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We demonstrate experimentally that the near-field and far-field transverse patterns of a large aperture
vertical cavity surface emitting laser (VCSEL) can be successfully interpreted as a two-dimensional
(2D) billiard system. It is found that the near-field and far-field transverse patterns of a large aperture
VCSEL evidently represent the coordinate-space and momentum-space wave functions of a 2D
quantum billiard, respectively. The result of this paper suggests that large aperture VCSELs are
potentially appropriate physical systems for the wave-function study in quantum problems.

DOI: 10.1103/PhysRevLett.89.224102

Vertical cavity surface emitting lasers (VCSELSs) have
become of considerable interest for short-range data com-
munications and sensor applications [1]. Of scientific in-
terest, VCSELs inherently emit in single-longitudinal
mode due to their extremely short cavity length, but large
aperture devices can exhibit a complex transverse mode
structure. The transverse mode pattern and the polariza-
tion instabilities in VCSELs have been the main interests
in the past few years [2—7]. Hegarty et al [8] reported
interesting transverse mode patterns from oxide-confined
square-shaped VCSELs with larger aperture. Their ex-
perimental results revealed that a wave incident upon the
current-guiding oxide boundary would undergo total in-
ternal reflection because of large index discontinuities
between the oxide layer and the surrounding semiconduc-
tor material. Namely, VCSELs can be considered as a
planar waveguide with a dominant wave vector along
the vertical direction. Because of the analogy between
the Schrodinger and Helmholtz equations [9], it is essen-
tially feasible to use the oxide-confined VCSEL cavities,
such as microwave cavities [10,11], to represent quantum
mechanical potential wells. In this case, the transverse
patterns can reveal the probability density of the corre-
sponding wave functions to the two-dimensional quan-
tum billiards. However, such a correspondence has not
been established as yet because the thermal effects usu-
ally result in a complex refraction-index distribution to
distort the VCSEL planoplanar resonators [6].

In this Letter, we experimentally demonstrate that,
when the thermal effects are reduced by cooling the de-
vice at the temperature below 10 °C, the near-field and
far-field transverse patterns of a large aperture VCSEL
evidently represent the coordinate-space and momentum-
space wave functions of a 2D quantum billiard, respec-
tively. The satisfactory correspondence implies that
VCSELs are appropriate devices for the study of the be-
havior of the wave functions in quantum billiard prob-
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lems. Since VCSELs, in general, can be fabricated for any
two-dimensional shape, this versatility makes these de-
vices extremely flexible to explore a great deal of inter-
esting physics.

In this investigation, we fabricate square-shaped
VCSELSs with large aperture and measure near-field and
far-field patterns of the transverse mode. The size of the
oxide aperture is 40 X 40 um?. The device structure of
these oxide-confined VCSELs and the methods used to
measure the far-field and near-field patterns are similar to
those described by Ref. [8]. Experimental results show
that the transverse patterns of VCSELs can be certainly
divided into two regimes of low-divergence and high-
divergence emissions. Hereafter, we will concentrate on
the high-divergence emission, which appears only at re-
duced temperature and near threshold operation. It is
expected the thermal-lensing effect will switch the de-
vice into the low-divergence regime because the joule
heating induces a temperature rise across the device cross
section. Typically, high-divergence patterns are very
symmetric and those of low divergence are more irregu-
lar. Therefore it is easy to differentiate the regimes in
which the lasers are being operated.

We first controlled the device at the temperature of
10 °C. As shown in Fig. 1, the near-field pattern of the
device was found to be a bouncing-ball scar that is similar
to the result of Ref. [8], except that the order is higher. It
can be seen that the observed bouncing-ball scar is not
perfectly periodic but contains dislocations to show some
wavy structure. Even so, the laser beam was measured to
be linearly polarized. As the device was cooled at the
temperature around O °C, the near-field pattern changed
dramatically, as shown in Fig. 2. It can be seen that the
near-field intensity apparently was highly concentrated
along the trajectory of a diamond-shaped classical orbit.
Although this diamond ‘“‘scar” has been discussed exten-
sively in the wave functions of ballistic quantum dots

© 2002 The American Physical Society 224102-1
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FIG. 1. The experimental result for the near-field pattern of
the VCSEL device near the lasing threshold. The device was
operated at the temperature 10 °C.

[12-14], it is the first time to observe this interesting
pattern from a laser transverse pattern. The specific wave
scars confirm the fact that the oxide-confined VCSELs
can be considered as a planar waveguide.

