUM2 I 8n + 10, either SUM1 or SUM2 is less than or equal to 4n + 5. If the sum of the 
lengths of three paths is at most 4n + 5, the length of the shortest path among these three paths is at most 
[(4n + 5)/3] = n + [n/31 + 1. Thus, the length of the shortest path among these four possible paths is less than 
or equal to n + [n/31 + 1. 0 

Theorem 3.3. The diameter D, of HCN(n,n) 2 n + [(n + 1)/3] + 1, where lq] is the largest integer not 
exceeding q. More precisely, a lower bound for the diameter of HCN( n,n> is found as follows: 

i 

4k+ 1 ifn=3k; 

D,> 4k+2 ifn=3k+l; 

4k+4 ifn=3k+2. 

Proof. Based on Theorem 3.1, there are six possible routing paths between any two nodes. The length of the 
shortest path among these six paths (if exists) is the distance between these two nodes. Let D, E, and F 
represent three distinct sequences assigned under different situations in the following, and X denote a sequence -- 
of all don’t-care symbols. Now, consider the routing from (DEF,EEF) to (DEF, D%). Since C * = XXF and 
DEF matches C * , fa is of length (I P,, I- 1); therefore, we omit the value of I P,l. Additionally, Ph does not 
exist because A, # B,. So, we only evaluate the lengths of four paths P,, Pp, Ps and P,. 

(1) n = 3k: Let D, E, and F represent three k-bit binary sequences. The lengths of the four possible paths 
are indicated below. 

IP,I=2k+1+2k=4k+l, 

lP,l= 1 +2k+ 1 +2k=4k+2, 

IP,l=2k+l +k+ 1 +k=4k+2, 

lP,l=k+l +k+l +2k=4k+2. 

The shortest path among these four paths is of length 4k + 1; hence, the diameter of HCN(3k,3k) is not less 
than4k+l. 

(2) n = 3k + 1: Let D and F be two k-bit binary sequences, and E be a (k + l&bit binary sequence. Similar 
to the preceding discussion, the diameter of HCN(3k + 1,3k + 1) is not less than 4k + 2. 
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(3) n = 3k + 2: Let D be a k-bit binary sequence, E and F be two (k + I)-bit binary sequences. 
the diameter of HCN(3k + 2,3k + 2) is not less than 4k + 4. 0 

The difference between these two bounds in Theorems 3.2 and 3.3 is at most one, implying thal 
bound for the diameter in Theorem 3.2 is very close to the exact value. 

Similarly, 

the upper 

3.3. Average distance bound 

As the diameter reflects only the worst case communication time, the average distance conveys the actual 
performance of the network in practice. The average distance in a symmetric network is defined as the ratio of 
the sum of the distances of all its nodes from a given node to the total number of nodes. The value of this 
measure for the n-cube is equal to the following: 

is the number of nodes at distance k from each hypercube node. 
Since the HCN(n,n) is asymmetric, the average distance of HCN(n,n) is much more difficult to obtain than 

the diameter is. Like the discussion over diameter, we would like to find an upper bound for the average 
distance of HCN(n,n). 

Theorem 3.4. The average distance in an HCN(n,n) is less than or equal to (n + 1). 

Proof. Let A, A, be the reference node and X be a sequence of n don’t-care symbols. The length of the 
shortest path from A, A, to one of the nodes within cluster B, X is at most H( A,,B,) + 1, since there exists a 
path P : A, A, j A, B, + B, A,. Moreover, the mean value of distances from node B, A, to all the nodes within 
cluster B, X is n/2 because each cluster is an n-cube. Therefore, the total sum of the distances from A, A, to 
all the nodes of cluster B, X is at most (2”Xk + (n/2) + 1) where k = H( A,,B,). An upper bound of the 
average distance in an HCN(n,n) is given by: 

k+f+l)=&(2”) 
o 

4. Optimal broadcasting 

One of the common processes in parallel computer systems is the sending of a message from one node of a 
network to all the other nodes as quickly as possible. Now, we consider the problem of broadcasting on the 
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HCN under the following constraint: during each unit of time a node which already knows the message can only 
inform one of the nodes to which it is connected directly by an edge. 

