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Abstract

A new speech recognition technique is proposed for continuous speech-independent recognition of
spoken Mandarin digits. One popular tool for solving such a problem is the HMM-based one-state
algorithm. However, two problems existing in this conventional method prevent it from practical use on
our target problem. One is the lack of a proper selection mechanism for robust acoustic models for
speaker-independent recognition. The other is the information of intersyllable co-articulatory effect in
the acoustic model is contained or not. In this paper, we adopt the principle component analysis (PCA)
technique to solve these two problems. At first, a generalized common-vector (GCV) approach is
developed based on the eigenanalysis of covariance matrix to extract an invariant feature over different
speakers as well as the acoustical environment effects and the phase or temporal difference. The GCV
scheme is then integrated into the conventiona HMM to form the new GCV-based HMM, called
GCVHMM, which is good at speaker- independent recognition. For the second problem,
context-dependent model is done in order to account for the co-articulatory effects of neighboring
phones. It is important because the co-articulatory effect for continuous speech is significantly stronger
than that for isolated utterances. However, there must be numerous context-dependent models generated
because of modeling the variations of sounds and pronunciations. Furthermore, if the parameters in
those models are all distinct, the total number of model parameters would be very huge. To solve the
problems above, the decision tree state tying technique is used to reduce the number of parameter, hence



reduce the computation complexity.
Introduction

Automatic speech recognition (ASR) is useful as aform of input. It is especially useful when
someone's hands or eyes are busy. It aso allows people with handicaps such as blindness or palsy to
use computers. Because of the potential applications mentioned above, we attempt to develop a
speaker-independent automatic speech recognition system for Mandarin digits.

In recent years, most automatic speech recognition technologies were based on the so-called
Hidden Markov Models (HMM) and used the connected word pattern matching method to achieve
continuous speech recognition. There exists many methods to solve the connected word
pattern-matching problem. One well-known method is called one-state algorithm. There are two
problems in continuous speech recognition based on the one-stage algorithm, oneis how to build a
reference model to characterize the acoustic feature of speech signal, the other is the information of
intersyllable co-articulatory effect in the acoustic model is contained or not.

Due to the first problem mentioned above, the one-state algorithm is sensitive to the reference
patterns, and thus the choice of reference patternsisimportant. One well-known and widely used
statistical method of characterizing the spectral properties of the frames of a speech pattern isthe
HMM approach. The better the HMM models the acoustic signals, the better performance the one-state
algorithm can achieve. One of the most important issues of speaker-independent (SI) speech
recognition system is the estimation of robust speech model over different speakers. The statistical
speech models for each phone unit of the recognition system should be estimated to cover the spectral
variations in speech signal caused by intra-speaker differences. In this thesis, we propose a new
framework of HMM called generalized common-vector-based HMM (GCVHMM) as areference for
speaker- independent automatic speech recognition.

For the second problem, context-dependent model is done in order to account for the
co-articulatory effects of neighboring phones. It isimportant because the co-articulatory effect for
continuous speech is significantly stronger than that for isolated utterances. However, there must be
numerous context-dependent models generated because of modeling the variations of sounds and
pronunciations. Furthermore, if the parameters in those models are all distinct, the total humber of
model parameters would be very huge. To solve the problems above, the decision tree state tying
technique is used to reduce the number of parameter, hence reduce the computation complexity.

GCVHMM

The statistical speech models for each phone unit of the speaker-independent (SI) recognition
system should be estimated to cover the spectral variations in speech signals caused by intra-speaker
differences. Gllmezodlu, et al. proposed a common vector approach (CVA) for Sl isolated word
recognition. In CVA, acommon vector that represents common properties of one specific spoken word
is obtained by estimating a common subspace. However, CVA needs the impractical assumption that
the training data form a set of linearly independent vectors.

In this chapter, we generalize the CVA to relax its constrain and propose a new extension of HMM
called generalized common-vector- based HMM (GCVHMM). There are two phases in the GCVHMM,
extraction of robust features and estimation of HMM. In the first phase, a generalized CVA is
developed based on the eigenanalysis of covariance matrix to extract an invariant feature, called
generalized common vector (GCV). To relax the linearly independent assumption in the original CVA,
we divide the eigenvalues of covariance matrix into two sets such that all the eigenvalues of the first set
are greater than those of the second set. The common vector is obtained by projecting feature vectors on
the subspace spanned by the eigenvectors whose corresponding eigenval ues are in the second set. In the
second phase, the GCV's are used for the estimation of continuous observation density in HMM and
form the so-called GCVHMM. In GCVHMM, in addition to the original elements of atraditional HMM,
a new element, GCV transformation matrix, is added to extract GCV from speech feature vectors.
Finaly, a re-estimation algorithm based on Baum-Welch method to estimate al the parameters of
GCVHMM is derived.