In order to understand the observed transverse patterns,
it is helpful to simplify the VCSEL structure first. We
consider the large aperture VCSEL to be a very narrow
square-shaped three-dimensional resonator with em-
bedded gain material. The two distributed feedback re-
flectors (DBR) were separated by nearly one wavelength
and the square-shaped oxide aperture defined the lateral
billiard boundary. The wave vectors can be decomposed
into k, and k,, where k, is the wave-vector component
along the direction of vertical emission and k, is the
transverse wave-vector component. Since the vertical di-
mension is designed to be nearly one wavelength, k, is the
dominating component in the emission wave vector. The
lateral boundary has a dimension of 40 X 40 uwm?; con-
sequently, the transverse k, is much smaller than k.. The
lateral oxide boundary can be considered as rigid walls
with infinite potentials since the photons will experience
total reflection at the lateral oxide walls due to a large &,
component and a relatively small transverse compo-
nent k,. Furthermore, since the mirrors in VCSELs are
DBRs, they can be considered as plane mirrors with no
curvature. The photons can be treated as particles con-
fined in a boundary with infinite potential and zero
potential inside the square. Vertical emission in the z
direction can be considered to be the coupling of the
resonance fields inside the cavity to the outside medium
through the top DBR. Therefore, the phasor amplitude of
the emission field distribution E(x, y, z) is conveniently
given by E(x, y, z) = #(x, y)e /%%, After separating the z
component in the wave equation, we are left with a two-
dimensional Helmholtz equation: (V? + k2)i(x, y) = 0.
Here, V? means the Laplacian operator operating on the
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FIG. 2. The experimental result for the near-field pattern of
the VCSEL device near the lasing threshold. The device was
operated at the temperature 0 °C

coordinates in the transverse plane and (x, y) is a scalar
wave function that describes the transverse profile of the
laser. The solutions to the Helmholtz equation with total
internal reflection boundaries are equivalent to the solu-
tions of the 2D Schrodinger equation with hard wall
boundaries [¢(x, y) = 0 at the boundary] of the same
geometry. This analogy has been exploited most success-
fully in microwave cavities and scarred eigenfunctions of
a chaotic billiard have been demonstrated [10,11]. The
wave functions for the 2D quantum billiards are also
important understanding the behavior of mesoscopic
structures, and will be crucial for the design of nanoscale
electronic devices [12-14].

It is well known that the solution to a perfect square
billiard can be obtained by separation of variables. How-
ever, this subtle solution definitely cannot account for the
present observed pattern. It is self-evident that the perfect
square billiard is quite rare in most of the real physical
problems. In real VCSEL devices, the square aperture is
fabricated first by etching a square mesa and then oxidizes
the AlAs layer to form the oxide boundary. Process
induced deformation is unavoidable, and therefore a per-
fect square billiard is not appropriate for the simulation.
In order to simulate the square billiard formed by the
oxide aperture, we modify the square by rounding off
the corners. With the rounded off square boundary, the
Helmholtz equation can no longer be solved by the
method of separation of variables. We use a numerical
method called expansion method [15] to solve the equa-
tion. Because of symmetry breaking, the eigenfunctions
obtained are much more interesting than those of the per-
fect square billiard. For low order solutions, the patterns
are similar to those of the perfect square billiard. How-
ever, the higher order eigenfunctions are drastically dif-
ferent in structure and very rich patterns appear. It is of
surprising interest that some of the solutions display the
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FIG. 3. The calculated wave functions of the square billiards
modified by rounding off the corners. (a) and (b) are similar to
the observed near-field patterns in Figs. 1 and 2, respectively.
The dashed lines indicate the boundary of the simulation.

distorted bouncing-ball and diamond-shaped scars simi-
lar to the experimental results. Figure 3 shows two of the
calculated eigenfunctions that are similar to the observed
near-field patterns in Figs. 1 and 2. Note that the present
modified square billiards always have the high-order ei-
genfunctions demonstrating the distorted bouncing-ball
and diamond-shaped scars, almost irrelevant to the de-
gree of how much the corners are rounded off.

It is worthwhile to mention that Nockel and Stone [16]
have designed stadium-shaped microcavity lasers and
demonstrated high power directional emission in the
midinfrared wavelength based on some chaotic two-
dimensional billiard dynamics. However, due to the geo-
metrical structure of the laser, only edge emission was
allowed in these deformed microdisk lasers. Therefore, a
comparison between the experimentally determined far-
field pattern and simulation was limited for only one di-
mension. The near-field pattern was not measured because
high-resolution midinfrared detection was not possible.