Since initially only one node has the message to be broadcasted, and at any point in time an additional step in 
the broadcasting will at most double the number of nodes that have received the message. As a result, at least 
2 n steps are necessary to complete the one-to-all broadcasting since the HCN(n,n) has 2*” nodes. However, the 
degree of each node in an HCN(n,n) is (n + l), which is less than 2n. Hence, we will consider the problem of 
minimum time for broadcasting on the HCN(n,n) carefully. 

In [4], Bermond et al. proposed general lower bounds on the time required to broadcast in bounded degree 
graphs. Let b(G,d) denote the broadcast time on a network G of degree d. Let m(d,t) denote the maximum 
number of nodes that can be informed in time smaller than or equal to r. A lower bound on b(G,d) can be 
obtained from the calculation of an upper bound on m(d,t). That is, m(d,t) < ICI if and only if MG,d) > ?, 
where IGI denotes the number of nodes in G. To achieve this maximum m(d,t), we may assume that a node 
does not remain idle if it has already been informed, but has not yet informed all of its neighbours. Hence, if 
there is one informed node at time t = 0, then after time t + d - 1, all the nodes that were informed by time t 
have informed all of their neighbours and must become idle. Thus, an upper bound on m(d,t) is the solution of 
the following recurrence: 

m(d,r) =2’ forOIt<d, 

m(d,t) =2m(d,r- 1) -m(d,r-d- 1) for t>d. 

Theorem 4.1. The broadcasting time for an HCN(n,n) is at least (2n + 1). 

Proof. Based on the preceding analysis, a lower bound of the broadcast time on the HCN(n,n) is evaluated as 
follows. Since the HCN(n,n) with 2: nodes has degree (n + 1), we have the following equations: 

m(n+1,2n)=22”-(n-l)“-2<22n, 

and 

m(n+1,2n+l)=22”+1-n2n-‘>22”. 

Therefore, the value of this bound is (2n + 1). 0 

Now, we present an optimal algorithm of complexity (2n + 1) for broadcasting in an HCN(n,n). The basic 
idea of our broadcasting algorithm in the HCN(n,n) is stated as follows. Assume the source node is A, A,. Our 
algorithm consists of two phases. The objective of the first phase is to broadcast the message from A, A, to all 
other nodes of cluster A, X, just like the broadcasting in an n-cube. When all the nodes of cluster A, X have 
already received the message, these nodes other than A, A, immediately transfer the message to nodes in other 
clusters through the switch edges. It is clear that each cluster of the HCN(n,n) contains at least one node being 
informed the message after time (n + 1). In the second phase, the informed node in each cluster broadcasts the 
message to other uninformed nodes as does the first phase. Notice that the complement edges are not used to 
broadcast the message in our scheme. 
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Formally, a distributed algorithm for broadcasting on the HCN(n,n) is given in Fig. 4. There are two 
arguments in this algorithm which are denoted as msg representing the message to be broadcast, while cowu 
indicates the number of time step in the broadcasting. 

5. Node-disjoint paths and fault-diameter 

A set of paths is said to be node-disjoint if no node except the source node and the destination node appears 
in more than one path. It is important to have node-disjoint paths between any two nodes in an interconnection 
network to speed up transfers of large amounts of data and provide alternative routes in cases of node and/or 
link failures. Furthermore, node-disjoint paths admit very robust communication, because a message sent along 
several node-disjoint paths can arrive intact even though some paths have faults that block the message or that 
even alter the message. In this section, we address the problem of constructing node-disjoint paths between any 
two nodes in an HCN(n,n). 

The following result related to hypercubes, which was previously addressed in [14], is useful for our 
discussion that follows. 

Theorem 5.1. [14] Let A and B be two nodes in an n-cube such that H( A,B) = k. There are n node-disjoint 
paths between them. These paths are composed of k paths of length k, and (n - k) paths of length (k + 2). 
Therefore, there are n node-disjoint paths of length I n + 1 between any source-destination pair in an n-cube. 

To construct (n + 1) node-disjoint paths between node A, A, and node B, B, in an HCN(n,n), we consider 
two cases: (1) both nodes within a cluster, i.e., A, = B,, and (2) two nodes belonging to distinct clusters, i.e., 
A, #B,. 
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Lemma 5.1. There are (n + 1) node-disjoint paths of length at most (n + 5) between any two nodes within a 
cluster of an HCN(n,n). 