Structure of GCVHMM

Inthisthesis, a N state, left-to-right continuous observation density HMM, denoted as W, is
considered. Theinitial probability for state / is denoted by d;= Algp=1/), 1 £i £ N, and the transition

probability from state / to state j by a;,= A(q=j | g:,=/) for LEi,j £ N. Denote d ={d,}l.'il, and



A={a

3 ,} :ijl . For the calculation of the observation density in state /, denoted as b(0,), for observation
0, the generalized common vector of o, given the matrix transformation of generalized common vector
isfirst extracted. Then b(o) = Ao | g=i), 1 £ | £ Nassumed to be a mixture of Gaussiansisthen given

as

M
b(o,) = é. Ci,kbi,k(ot)’ 1EiEN
k=1
where M is the mixture number, ¢, isthe probability of mixture kin state /, and b; ,(0) isthe gaussian
distribution given by
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where D=D-Dy is the dimension of the extracted GCV y;,«from o, y;;«isthe GCV of o, for mixture k
in state /, and L ; , and h; , are the covariance matrix and mean vector corresponding to mixture kin state
i, respectively. L ; «isassumed to be diagond, i.e.,
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sothat |L7|= O s;k, . The GCV y;from o, for mixture kin state / is defined as
)/t,/',k = ik,0
where

Vie= gvi,k,ll Vikar ik, EIT
is matrix transformation of generalized common vector for mixture kin state /. For convenience in the
following derivation, we also define

hi,k = I,km,k
then we can write

Ziik = Yk~ h/,k = ‘/i,k(ot b mk)

Denote B={b}" andW={d, A, B}.

1
Reestimation algorithm for the parameters of GCVHMM

For an observation sequence O= (0;, 0, ... , 07) unobserved state sequence Q = (go, 91, G2, --- »
g7, and unobserved mixture component sequence K = (ki, Kz, ... , k), the joint probability density of
A0, Q, K|W) isdefined as

L
P( O’Q’ K | VV) = d% O a’?r-ly‘h C‘?rvkrb‘inkf (Ot)
t=1

where Tisthe number of observation in O. It follows that the likelihood of O given W hasthe form
o O
P(OIW) =34 & PO.Q.KIW
Q K

where the summations are over all possible state sequences and mixture component sequences.

Given an observation sequence O, the objective isto maximize A(OW) over all parametersin W. It
is, however, difficult to solve this problem by directly maximizing P(O|W) over W. In this following,
we shall use the EM algorithm to estimate the parameters of HMM. The EM agorithm is a two-step
iterative procedure. In the first step, called the expectation step (E step), we compute the auxiliary
function for the equation

QWW) =8 § RAQKIWIRAQ KIW)

dlQal K

In the second step, called the maximization step (M step), we find the value of W that maximizes
QWW), i.e.,

W=argmax QW,W)



It has been shown that if QQW,W) 3 Q(W,W), then A(OW) 3 AL OW). Therefore, iteratively
applying the E and M steps of equations guarantees monotonic increase in the likelihood. Theiterations
are continued until the increase in the likelihood is less than some predetermined threshold.

From the following decomposition:

log A(0,Q,K|W) =
d : d . & .
logd, +alagg,,, +alagg, , +alogh, (@)
= = =1
it is straightforward to shown that Q(W,W) can be decomposed into a sum of four auxiliary functions:

QW W) = od(Wd)+ao[W{ B

i=1

=1

3 RV ,
+a Qc/[VV,{ijk}k:l] +aa Qb(vv’b/k)
= Jj=1 k=1

where

N
&Wd)=a a A0q, =i, K|Wlogd,

=1
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QW4 1= aMxéF(aq, = jok =KWlagé,,

QWE,) =8 AQG = ik =kIWlogt(a)

Thisimpliesthat the four sets of parameters can be independently maximized. The maximization
results of first three auxiliary functions are

