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The transport current carrying dissipative (flux flow) and dissipationless (pinned) vortex configurations and
their dynamics are investigated numerically in the framework of the time-dependent Ginzburg-Landau approach.
Assuming that magnetic induction is nearly uniform, the model is generalized to include strong inhomogeneous
electric fields. Hexagonal array nanoholes of the size of coherence length and density npin was considered
for various filling factors [defined as f = B/(�0npin)]. The vortex depinning is closely associated with the
appearance of a strongly varying electric field. For the matching field, f = 1, the critical current is maximal
and the transition to the resistive state occurs as a coherent depinning of the entire vortex lattice. For a system
with interstitial vortices, f > 1, the mechanism of depinning depends on the current direction with respect to
the pinning array. There are two qualitatively distinct geometries: the obstacle and channel geometries. In the
obstacle geometry lines of interstitial vortices are blocked by strongly pinned vortices, while in the channel
geometry the lines move unimpeded confined in channels. It was found that slightly above the critical current the
trajectories of the moving vortices are not straight, but rather acquire a snakelike shape enveloping the system
of pins. In contrast to f = 1, the transition to a resistive state is not coherent and is going through formation
of “snakelike” vortex trajectories. The critical current in the obstacle geometry is significantly larger than in the
channel one.
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I. INTRODUCTION

The great interest in the problem of magnetic-flux pinning
in type-II superconductors is associated with its relevance
to technological applications of superconductivity. However,
in magnetic fields the zero resistance property of the super-
conductors is lost owing to the dissipative motion of the
magnetic flux (Abrikosov vortices) in a form of flux flow
or creep. In order to restore the superconductivity one has
to find an efficient way to block the flux flow by “pinning”
of the vortices. An important challenge in applications of
type-II superconductors is achieving optimal critical currents
Jc(B) under an applied magnetic field B. Below this cur-
rent the vortex matter is under sustainable stress (vortices
being displaced) and can support a dissipationless electric
current. The critical current decreases as magnetic induction
increases and consequently the pinning efficiency should be
optimized. Although intrinsic pinning always exists in bulk
superconductors, it is rather inefficient at elevated fields.
Recently a new possibility has been developed—pinning by
artificially assembled well-controlled periodic arrays of holes1

and magnetic dots2 (for a review, see Ref. 3).
It was predicted theoretically in the framework of the

London model4–6 and confirmed1,2,7,8 experimentally at low
magnetic fields that, when pinning centers are arranged into a
periodic array commensurate with the Abrikosov lattice, the
critical current increases dramatically. Technological progress
leads to smaller sizes of the pinning centers often comparable
with the coherence length ξ of a superconductor, while the
range of the magnetic fields continuously increases. Alterna-
tively the coherence length can be significantly increased by
tuning temperature to be just below critical Tc. The critical

current is maximized when the nanohole’s lattice is hexagonal
at the matching field B = �0npin, where �0 is a unit of flux and
npin is the density of pins. This case was treated analytically
in the framework of the Ginzburg- Landau (GL) theory.9

When the number of vortices exceeds that of the pinning
centers, namely, when the filling factor f = B/(�0npin) > 1,
additional, “interstitial” vortices appear. Although not directly
pinned by the pinning centers, they strongly interact with
the pinned vortex subsystem (PVS) and with each other. As
a result the flux in this case can be clearly separated into
two subsystems: a mobile, weakly pinned interstitial vortex
subsystem (IVS) and almost rigidly pinned PVS. Obviously
the interstitial vortices reduce the critical current, because they
are pinned just by a repulsive potential created by the static
PVS. It is one of the purposes of the present paper to point out
that IVS possesses universal static and dynamic properties in a
sense that they do not depend on the microscopic details of the
pinning potential (because an interstitial vortex interacts only
with a rigidly pinned vortices). For f > 1 it turns out that the
critical current is very anisotropic with respect to orientation
of the current relative to that of the primitive vector of the unit
cell of the pinning array.