The optical far-field intensity essentially is the spatial
2D Fourier transform (FT) of the near-field pattern,
while the FT of the coordinate-space wave function cor-

224102-3

FIG. 4 (color). The experimental result for the far-field pat-
tern corresponding to the near-field pattern in Fig. 2.

responds to the momentum-space representation in the
quantum mechanics. Recently, Delande and Sornette [17]
have calculated the acoustic radiation from a stadium-
shaped membrane by applying FT to the eigenfunctions.
Similar calculations focusing on the momentum repre-
sentation of the wave functions were also reported by
Bicker and Schubert [18]. Both theoretical papers sug-
gested that momentum distribution of a two-dimensional
quantum billiard is actually experimentally observable
and such information can provide a more comprehensive
understanding to the billiard system. Therefore, it is con-
sequentially meaningful to measure the far-field pattern
for the VCSEL devices. Figure 4 shows the experimental
observation of the far-field pattern corresponding to the
diamond-shaped wave function in Fig. 2. It can be clearly
seen that the far-field pattern exhibited some strong in-
tensity lotus flower structure at the corners of the square
and some weak stripes connecting the lotus structure.
This far-field pattern is consistent with the near-field

FIG. 5. The calculated momentum-space wave function cor-
responding to the coordinate-space wave function in Fig. 3(b).

224102-3



VOLUME 89, NUMBER 22 PHYSICAL

REVIEW LETTERS

25 NOVEMBER 2002

Near-field pattern

\gi\‘ "‘“"ﬂluﬂ'“lt‘!n
‘;ﬂ!"l'}pi r

FIG. 6 (color). Experimental results of the near-field and far-
field patterns for the VCSEL device with a stadium-shaped
boundary.

diamond-shaped scar that apparently was concentrated
along the trajectory traced by a particle bouncing off
the neighboring walls of the square. Figure 5 shows
the momentum-space wave function of the theoretical
diamond-shaped scar shown in Fig. 3. The good agree-
ment between experimental results and theoretical calcu-
lations confirms our physical analysis and validates the
present theoretical model.

Finally, it is worthwhile to clarify that the present
interpretation is based on the assumption that the influ-
ence of carrier dynamics on the transverse pattern near
threshold is negligible. To further justify this assumption,
we fabricated the devices with a shape of Bunimovich
stadium boundary and measured the near-field and far-
field intensities. As shown in Fig. 6, the near-field inten-
sity displays a scarred pattern and the far-field intensity
resembles the calculated results of Refs. [17,18] in appear-
ance. The boundary-shape dependence of the VCSEL
patterns confirms the present interpretation.

In conclusion, we have observed unique near- and far-
field transverse patterns in large aperture VCSELs. A
two-dimensional quantum billiard model is utilized to

224102-4

explain the experiments. It turns out the square billiard
with minor modification is adequate to simulate the real
device. Rounding off the corners certainly breaks the
symmetry and introduces coupling of the two originally
independent variables. This symmetry breaking makes
the solution of the high-order eigenfunctions much more
interesting as they display highly graphical patterns. The
observed near-field pattern in the transverse mode appar-
ently can be interpreted as from these solutions. Further-
more, the corresponding far-field patterns can also be
explained by the momentum-space wave functions in
the billiard. The result of this paper also suggests that
large aperture VCSELSs are potentially appropriate physi-
cal systems for the quantum chaos study.
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Observation of Vector Vortex Lattices in Polarization States of an Isotropic Microcavity Laser
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We experimentally investigate the formation of a vector polarization pattern from an isotropic
microcavity laser. It is found that the orthogonal components of the observed pattern are localized on
the geometrical rays. The connection between eigenfunctions and geometrical rays is analytically
constructed by using the SU(2) coherent states. With the analytical function form, the observed vector
pattern is completely reconstructed and the vector vortex lattice is apparent.

DOI: 10.1103/PhysRevLett.90.053904

Vortices appear in various aspects of modern physics
such as vortex lattices in superconductors, quantum Hall
effects, and Bose-Einstein gases [1-3]. In a light wave,
the phase singularity of the complex scalar field forms an
optical vortex [4—6]. Both single optical vortex and opti-
cal vortex lattices have been experimentally observed in
lasers [7,8]. In addition to scalar vortices, paraxial optical
fields can exhibit vector vortices associated with a space-
dependent polarization [9-11]. The single vector vortex
has been experimentally observed in CO, lasers [12] and
in vertical cavity surface emitting lasers (VCSELSs) [13].
However, the vector vortex lattice thus far has not been
observed in lasers. The difficulty of forming a vector
vortex lattice is that the laser cavity needs to be a large
Fresnel number and high-level isotropic.