_ P0G, =i W)
T AoIW
A P0g,..=ig =jIW
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Substituting the following decomposition
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where
[qr ¢ )/tqkr Qrkr:‘/qrvkr(ot-n’;rvkr)
for Iogbwt(ot) and differentiating it with respectto m, and s, *,, weobtain
T .
,1P(O,qt=/1kt=k|W)>‘0t
L H0O.aq, = j.k =kIW)
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To obtain the solution for v, ,,
(VikrVus) =L 1EIE£D,

the constrains

%/ol /k/(< J.k, 11 /kl> 1)

areaddedto Q,(W, j,k) . Then,

which isthe /th element of v,



TQ,(W.b; )

=0
1.I-Vj,k,l
we obtain
"?j,kvj,k,l = ej,k,lvj,k,/

where
R.=aRaq =jk=kKIW@- m)g- m)"

It can be said that R) « characterizes the variations for mixture kin state j so that it plays the same
role as F x in previous section. Thus, the eigenvectors of K; corresponding to the eigenval ues of
smallest D, are selected to constitute the GCV matrix transformation for mixture kin state /.

A Hybrid Decision Tree

To overcome this limitation, we have introduced the integrated generalized common vector
approach into the conventional HMM in chapter 3, which is better at speaker-independent recognition
because of its ability to extract common invariant features over different speakers. Besides modeling
acoustic parameters, most of the variations are due to consistent contextual effectsin practice.
Therefore, we can focus our research on context-based information. Since the co-articulatory effect for
continuous speech is significantly stronger than that for isolated utterances, it isimportant to study the
modeling of context-dependent “subword” units. Here, “subword” means “Mandarin digits’, which
indicate syllable equally.

The most important reason why we use the method of decision tree state tying is that the total
number parametersin al modelsis prohibitively large. The computation complexity to train all these
parameters would be intolerable. To reduce the total number of model parameters, one approach isto
reduce the number of parametersin each model. The way of using continuous HMMs with tied
parameters, parameter tying, reduces the parameter count while maintaining the model accuracy, and is
popularly used in most ASR systems.

After incorporating common vector features mentioned with the structure of decision tree state
tying, the decision tree algorithm should be modified as follows:

1. Locatea (small) set of left context digit syllable questions manually.
2. For each center Mandarin digit syllable p:
m Estimate all left context digit syllable GCVHMMSs.

m For each Markov state k in the model topology, classify all the k-th output distribution in all left
context digit syllables using a binary tree.

a)Put all thetraining data in k-th state of all left context digit syllablesinto the root node.

b)Classify all the training data by each question in the question set. Using the clustered
data to generate Gaussian distribution of common features by the method of GCVHM M
introduced in Chapter 3. Then compute the likelihood of the parent node from Equation
(4.15):

o

L= %gos(mn(z,o))+|n(\L,,k\)g>sz‘a’} ai(

where Dsand L ;, represent the dimension and the covariance matrix of common

vector after the method of GCVHMM.

c) Split the node by each question in the question set. By splitting, sometraining data that
come from the left context digit syllableswhich answer yesto the question go to the
yes-child node; those which answer no to the no-child node. Then calculate the every
likelihood of two child nodes. Finally, computethe likelihood increment by each question
in the question set.

d)Find the best question in the question set by computing the most likelihood increment for
each of the newly created children.

€) Go to step b) unless some stop- growing criteriais met.



First States of 0 Second States of 0 Third States of 0 Fourth Stats of 0

Fifth Sates of 0

GCVHMM of digit syllable "0"

Mandarin Digits Recognition Experiments

The speech data used in our experiments are the set of continuous Mandarin digits. We use a speech
database from 20 persons including 10 males and 10 females. Each one speaks 10 times of each
Mandarin digit. The recording sampling rate is 8kHz and stored as 16-bit integer.

Balanced Corpora

Digit | Decision Tree GCVHMMs| HMM
Model | State Tying
0 91.667 83.333 |58333
1 61.111 27.778 | 0.000
2 61.538 53.846 | 76.923
3 100.000 89.474 |100.000
4 83.333 50.000 | 50.000
5 100.000 94,118 |100.000
6 60.000 30.000 | 0.000
7 100.000 46.154 | 7.692
8 86.667 40.000 | 60.000
9 100.000 69.231 | 23.077
Averagel 84.432 58.393 |47.603
Unbalanced Corpora
Digit Decision
Mgdel Tree Site GCVHMMs| HMM
0 75.610 65.854  |53.659
1 66.522 76.087 |28.261
2 72.727 54.545 |54.545
3 84.091 56.818  |90.909
4 93.182 100.000 |88.636
5 81.818 97.727 |95.455
6 75.556 51.111 |80.000
7 95.455 100.000 |95.455
8 93.182 77.273 190.909
9 90.909 95.455 |95.455