Proof. Given two nodes A, A, and A, B,, based on Theorem 5.1, there are n node-disjoint paths of 
length I n + 1 between them through only the nodes of cluster A, X. 

(a) In the case of A, # A, and A, # B,: The (n + l)-th path can be constructed as 

P,: A,AO-+AOA, *A,B,+B,A,~B,A, +A,B,,, 

or 

P,: A,A,,-)A,,A, +AOA; -+AfAO*AfBO+BOAf *BOA, +A,B,,, 

where 

1 PSI< 2n - H( A, ,B,) + 3 and I P,I is H( A,,&) + 6. 

We choose the shorter between P,T and P, as the (n + l)-th path; as a result, the length of the (n + l)-th path is 
at most [(I PSI + I P,O/2J I l(2n + 9)/21 = n + 4. 

(b) In the case of A, = A, and A, # B,: The (n + I)-th path can be constructed as 
-- 

P,,: A,A,+A,A, *&B,+B,& =B,A, -+A,BO, 

or 

-- 
P,: A,A, +A,A, -L&Z, -vi’,& +,A’, +AfAf JA;B, *BOA’, *BOA, -+A,BO, 

where lP,l= 2n + 3 - H(A,,B,), and IP,I= H(A,,B,)+7 since there is some i such that H(A{,B,)= 
H( A,,B,) - 1. Similar to (a), the shorter path between P, and P, is of length at most (n + 5). 0 

Lemma 5.2. There are (n + 1) node-disjoint paths of length I (2n + 6) between any two nodes located in 
distinct clusters of HCN(n,n). 

Proof. Given two nodes A, A, and B, B, with A, # B,, we construct (n + 1) node-disjoint paths between them 
as follows. 

(a) If Ai # B, for all i, 0 I i < n, we show (n + 1) node-disjoint paths Pj, 1 ~2 j I; n + 1 as follows. 
For 1 <j<n: 

pj: A,/& +A,$’ -+/$‘A, =@‘Bd-’ --@~-‘A&- -B(‘B, +B,B;-’ -+B,B,. 

For j = n + 1: If A, #A, and B, # B,, 

P,l+,:A,A,,+A,,A,*AOB,,+BOA,,*BOB,+B,B,,. 

If A, =A, and B, ZB,, 

p,: I : A,A, +A,,& a&B,,+B& *BOB, +B,&,. 

If A, #A, and B,=B,, 

p,‘+, : A,& 
-- 

+A~A, JAMB, -+B,A~=+B,B, +B,B,. 
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If A, = A, and B, = B,, 

P;+,:A,A, - - -- - - -- -+A,A, =A,B, +B,A, *BIB, +B,B,. 

(b) If Ad = B, for some i, 0 I i < n, Pi and P,‘+, have the common nodes A,&, and &A,. We need 
another path P,’ to replace P,: 

Pi’: A,AO-)A,A;+A;A, jAbB,“~B,“A’,-,B,“A,~A,B,“~A,B, +B,AO+B,BO. 

Now, the length of each of these paths is listed below: 

IP~~=H(A,,B~-,)+H(A{-,,~,)+5~2~+5. 

IP,‘+,I,IP,2,,I,IP~+,I,IP~+,l~2n+3. 

IP,‘t=H(A,,B,“) +H(B,“,B,) +712n-H(A,,B,) +7<2n+6. 

The longest path among the above paths is of length at most (2n + 6). c] 

From the results of Lemmas 5.1 and 5.2, we have the following theorem. 

Theorem 5.2. There are (n + 1) node-disjoint paths of length I (2 n + 6) between two arbitrary nodes in an 
HCN(n,n). 

For any network, the number of node-disjoint paths between any two nodes is bounded from above by the 
minimum degree. The HCN(n,n) of degree (n + 1) has (n + 1) node-disjoint paths between two arbitrary 
nodes; as a result, the HCN(n,n) is said to be optimal fault tolerant. 

The node-connectivity K of a network G is defined as the minimum number of nodes whose removal results 
in a disconnected or trivial network. The fault-diameter of a network G with connectivity K is defined as the 
maximum diameter of any network obtained from G by removing (K - 1) nodes. Due to Menger’s theorem [5]: 
a network G has connectivity K if and only if every pair of nodes in the network is connected by at least K 

node-disjoint paths. We obtain the following corollaries. 