Theoretically two models are used to describe the vortex
system with a periodic array of pinning centers under stress
of the transport current. In the first model the vortices are
treated (numerically) as interacting two-dimensional (2D)
points subjected to a periodic pinning potential and the
driving force.4–6 The (pairwise) interaction potential is taken
to be that following from the London approximation. This
approach is appropriate to describe weak magnetic fields and
sparse pinning arrays, so that the structure of the vortex
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core can effectively be ignored. Within the London model
[supposed to be applicable as low magnetic inductions far
from the upper critical field Hc2(T )] vortices interact within
the range of order of magnetic penetration depth λ. A very
comprehensive numerical work on the vortex “gas”4–6 revealed
static configurations of the interstitial vortices for various
rational f ’s and the nature of the flux flow. A profound
asymmetry with respect to the direction of motion was found
for f > 1. In addition, it turned out, as expected,5 that the
motion occurs in channels, however, the vortex trajectories
may be either straight or follow a bottom valley of the
potential landscape in a zigzag-shaped form. The I-V curves
were numerically determined (even in the presence of thermal
fluctuations) and the critical current calculated.

A question arises as to whether these general features
persist in strong magnetic fields or when the pinning centers
are small and distances become not very large compared to
coherence length (in many recent experiments λ is much larger
than distances between nanoholes). As mentioned above,
in this qualitatively distinct situation, when the interaction
between the vortices is long range and collective, one has
to consider the GL model. Recently, however, the arrays are
fabricated on the nanoscale and the range of fields applied
continuously increases. Therefore the distribution of the order
parameter becomes of importance and one has to resort
to a complementary approach. Because microscopic theory
in the inhomogeneous situation is not practical, the only
available tool at large fields and nanosize pinning arrays is the
GL phenomenological approach.10,11 The approach simplifies
considerably when magnetic induction exceeds significantly
the lower critical field Hc1(T ). The distribution of the
magnetic induction becomes practically uniform and the only
dynamic degrees of freedom are the order parameter � and
electric field E.

A modern application of the time-dependent GL (TDGL)
approach to the vortex dynamics in large 2D samples should
include four ingredients: (a) a (strong) magnetic field creating a
strongly correlated vortex system; (b) a periodic pinning array;
(c) a bias current that governs vortex motion (but does not
create additional vortices) and transport current; and (d) effects
of the electric field especially important in the depinning
process. The problem, incorporating (b), (c), and (d), was
first formulated in Ref. 12. In a recent comprehensive study,13

(a), (c), and (d) are present (the transport current, however,
creates vortices and antivortices near the boundary). In a series
of works,14 static configurations and stability with respect
to current were comprehensively explored (which allows
determination of the critical current), but purely dynamics
effects such as electric field (and the corresponding normal
current) are not considered. The vortex dynamics under an
ac field was considered analytically in a linear response
approximation for integer f in Ref. 15, and an exact expression
for the ac case was obtained. However, a general approach to
dynamics requires an essential modification, because a linear
response fails and effects of the inhomogeneous electric field
produced by the vortex motion have to be accounted.

In the present paper we consider both the static (stationary)
and the dynamic properties of the vortex matter in commen-
surate pinning arrays for several filling factors f � 1. The
asymmetry is investigated by considering two extreme cases.

FIG. 1. (Color) Obstacle geometry for f = 3. Distribution of the
superfluid density |ψ(r)|2 of the hexagonal static Abrikosov vortex
lattice (not carrying the transport current) is shown. The electric field
and the transport current will be directed along the y axis, and would
create a Lorentz force at the x direction. A third of the zeros of the
order parameter in the equilibrium state fall on the locations of the
pins (red blobs). In this case the direction of the flux motion might
be blocked by the pinning sites.

One is an “obstacle” (see, for example, Fig. 1 for f = 3), when
a row of pinning centers blocks a line of interstitial vortices,
while another is a “channel” (see Fig. 2 for f = 4), when
the interstitial vortices can move unimpeded. Sometimes the
difference between the two is that the current is rotated with
respect to a basis vector of the pinning array. In particular,
for f = 3, the channel geometry is obtained from that of the
Fig. 1 by rotation of the transport current by 30◦.