Average| 829052 | 77.487 [76.419

Balanced Tree

Digit Balanced Unbalanced
Model | DecisonTree | Decision Tree
State Tvina | State Tvina Based
0 75.610 51.220
1 66.522 34.783
2 72.727 63.636
3 84.091 68.182
4 93.182 86.364
5 81.818 77.273
6 75.556 64.444
7 95.455 88.636
8 93.182 77.273
9 90.909 90.909
Aver aoe 82.9052 70.272
Conclusion

To consider the contextual effects of continuous speech that play an important role in Mandarin,
we combine a method of the Decision Tree State Tying with GCVHMM. The balanced corpora mean
that the count of females and malesin the database are equivalent entirely. It shows 26.039%
improvement when we replace GCVHMM with Decision Tree State Tying based on GCVHMM.
Nevertheless, if the database is unbalanced, the performance comparison shows 5.4% improvement by
employing the Decision Tree State Tying based on GCVHMM. To overcome leaving the major part of
models behind in the unbalanced tree, we modify the tree as the balanced tree. We can find that the
results show 12.6332% improvement by employing the balanced decision tree state tying based on
GCVHMM.
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Abctract

The earliest multichannel reproduction system format was brought up for theatre by Dolby
Liboratories Inc in 1950s. The main difference between the conventional stereo (two or three
dimension) and multichannel sound system is the setup of surround sound channel. The main purpose
of surround channel isto produce the effect of liveness, sense of envelopment, and wide spatiality.

We generate different quality of audio sound sources by aroom effect emulator, and then turn the
conventional stereo into 5.1 channel sound system by a modified Dolby Surround decoder. We further
introduce the concept of room effect impul se response in different room-dimension, and use
multi-bands equalizer to generate many kinds of music impression for the multichannel sound system.
Thetotal systemisab5.1 channel Multi-band room effect emulator. By the system, we can get afull and
alive listening experience.

Introduction

Today, 5.1 channels reproduction system have been frequently used in cinema or home video. One
of our purpose isto turn a convention stereo sound into a 5.1 channel sound.

To many people, the term surroundimplies that something new has been added to a stereo [1] audio
signal something requiring more than two speakers for reproduction. In 1970's, Dolby Stereo was
established as a stereophonic reproduction system having from three to as many as six channels of
sound to enhance the action and drama of theatrical presentations in ways only approached by
two-channel systems. The most obvious feature of Dolby Stereo is that an additional channel of sound
isreproduced along the sides and back of the theatre to "surround” the audience with sound. Dolby
Stereo contains Left and Right channels, with an extra ‘effects or ‘surround’ channel [2] in the earliest



incarnations, and more usually, with a centre or ‘dialogue’ channel. These four channels are encoded
down to two recorded or transmission channels, and decoded in the cinemafor playback. In the mid
1980's a consumer version of the Dolby Stereo format was devel oped, called Dolby Surround. One of
the main works is to study Dolby surround and generate stereo surround, and then a modified structure,
a 2- to- 5.1 channel sound system, is built. [3][4]

In thisthesis, we propose a 5.1 channel Multi-band room effect emulator with friendly control
interface. In order to get different music quality, we introduce the concept of room simulation and
equalizersinto a’5.1 channel sound system.

About room simulation, the impulse response is the result of the many reflections of a sound that
occur in aroom, and consist in three part, direct signal, early reflections, and fused reflections. The first
software implementations of room simulation algorithms were carried out in 1961 by Schroeder. Then
an extension of the Schroeder algorithm was by Moorer in 1978. A reverberator introduces a spatial
dimension to a piece of recorded sound, which means that it can be used to model a specific acoustic
environment in which to affect adry unaltered signal. Long reverberation times provide the feeling of a
large hall, while short reverberation times give the impression of smaller rooms. By areverberator, we
will get afuller listening experience with spatiality. We referred the structure of Moorer’s reverberator
using FIR and IR filters to make artificial reverberation called a Reverberator. An example impulse
response for aroom isdepicted in Fig 1.