Corollary 5.1. The node connectivity of an HCN(n,n) is (n + 1). 

Corollary 5.2. The fault-diameter of an HCN( n,n) is less than or equal to (2n + 6). 

6. Hamiltonian 

In this section we prove the existence of a Hamiltonian cycle in an HCN( n,n) by illustrating how to construct 
it. Before proving that the HCN is Hamiltonian, we first note that each cluster of the HCN(n,n) is an n-cube. 
The n-cube is known to have a Hamiltonian cycle. One way to find a Hamiltonian cycle in an n-cube is to 
generate the n-bit Gray code G,. 

There are many different ways in which Gray codes can be generated, but the best known method to generate 
G,, called binary reflected Gray code [ 131, is as follows. 
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G,, is an n-bit Gray code obtained by the recursion: 

G, = {O,l}, and G; = {OG;- ,,lG,: ,}, 

where G,! is the sequence obtained by reversing the order of the numbers of Gi, and OGi (1G;) is the sequence 
obtained by prepending O( 1) to each element of the sequence of Gi. For example, G, = {OO,Ol ,l 1 ,lO} and 
G,={000,001,011,010,110,111,101,1~). 

Consider G,, as an ordered set, i.e. G, = {gi I i = 1,2,. . . , 2”) where gi denotes the i-th element in G,,, 
1 I i s 2”. Any element gi in G,, can be selected as the starting number of a new sequence, and then the 
resultant sequence is still a Hamiltonian path of the n-cube whether the order of the sequence is clockwise or 
counterclockwise. Therefore, we use S,‘< i) and S;(i) to denote these two sequences independently. That is, 
s,+(i)=(g,m,g;+ ,,..., g,.,g, ,..., g;-,hd S,(i)=(g;,gi-,,...,g,,g*“,...,g;+,). 

For the purpose of clarity, we use ( A,, A,) to denote node A, A,, symbol c) to denote a switch edge, and 
symbol - to denote a complement edge. For brevity, let [ g,,S,‘< j)] and [ g,,S;( j>] represent two Hamiltonian 
paths in cluster (g,,X) separately, where [gi,S,'(j)I=[(g;,gjXg,,gj+I)...(g,,gj-,)I and [gi,S,(j)I= 
[(giYgjXg,Vgj- I)*..(giYgj+1)1’ 

Lemma 6.1. An HCN(n,n) has a Hamiltonian parh for any n 2 1. 

Proof. We construct the sequence of a Hamiltonian path in an HCN(n,n) as follows: 

[g&(l)] *[g*&(l)] +*x(2”)] “[g*q,s,;(2)] - **. *[&Aw-i+2)] 

- [g,.-i+,,s;(i)] * --* ~[g*“-,,S:(2”-‘+l)]c*[g,“-~+,,S,-(2”-’)]. 0 

Example 6.1. A Hamiltonian path of an HCN(2,2) is constructed by a sequence of nodes as follows: 

[(00,00)(00,01)(00,11)(00,10)] +B [( lO,OO)( lO,lO)( lO,ll)( lO,Ol)] 

* [(01,10)(01 ,OO)(Ol ,Ol)(Ol ,l l)] 

f, [(11,01)(11,00)(11,10)(11,11)]. 

Theorem 6.1. An HCN(n,n) is Hamiltonianfor any n 2 1. 

Proof. Clearly, an HCN(1 ,l> is Hamiltonian, since [(0,0X0,1>] * [(l ,O)(l,l)] form a cycle. We can construct a 
Hamiltonian cycle of an HCN(n + 1 ,n + 1) for n r 1 by using the sequence of the Hamiltonian path of an 
HCN( n,n) in Lemma 6.1. The construction of the Hamiltonian cycle is divided into three steps as shown below. 

Srep 1. Insert a zero in front of each element of the sequence in the proof of Lemma 6.1. That is, 

[Og,,OS,+(l)] * [og2”.oS,(1)] * . . . @ [og,.-I,oS,f(2”-’ + l)] w [Og*“-:+,,OS,-(2”-‘)]. 

The number of nodes in this sequence is 2*“, the same as that in an HCN(n,n). Note that symbol * is used 
here to separate consecutive subsequences. 