The paper is organized as follows. A general GL setup
including effects of the electric field in dynamics are
described in Sec. II. Discretization and a numerical method

FIG. 2. (Color) Channel geometry for f = 4. Motion of the
interstitial vortices in chains between the pinning raws is unimpeded.
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are also briefly described. Results for the stationary current
carrying states and dynamics are described in Sec. III. A
summary and a discussion are the subjects of the concluding
Sec. IV.

II. ELECTRODYNAMICS OF TYPE-II
SUPERCONDUCTORS IN STRONG MAGNETIC FIELD

A. Basic equations

We consider a superconducting slab subjected to a suffi-
ciently high, homogeneous, and time-independent magnetic
induction perpendicular to the slab B = B ẑ. Assuming that
the ratio κ ≡ λ/ξ � 1, the magnetization is smaller than the
field by the factor 1/κ2; consequently, for magnetic fields
several times larger than Hc1, B ≈ H and is practically
homogeneous and is therefore treated as a constant rather
than a degree of freedom. In thin films this condition is
satisfied because the penetration depth becomes λeff = 2λ2/d,
where the thickness provided by the film width w is small
enough (w < λeff). In what follows we consider an effective
2D model.

The time-dependent GL equation for a dimensionless order
parameter ψ and scalar potential φ has the form

∂ψ

∂τ
+ iφψ = − δ

δψ∗ fGL[ψ], (1)

where

fGL =
∫

d2r
{
ψ∗

[
− D2

2
− 1 − t

2
+ Vpin(r)

]
ψ + 1

2
(ψ∗ψ)2

}
(2)

is the GL free energy. The covariant derivatives D ≡ ∇ − iA
include the vector potential A =b(− 1

2y, 1
2x,0), describing the

magnetic induction [b = B/Hc2(T )]. In our gauge the electric
field is E = −∇φ. Equation (1) is supplemented by the charge
conservation law,

∇ · j = 0, (3)

where the dimensionless current density, including the normal
component, is given in our gauge by

j = i

2
[ψ∗Dψ − ψ(Dψ)∗] − ∇φ. (4)

The coherence length ξ will be used as a unit of length
r → r/ξ . The dimensionless order parameter ψ is scaled by
the square root of the superfluid density.9,15,16 The reduced
temperature is t = T/Tc, while the current density is written
in the units of the depairing current,

Jd = cHc2

2πξκ2
. (5)

In analogy to the coherence length, one can define a
characteristic time scale. In the superconducting phase this
is a typical “relaxation” time:

τ = t/tGL, tGL = γ ξ 2/2, (6)

where γ is the inverse electron diffusion constant, and the unit
of electric field is

EGL = Hc2
ξ

ctGL
. (7)

The conductivity will be given in units of

σGL = c2tGL

2πλ2
= c2γ

4πκ2
. (8)

This unit is close to the normal state conductivity in low Tc

superconducting metals in the dirty limit σn = c2γ

8πκ2 .11 More
generally, there is a factor k of order 1, σn = kσGL.

The potential Vpin describes a δTc pinning array 17 Vpin(r) =∑
a V (r − ra), where ra denote the locations of the nanoholes

centers. A simplest model of a hole (or a dielectric inclusion)
is that one forces the order parameter to vanish at these
locations. In a geometry considered here (see Figs. 1 and 2),
the applied dc current will be always oriented along the
y axis. Different relative orientations with respect to the
pinning array will be studied by rotating the pinning
array. This is more convenient for simulations owing to
the need to impose boundary conditions. The system of
equations should be complemented by the following boundary
conditions:

− ∇yφ = j ext|y=0,Ly
, ∇xφ = 0|y=0,Ly

, (9)

where Ly is the length of the sample in the current direction y.
Periodic boundary conditions in the perpendicular x direction
are assumed. The order parameter is therefore subject to
“metallic electrode” boundary conditions,

ψ = 0|y=0,Ly
, (10)

and periodic under magnetic translations (see the following
for a detailed definition) in the x direction.

B. Discretized form of the electrodynamics of the strongly
type-II superconductors

The above equations were treated numerically using
Wilson’s discretization.18 The points on the grid (in units of
ξ ),

rn = (n1ax,n2ay), (11)

are labeled by two integers, n1 = 1, . . . ,nmax and n2 =
0, . . . ,nmax. The grid lattice spacings are a2

x = 4π√
3bs

and
a2

y =
√

3π
bs

, where s is an integer. Our sample has the aspect
ratio of Ly

Lx
=

√
3

2 with nmax = sN1/2, so that number of vortices
is N .