Recently, Hegarty et al. [14] reported interesting trans-
verse mode patterns from oxide-confined square shaped
VCSELSs with large Fresnel number. Their experimental
results reveal that a wave incident upon the oxide bound-
ary would undergo total internal reflection because of
large index discontinuities between the oxide layer and
the surrounding semiconductor material. In this work, we
present an experimental observation of vector vortex
lattices in a square shaped VCSEL with large aperture.
Experimental results reveal that the transverse mode of
the square shaped VCSEL can display a vector polar-
ization pattern associated with the geometrical ray when
the thermal effects and the cavity anisotropies are re-
duced. To explain the observed pattern, we use the SU(2)
coherent states to analytically connect the eigenfunctions
with the geometrical rays. With the SU(2) coherent state,
the observe vector pattern is completely reconstructed
and the vector vortex lattice is manifest.

In this investigation, we fabricate square shaped
VCSELs with large aperture and measure near-field
transverse patterns. The size of the oxide aperture is 40 X
40 um?. The device structure of these oxide-confined
VCSELs is similar to that described by Ref. [14]. The
effective cavity length between two distributed feedback
reflectors is designed to have the emission wavelength

053904-1 0031-9007/03/90(5)/053904(4)$20.00
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around A, = 799.5 nm. The near-field patterns are mea-
sured with a CCD camera (Coherent, Beam-Code) and an
optical setup similar to that described in Ref. [14]. An
optical spectrum analyzer (ADVANTEST Q8347) is used
to monitor the spectral information of the laser.

The performance of the VCSEL device is measured at a
temperature around 0°C. It is found that near lasing
threshold the transverse pattern is linearly polarized,
but the polarization is not the same for different points
of the transverse plane. In other words, the observed
pattern is a vector pattern formation and its polarization
is position dependent. The measurement of the optical
spectrum verifies that the observed transverse pattern is
phase synchronized to a single frequency at 795 nm. Even
though a single-frequency high-order transverse pattern
has been observed in VCSELSs [14], it is usually a scalar
pattern formation; i.e., the polarization is always the
same for all points of the transverse plane. The basic
requirement for a vector polarization pattern is that the
orthogonal polarization modes with different spatial pat-
terns are phase synchronized to a common frequency. The
polarization modes normally are frequency degenerate;
however, strain or electric field induced birefringence
may lift the degeneracy to the order of AA = 0.05 nm
[15]. We find that about half the present fabricated devices
can have the property of the frequency locking between
the polarization modes. Therefore, we speculate that the
frequency locking between the polarization modes is
subject to the degree of birefringence effect. Figures 1(a)
and 1(b) show the polarization resolved near-field pat-
terns in the 45° and —45° direction, respectively. The
polarization angle is referring to the [110] direction of the
(001)-GaAs crystal. It can be seen that near-field compo-
nents of orthogonal polarizations have different pattern
structures. Since the orthogonally polarized near-field
patterns are phase synchronized to a common frequency,
the orthogonally polarized components can mutually
interfere to lead to a greatly different pattern in the polar-
ization resolved near-field image, as shown in Fig. 1(c)
for 0° polarization.

© 2003 The American Physical Society 053904-1
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FIG. 1. Experimental polarization resolved pattern emitted
from the VCSEL device near lasing threshold: (a) —45° polar-
ization; (b) +45° polarization; (c) 0° polarization.

In order to understand the observed transverse patterns,
we consider the large aperture VCSEL to be a planar
waveguide with a dominant wave vector along the verti-
cal direction. According to the waveguide theory [16], the
electromagnetic fields with a predominant z direction
of propagation can be approximated as E(x,y,z t) =
E(x, y)e!B==@) where w is the angular frequency and S
is the propagation constant along the z direction. After
separating the z dependence in Maxwell equation, we are
left with a two-dimensional (2D) Helmholtz equation:
(VZ + k})E(x, y) = 0, where k> = (w/c)*> — 8%, and c is
the wave speed. Since the photons will experience total
reflection at the lateral oxide walls, the extension of the
evanescent field is reduced. Therefore, we approximate
the wave function to obey the condition of E(x, y) = 0 on
the boundary.