Step 2. Enlarge each subsequence of the sequence in Step I. Consider a subsequence 
[(Ogi,Oh,XOgi,Oh2XOg,,Oh,)(Og,,Oh,)...(Og,,Oh2.)], where g, and h, are n-bit binary sequences. For each 
odd j, the edge between (Og,,Oh,) and (Og,,Oh,+,) is replaced with a path of length 3: 
(Og,,Oh,XOg,,l hj)(Ogi,l hj+ ,)(Og,,Oh,+ ,>. After enlargin, 0 all the subsequences, the resulting path, called 
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O-path, travels all the nodes in clusters (Og,, X), i = 1,2 , . . . ,2” of an HCN(n,n) once and exactly once, and its 
length is 22”+‘, two times the length of the original sequence in Step 1. 

S&p 3. Obtain the l-path by complementing the label of each node in the O-path. After complementing the 
labels of all the nodes in the O-path, the new sequence, called l-path, travels all the nodes in clusters (1 jji,X>, 
i=12 , ,...,2”. Furthermore, the first node (Og,,Og,) and the last node (Og2”-,+,,0g2”-j+,) of the O-path are 
connected directly with the first node (1 jj, ,l ,$,I and the last node (1 g2”- j+,,1jj2”-I+l) of the l-path through 
complement edges, respectively; as a result, these two paths with the two complement edges form a Hamiltonian 
cycle in an HCN(n + 1,n + 1). 0 

Example 6.2. A Hamiltonian cycle of an HCN(3,3) can be constructed as observed from the proof of Theorem 
6.1. First, by prepending 0 to each element of the Hamiltonian path in the HCN(2,2) from Example 6.1, we have 
the following sequence: 

[(000,000)(ooo,001)(000,011)(000,010)] H [(010,000)(010,010)(010,011)(010,001)] 

+P [(001,010)(001,000)(001,001)(001,011)] 

* [(011,001)(011,000)(011,010)(011,011)]. 

Second, enlarge the sequence so that the resulting path (O-path) travels clusters (000,X), (010,X), (001,X) and 
(011,X). That is, the O-path is 

[(000,000)(000,100)(000,101)(000,001)(000,011)(000,11 1)(000,110)(000,010)] 

+b [(010,000)(010,100)(010,110)(010,010)(010,011)(010,11 1)(010,101)(010,001)] 

H [(001,010)(001,110)(001,100)(001,ooo)(001,001)(001,101)(001,111)(001,011)] 

+b [(011,001)(011,101)(011,100)(011,ooo)(011,010)(011,110)(011,111)(011,011)]. 

Third, by complementing the sequence of the O-path, we obtain a new path (l-path) which travels clusters 
(111,X), (101,X), (110,X) and (100,X) as listed below: 

[(111,111)(111,011)(111,010)(111,110)(111,100)(111,ooo)(111,001)(111,101)] 

+b [(101,111)(101,011)(101,001)(101,101)(101,100)(101,ooo)(101,010)(101,110)] 

* [(110,101)(110,001)(110,011)(110,111)(110,110)(110,010)(110,0~)(110,1~)] 

M [( 100,l lO)( 100,010)( 100,Ol l)( loo,11 l)( lOO,lOl)( 100,001)( 100,000)( 100,100)]. 

With complement edges, (000,000) is connected to (111,ll l), and (011,011) is connected to (100,100). 
Therefore, these two paths (O-path and l-path) with the two complement edges form a Hamiltonian cycle in an 
HCN(3,3). 

7. Emulation of hypercubes on HCNs 

A very important property for new networks would be the emulation of the hypercube with a small 
degradation in time performance so that all the algorithms designed for the hypercube can be executed on the 
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new network with a small degradation in time performance. For the purpose of evaluating the degradation in 
performance, the dilation of edges associated with such a hypercube mapping must be found. 

Given a mapping M of the guest graph G onto the host graph H, the dilation of the edge connecting the two 
nodes u and u in G is defined as the distance between the two nodes M(u) and M(u) in H. 

Let a 2n-cube be the guest graph and an HCN(n,n) be the host graph. They consist of the same number of 
nodes. Assume that nodes from the hypercube are mapped to nodes of the HCN with the same address; that is, 
node A, A, in the 2n-cube is mapped to node A, A, in the HCN( n,n), where A, and A, denote two n-bit 
binary sequences. The dilation measures the increase of the communication overhead in the HCN when 
compared to one-hop data transfers in the hypercube. The following theorem presents the resultant dilation of 
edges. 