The constant homogeneous magnetic field is described by
the Wilson link phases,18 θ

γ
n1,n2 ,

Uγ
n1,n2

= exp
(
iθγ

n1,n2

)
, (12)

θ1
n1,n2

= − π

s2
n2, θ2

n1,n2
= π

s2
n1. (13)

Periodic (magnetic) boundary conditions for the rectangular
sample read17

ψ0,n2 = exp
(
i
πnmax

s2
n2

)
ψnmax,n2 ,

(14)
ψnmax+1,n2 = exp

(
−i

πnmax

s2
n2

)
ψ1,n2 ,

ψn1,0 = 0, ψn1,nmax = 0. (15)
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The corresponding boundary conditions for the scalar
potential are

φ0,n2 = φnmax,n2 , φn1,0 = φn1,nmax ,

φn1+1,0 − φn1,0 = 0, φn1+1,nmax − φn1,nmax0 = 0,

φ(0,0,0) = 0,
(16)

1

ay

(
φn1,1 − φn1,0

) = −j ext,

1

ay

(
φn1,nmax − φn1,nmax−1

) = −j ext,

1

ax

(
φn1+1,0 − φn1,0

) = 0,
1

ax

(
φn1+1,nmax − φn1,nmax

) = 0.

The discretized TDGL equations are

(
d

dτ
− iφn1n2

)
ψn1,n2 = s2b

√
3

8π

[
U 1

n1,n2
ψn1+1,n2 + 4

3U 2
n1,n2

ψn1,n2+1

+U 1∗
n1−1,n2

ψn1−1,n2 + 4
3U 2∗

n1,n2−1ψn1,n2−1 − 14
3 ψn1,n2

]
+ 1 − t

2
ψn1,n2 − |ψn1,n2 |2ψn1,n2 . (17)

In addition, they are supplemented by the Poisson equation

∇2φ = i
s2b

√
3

8π
ψ∗

n1,n2

[
U 1

n1,n2
ψn1+1,n2 + 4

3U 2
n1,n2

ψn1,n2+1

+U 1∗
n1−1,n2

ψn1−1,n2 + 4
3U 2∗

n1,n2−1ψn1,n2−1 − 14
3 ψn1,n2

]
+ c.c. (18)

Strong pinning is introduced by “excluding” a point from the
grid. This means that the order parameter vanishes at these
points. The supercurrent density is discretized as

j s1
n1,n2

= i

2ax

ψ∗
n1,n2

U 1
n1,n2

ψn1+1,n2 + c.c.,
(19)

j s2
n1,n2

= i

2ay

ψ∗
n1,n2

U 2
n1,n2

ψn1,n2+1 + c.c.

The numerical method utilized is the Crang-Nickolson algo-
rithm. The initial condition was set by the Abrikosov analytic
expression.17 Evolution in time settled after several thousands
of time steps of order �τ = 0.001tGL. The magnetic field
is taken as b = 0.5 and the temperature t = 0 was constant
throughout our simulations. Variation of these parameters
does not change qualitatively the results of our study. No
thermal fluctuations on the mesoscopic scale were introduced,
although an insignificant grid noise was present. The pinned
area of one pinning center corresponds to one point of the
grid, simulating radius of the pinning center of approximately
a/s . We always used s = 16 corresponding to 16 × 16 grid
points per vortex. The number of vortices was always quite
large, 16 × 16 = 256, to overcome boundary effects. In the
middle of our sample (in the current direction,y) the dynamics
is independent of the edge effects owing to the metallic leads.
These effects are interesting in their own right and clearly seen
on all our figures. Unlike the analytic method, the simulation
can be performed for arbitrary filling fractions.

Now we proceed to a description of the results for various
filling factors and transport currents.