(2/a)
[Z%%( % )cos2K¢ }

W y; ) =

and
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As is well known, the eigenfunction for the Helmholtz
equation with a square rigid boundary is given by

2
lpm,n(x: )’) = - sin(w >31n<@ >’
a a

a
2 2
o-()-(2)
a a

Since the functional form of the present resonator is
similar to the 2D Helmholtz equation, it is possible
to describe E(x,y) with the eigenfunctions ¢, ,(x, y).
However, the subtle solution in Eq. (I) cannot account
for the present observed pattern localized on the geomet-
rical trajectories. Recently, Pollet et al. [17] demonstrated
that the wave function of the SU(2) coherent state for the
2D quantum harmonic oscillation is well localized on
the corresponding classical elliptical trajectory. As in the
Schwinger representation of the SU(2) algebra [18], SU(2)
transverse mode functions for a square planar waveguide
are expressed as [19]

O e [y

a =o\K

(D

2

><sin[(N—K+ 1)?} 3)

where the parameter ¢ is related to the wall positions of
specular reflection points and the quantity (%), which

equals N!/[K!(N—K)!] is a binomial coefficient. The
index N is related to the average value of (k7).
Experimentally, the value of N is determined by the
detuning between the longitudinal cavity resonance and
the gain emission frequency. The relationship between the
parameter ¢ and the periodic orbits can be understood by
using the identity of sinz= (e —e %)/2i to rewrite
Eq. (3) and applying the property of the Dirichlet kernel.
Numerical calculations show that the behavior of
| Wy (x,y; b)|* agrees very well with the geometrical tra-
jectory (classical periodic orbit), as shown in Fig. 2. To
our knowledge, it is original to use the eigenfunctions of
the Helmholtz equation with a square rigid boundary to
describe the VCSEL transverse modes.

The wave function given in Eq. (3) represents a
traveling-wave property. The standing-wave representa-
tions can be obtained by using Wy (x, y; ¢) = Yy (x, y; @).
Although the wave function representation in Eq. (3)
consists of N + 1 eigenstates, numerical analyses reveal
that a superposition of only a few eigenstates is already
sufficient to result in the localization on the classical
trajectory. To include this property, the partially coherent
states for the standing wave can be expressed as

- ’;’z_::<1]\(7>1/2(5in1{¢) sin|:(K + 1)% }sin[(N - K+ 1)% :| (4)
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where the index M = N — 2¢g + 1 represents the number | structed patterns evidences that the oxide-confined

of eigenstates used in the wave function. Using Egs. (4)
and (5) to fit the experimental result, it is found
that E_(x,y) = Vi ,(x,y; —0.387) and E,(xy) =
WS, 5(x, y;0.597), where E_(x,y) and E,(x,y) are the
field distribution for the observed patterns in the —45°
and +45° direction, respectively. In terms of E_(x, y) and
E. (x,y), the field distribution for the observed pattern
can be expressed as

E(x,y) = E\(x,y)d, + E,(x,y)d,, (6)
where
E (x,y) = [W& 5(x, v;0.597) + Wiy, (x, y; —0.387)]/+/2,
(N
and
E,\(x,y) = [We 4(x, y;0.597) — Wiy, (x, y; —0.38m)]/+/2.
®)

The polarization resolved near-field patterns shown in
Fig. 1 are numerically reconstructed by |E_(x,y)|?,
|E,(x,y)|?>, and |E,(x, y)|?, as depicted in Fig. 3. The
excellent agreement between the experimental and recon-

FIG. 2. (a) A typical ray trajectory. (b) The wave pattern
| Wy (x, v; ¢)|? from Eq. (3) for N = 25.
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VCSEL cavity can be considered as a planar waveguide.
Moreover, it is greatly important to note that the eigen-
states used to expand the observed transverse patterns are
not exactly degenerate but nearly degenerate. This result
indicates that the spontaneous transverse mode locking
within almost-degenerated modes plays an important
mechanism in the laser pattern formation [20]. Another
intriguing point is that the observed patterns of Fig. 2(b)
are similar to the diamond-shape scar that has been
discussed extensively in the wave functions of ballistic
quantum dots [21,22].

With the analytical function given in Egs. (6)—(8), the
polarization pattern of the observed mode is illustrated in
Figs. 4(a) and 4(b) for global view and zoom-in view,
respectively. The vector vortex lattice can be clearly seen
from the zoom-in view. To our knowledge, the preset

FIG. 3. Theoretically reconstructed patterns for the results
shown in Fig. 1, calculation with Egs. (6)—(8).
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FIG. 4. Numerically calculated polarization planes for the
observed pattern (a) global view; (b) zoom-in view.

experiment provides the first observation of a vector
vortex lattice in an isotropic laser. Although the mode
order may change with changing the temperature, the
basic pattern formation does not change. Moreover, the
observed pattern retains its identity even when the pump
current increases about 1 ~ 3 mA. In other words, the
observed pattern is generic and structurally stable.

In summary, a vector polarization pattern has been
observed in an isotropic microcavity laser. The observed
transverse patterns are analytically reconstructed by us-
ing the partially coherent states. With the analytical
function, the formation of vector vortex lattices in the
observed pattern is clearly shown.
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