Theorem 7.1. For the emulation of a 2n-cube on an HCN(n,n), the dilations of the edges incident to node 
A, A, of the hypercube are: 

1 for n of them, and 2 for n of them ifA, =A,; 
1 for n of them, 2 for 1 of them, and 3 for (n - 1) of them ifA, = A;; 
1 for n of them, and 3 for n of them ifA, #(A, or AL), 

where A, and A, represent two n-bit binary sequences. 

Proof. There is an edge between two nodes in the hypercube if their addresses differ in exactly one bit position. 
An edge is of dimension j if it connects two nodes that differ in the j-th bit. Each node in the hypercube 
connects 2n adjacent nodes with edges of dimensions j, j = O,l,. . ,(2n - 1). 

First, edges of dimensions j, 0 <j < n, in the 2n-cube are retained in the HCN(n,n). As a result, the 
dilations of these edges are equal to 1. Then, we consider the dilations of the other edges of dimensions j, 
n I j < 2n, in the hypercube. Since these edges are absent in the HCN(n,n), they are emulated in different cases 
as follows. 

Case 1. Any edge of dimension (n + j), 0 5 j < n, incident to node A, A, in the 2 n-cube, connecting A, A, and 
A{ A,, can be emulated in the HCN(n,n) as a path of length 2: 

A,A, +A,A+A;A,. 

Case 2. Any edge of dimension (n + j), 0 I j < n, and j # i, incident to node A, A’, in the 2n-cube, connecting 
A, A{ and A(A’,, can be emulated in the HCN(n,n) as a path of length 3: 

A,A; +A;A, -+A;A{+A{A’,. 

However, the edge of dimension (n + i), connecting A, Af and A,i Af , can be emulated as a path of length 2: 

A,A”, +A’IA, +AfAf. 

Case 3. Any edge of dimension (n + j), 0 <j < n, incident to node A, A,, with A, # (A, or AL) in the 
2n-cube, connecting A, A,, and A{ A,, can be emulated in the HCN(n,n) as a path of length 3: 

A,A,+A,A, +A,A+A;A,. 
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The following two corollaries give the maximum and average dilations of edges for hypercube emulation. 
The average dilation of edges for hypercube emulation is defined as the ratio of the sum of the dilations of all 
the edges in the hypercube to the total number of edges in the hypercube. 

Corollary 7.1. The largest dilation of edges for hypercube emulation on an HCN(n,n) is 3. 

Corollary 7.2. The average dilation of edges for hypercube emulation on an HCN(n,n) is 

Proof. Let S, be the set of nodes labeled A, A, with A, = A,, S, the set of nodes labeled A, A, with A, = A;, 
and S, the set of nodes labeled A, A,, with X # (A, or A$. Let lSil denote the number of nodes in Si. The sum 
of the dilations of edges incident to each node in S, is 3n; that incident to each node in S, is (4n - 1); that 
incident to each node in S, is 4n. 

Since the dilation of each edge is counted twice, the total sum of the dilations of all the edges is equal to the 
following: 

i{lS,l X (3n) + I&l X (4n - 1) + IS,1 X (h)} 

Therefore, the average dilation of edges for hypercube emulation on an HCN(n,n) is equal to 

2nX22”-nX22” =2-L 

n X 22” 2” * 
0 

The observation that the average dilation of edges for hypercube emulation is bounded by 2 guarantees small 
performance degradation for the implementation of hypercube algorithms on HCNs. 

8. Conclusion 

We have investigated topological properties of the HCN and proposed a shortest-path routing algorithm and 
an optimal broadcasting algorithm for the HCN. The diameter of HCN is about two-third of that of the 
comparable hypercube with the same number of nodes. The connectivity of an HCN(n,n) is (n + l), and its 
fault-diameter is at most (2n + 6). Moreover, the HCN is Hamiltonian like the hypercube. Although the HCN 
has fewer edges than the comparable hypercube, the degradation for data communication performance is better 
than one may expect. The HCN is shown to emulate the hypercube with dilation 3, a small degradation in time 
performance. Therefore, HCNs are appropriate candidates for the implementation of massively parallel systems. 
Our further research will focus on the investigation of embedding frequently used topologies into HCNs and the 
development of efficient application algorithms for HCNs. 
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