III. CURRENT CARRYING VORTEX STATES

Vortex matter in the presence of pinning and carrying
transport electric current has one static and two dynamic
phases. Electric current acts as a driving force on the vortex
matter, and there is an intricate interplay between the stress
and the elasticity of the vortex matter and the pinning strength.
The phase boundary between the static phase and a moving
(flux flow or creep) phase is determined by the critical

current as function of parameters of the system: magnetic
field, temperature, and pinning strength. First we consider
the structure of the static, albeit current carrying, vortex state
in the presence of various hexagonal pinning structures with
an integer filling factor f � 1. It turns out that the elastic
properties of the vortex matter are markedly different for
the matching field, f = 1, and when interstitial vortices are
present, f > 1. In both cases dynamics and the voltage-current
(I-V) characteristics are investigated.

Within the GL approach, although the magnetic field is
practically uniform and “magnetic fluxons” do exist, one has
well-defined vortex-type distributions of the complex order
parameter ψ(r). Below we call the area in which the superfluid
density, |ψ(r)|2, is significantly suppressed as a “vortex” core.
In the studied field range the vortices are extended objects
having a shape, not just “points.” Under the stress created
by the transport current vortices are deformed and shifted
from their equilibrium position (defined when the transport
current is absent).9 Below the critical current vortices are
displaced in the direction perpendicular to that of the persistent
current, while the electric field vanishes. The critical current
is determined by the stability of the static distorted Abrikosov
lattice carrying a net supercurrent. Above the critical current
the electric field becomes nonzero and vortices start to move.
We focus on the mechanism of depinning, especially on the
emerging strong and inhomogeneous electric fields just above
the critical current.

A. Matching field, f = 1

In this simplest situation there is one vortex per pinning
site. We assume here that the pinning array is hexagonal
and therefore does not conflict with the preferred lattice
structure of the vortex matter. It was assumed in a recent
analytic calculation9 that, although the distribution of the order
parameter under current evidently loses rotational hexagonal
symmetry (technically owing to an admixture of higher Landau
levels, see Ref. 9), the unit cell still contains a single vortex.
As Fig. 3(a) demonstrates, this is indeed the case. Indeed, the
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FIG. 3. (Color) Structure, the I-V curve, and electric field at
matching field. There is one vortex per pinning site (red blob), so that
the filling factor f = 1. Magnetic field B = 0.5Hc2 and temperature
is zero. (a) Coherent motion of the vortex lattice. Distribution of
the superfluid density |ψ(r)|2 at three consequent times (depicted by
blue, green, and brown couture plots) given. The value of the current is
j = 0.04, larger than the critical value of jc = 0.033 . The structure of
the coherently moving lattice supports the analytical result of Ref. 9.
(b) The dc I -V curve for matching field. The Bardeen-Stephen law is
shown by a straight line for comparison. The critical current is very
high, jc = 0.033 in units of the depairing current, Eq. (5). (c) Local
electric field distribution. Profile of electric field [in units of EGL, see
Eq. (7)] for y = Ly/2 as function of x. Below jc at j = 0.02 electric
field is zero, while above jc at j = 0.04 electric field is constant on
average, but shows small sinusoidal deviations owing to the vortex
lattice structure.

vortices move coherently when the current exceeds (j = 0.04)
the critical one.

The critical value jc = 0.033 [in units of Jd defined in
Eq. (5)] determined from the I-V curve [Fig. 3(b)] is in a
good agreement with the result obtained analytically in the
framework of the variation procedure (see Fig. 3 of Ref. 9
for the deltalike potential with strength of order one). The
electric field plays a major role in the process of depinning.
While below the critical current at j = 0.02, it is strictly
zero everywhere [see the lower line in Fig. 3(c)] (the value
of a random field is consistent with zero at our level of
noise), above it [at j = 0.04, upper line in Fig. 3(c)] the
electric field is constant on average, but shows small sinusoidal
deviations owing to the vortex lattice structure. Numerical
simulations demonstrate that the resistive state occurs by a
coherent depinning, as it was assumed in the analytic work9

[see Fig. 3(a)]. The mechanism of depinning consists of a
series of sudden jumps from one pinning center to its neighbor
along the vortex trajectory line with replacement of the vortex
on this site.

The situation is different when interstitial vortices are
present for f > 1.

B. Interstitial vortices in obstacle pinning array for f = 3

In the equilibrium (currentless) state the interstitial vortices
in this case are locked by the strongly pinned vortices that
are located on the pinning centers (PVS) (see Fig. 1). Vortex
matter as a whole remains static up to a sufficiently large
magnitude of the transport current, jc = 0.0073. Above this
value, for example, at j = 0.0075, the interstitial vortices show
a sinusoidal-like instability (“snakes”) forming the structure
enveloping the PVS [Fig. 4(a)]. These snakes move, destroying
the static vortex phase and creating voltage. The number of the
vortex snakes increases along with the transport current, until
the interstitial vortices start to push out the strongly pinned
vortices and replace them. In the moving vortex matter at
j = 0.01, all of the vortices participate in laminar stream
[Fig. 4(b)]. The voltage current characteristics (Fig. 5) show
a strong decrease of the critical current in comparison to
the case of the matching field. The situation is qualitatively
different, when channels are available. In this case the critical
current is further reduced. This happens, for example, when
the current direction does not coincide with the principle axis
of the pinning lattice. We exemplify this generic situation on
the simplest case of f = 4.

C. Interstitial vortices in channel pinning array for f = 4

The mechanism of destruction of the superconductivity by
creation of a resistive state by the current is essentially different
in this case than that in the obstacle pinning array geometry. At
least some of the interstitial vortices in this case are confined
inside the channels formed by the line of alternating strongly
pinned and interstitial vortices (see Fig. 2). The interstitial
vortices in the channel are very slightly pinned. However, even
in this case, the interplay between vortex matter elasticity, the
interaction with the vortices forming the channel walls, and the
transport dc current result in the existence of various dynamic
vortex phases. As current increases, the system undergoes a
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FIG. 4. (Color) Structure of the pinned and the flux flow states for
the obstacle geometry for f = 3. Snapshots of the distribution of the
superfluid density at three consecutive times are shown as green, red,
and brown contours. (a) Just above the critical current jc = 0.0073 at
j = 0.0075. One observes that there are snakelike interstitial vortex
trajectories around PVS. (b) Above the critical current, j = 0.01.

One observes that there are streamlike straight trajectories of all of
the vortices. The vortices of the PVS are pushed out from the pinning
sites and replaced by the interstitial vortices.

transition from the static pinned state to the moving incoherent
(snake) phase, followed by the coherent motion.

In more detail, just above the critical current jc = 0.003
at j = 0.004, the snakelike vortex phase inside the channels
appears [see Fig. 6(a)]. The transition to a resistive state
is owing to the snakelike instabilities, although interstitial
vortices trapped inside the channel walls are eventually also
involved. At large currents all of the vortices are completely
depinned. In this case both the vortices of the former
channels and those that formed PVS participate in coherent
laminar stream motion [see Fig. 6(b)]. The voltage-current

FIG. 5. The I -V characteristics of the pinning array with in-
terstitial vortices. Curve 1 is the voltage-current characteristics for
the obstacle geometry for f = 3, while curve 2 is the I-V for
the channel geometry for f = 4. It demonstrates a small critical
current in comparison with the obstacle geometry. Line 3 is the
Bardeen-Stephen law.

characteristic in this case demonstrates extremely small critical
currents (Fig. 5).

The vortex depinning is accompanied by the appearance
of slightly varying electric field (on the scale of the coherence
length) already at the current j = 0.002, just below jc = 0.003
(see the lower three lines for three consequent times in Fig. 7).
The electric field becomes strongly oscillating (the upper three
lines in Fig. 7) for j = 0.004 just above jc.

IV. SUMMARY AND DISCUSSION

To summarize, we investigated the structure and dynamics
of the current carrying state in type-II superconductors with
periodic array of nanoholes under strong magnetic fields. The
transport current carrying dissipative (flux flow) and dissipa-
tionless (pinned) configurations were investigated numerically
in the framework of the time-dependent GL approach general-
ized to include strong inhomogeneous electric fields (that are
necessarily created when the vortex system depins). We have
limited ourselves to the case of hexagonal pinning arrays with
filling factors f = 1,3,4 with currents ranging from a fraction
of the depinning current to several critical currents. Strong
pinning (a hole or a dielectric inclusion) of the size of order of
coherence length was assumed.

A maximal critical current of 4% of the depairing current
jd is obtained for the matching field f = 1. The mechanism
of depinning consists of a series of sudden jumps from one
pinning center to its neighbor along the vortex trajectory line,
with replacement of the vortex on this site. The situation is
different when interstitial vortices are present, f > 1. The
system with interstitial vortices (f > 1) is highly anisotropic
with respect to the current direction with respect to the unit cell
of the pinning array. The critical current depends strongly on
the orientation, and a maximal value of 6.5 × 10−3 is achieved
for the obstacle geometry. For an example of f = 3, such an
arrangement of the pinning array and the current direction
is shown in Fig. 1. It was found that slightly above the
critical current the trajectories of the moving vortices are not
straight but rather acquire a snakelike shape enveloping the
system of pins.
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FIG. 6. (Color) Structure of the pinned and the flux flow states
for the channels geometry for f = 4. (a) Just above the critical
current jc = 0.003 at j = 0.004. Interstitial vortices in the channels
become unstable, forming a snakelike vortex structure. (b) Above the
critical current, j = 0.04. Both interstitial vortices and PVS flows.
One observes that there are streamlike straight trajectories.

In contrast to f = 1, in this case the transition to a resistive
case does not occur by a substitution of the strongly pinned
vortices, but the vortex matter separates into two subsystems:
static pinned vortices, PVSs, and moving “snakes,” IVSs. In
the channel geometry (see Fig. 2), the critical current is further
reduced. For example, in the case of f = 4 we obtain 1.5 ×
10−3. In this case the transition to the resistive state takes is
accompanied by formation of snakes inside the channels. At
larger currents the structure of the current carrying state is
universal. The vortices are ripped off and move coherently
along straight trajectories.

The transition to a resistive state is accompanied by the
appearance of rather strong electric fields, shown in Figs. 3(c)
and 7. The electric field becomes homogeneous in accordance
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FIG. 7. (Color) Local electric-field distribution for f = 4. Profile
of the electric field (in units of EGL) for y = Ly/2 as function of x for
two values of the transport current. Slightly below the critical current
jc = 0.003 at j = 0.002 (three bottom lines for three consequent
moments), there are just small fluctuations, and just above the critical
current at j = 0.004, there are large variations with large amplitudes.

with the analytical estimate of electric field coherence length.11

The I-V curve approaches the Bardeen-Stephen law, and the
structure is very similar to that of the time-dependent GL
model with renormalized viscosity,19 namely, the friction
owing to artificial pinning centers is accounted for by the
increase of the effective inverse diffusion constant in the
GL equation (17).

It is interesting to contrast our simulation in the channel
geometry with that of the vortex transport in narrow
channels.20 In the latter case vortices are considered as a
one-dimensional Frenkel-Kontorova chain.21 In this model the
potential is periodic [cos(x)], with the period commensurate
with the vortex lattice forming the channel. In this case
vortex chains inside the channel create one-dimensional spatial
structures (solitons). In our simulations, even for the relatively
small width of the sample (of order of 5 pins in the y direction),
an essentially 2D structure, the snakes, are fully formed.

It is interesting to compare between the periodic pinning
and the random pinning (always present in superconductors
owing to disorder on a microscopic scale). Experiments were
made in which a fraction of pins was distributed at random.10

Within the London approximation such a system was studied
very recently.22 It would be interesting to investigate this
phenomenon within the GL approach because the experiments
fall clearly into its applicability range.

Very recently measurements were performed on a sample
with a square pinning array,23 which demonstrated jumps
and a rather chaotic behavior and a transition between the
snakes and a streamlike straight trajectories. It is difficult to
compare with our results at small velocities because repulsive
interaction favors a hexagonal vortex lattice that is constantly
frustrated by the incommensurate square lattice of the pinning
arrays. Nevertheless, we also observe jumps and turbulent
behavior of the electric field accompanying vortex dynamics
at the crossover between the snakelike and the straight
trajectories. This requires additional analysis, which will be
reported elsewhere.
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