Early
Reflections Late Reflections

system. With an equallzer certaln frequemzy ranges can be either increased or cut. Referring to a
software Whamp, we design a 10-band equalizer to control how finely the frequency pattern can be
amplified or attenuated, and we setup several selective modes for selection.

At last, we use the concept of fuzzy logic in user interface.

Modified Surround Sound Decoder

The block diagram in Fig 2 shows how the decoder works. The Lt input signal passes unmodified
and becomes the left output. The Rt input signal likewise becomes the right output. Lt and Rt also carry
the center signal, so it will be heard as a " phantom™ image between the left and right speakers, and
sounds mixed anywhere across the stereo soundstage will be presented in their proper perspective.

The L-R stage in the decoder will detect the surround signal by taking the difference of Lt and Rt,
then passing it through a 7 kHz low-pass filter, a delay line, and complementary Dolby noise reduction.
The surround signal will aso be reproduced by the left and right speakers, but it will be heard
out-of-phase, which will diffuse the image.

LA 2

Master Balance Tight
YVolume

¢ Surround
Trim

H
Audin Miodifie j

Time [ roue [ 00 am

il I B )der into asimplified surround sound decoder for
jure 3. Asthe definition of surround sound described

duuve, LIS Clidning 1S just W presene uie reververant effect and feeling of ambiance, but not to present
location of sound sources. The terms L-R and R-L referred to Dolby Surround Decoder are to reduce
the contents of front channel but not entirely (called leakage). In addition, surround sound sources, L-R
and R-L, are out of phase with each other, so the surround channels will diffuse the image in surround
sound field. We also use the blocks, Audio Time Delay and 7 kHz Low-Pass Filter, which are described
above to make surround sounds more difficult to localize.

the usage of centre channel of cinema reproduction system, the bandwidth of the Band-pass filter
isranging from 20Hz to 20kHz (bandwidth of vocal).

Theinput left and right siganls are generated from the Multi-band room effect emulator, which

9



will be introduced in Chapter 4. In the next chapter, we shall first describe the basic theory of room
effect and basic components of an artificial reverberator.

Inpui left -
Input Right L

ial Reverberator

The inverse comb filter (FIR), comb filter (IIR) and all-passfilter (IIR) are the basic structures
(Fig 4) that have been combined in different ways in an attempt to imitate the effects of various rooms.
Fig 5 shows the basic structure of an aitificia reverberator by Schroeder.
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Fig5 Schroeder’sreverberator.

The eigenfrequencies of rooms have a rapid decay for high frequencies. [5][6] A
frequency-dependent reverberation time can be implemented with alow-pass filter. Thus Moorer (1978)
suggested a modified comb filter with a lowpass filter in feedback loop to take frequency-dependent
decay into consideration (Fig 5).

w @ | M Y0
: g & ‘
" mb filter Wiﬁltﬁu@ency-dependent decay.
- z a
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According to the concept described above, we use an FIR filter to model early reflections, and an
IIR filter that consist of 10 modified comb filters and 4 cascade allpass filters to mode the late
reflections (Fig 7).

y.(n

Ya(n)

Ref_Scale: Reverberation length
BW : Bandwidth of LP (o (P
Del2: First reflection arrivetime

Fig7 Modified Moorer’s reverberator.

InFig 7, the generated reverberant signals €, (1) and €,(r) are added to the direct signals
(X, (n) and X,(n))and early reflections ( ER, (1) and ER, (1)), and the output signals are;
{ yi(nNe— x (n+ER(n)+e(n).

Ve(n) €= X.(N)+ ERL(N) + &,(n).
«4—  meansthat signal path the lowpass filter

The input of the room simulation isthe mono signal X,(17) and X, (1) respectively. These
two mono input signals are added to the left and the right room signal s after going through a delay line
Del2, and then go through another delay line (FIR Filter). The total sum of the early reflections made
by FIR Filter then goes to parallel circuit of comb filters and cascade allpass filters which implements
subsequent reverberation [6].

In order to obtain a high quality spatial impression, it is necessary to decorrelate the room signals

e (N+ER(n) and e,(n)+ERL(nN).

10-band Equalizer

Referring to the principles of critical bands[9] and Q equalizer design (1), we design a 10-band
equalizer in one octave (Table 1).

Q= feere/ Bandwidth 1)

Band Frequency (Hz) Band Frequency (Hz)
Low High Width Low High Width

0 0 50 50 5 800 1600 800

1 50 100 50 6 1600 3600 1600

2 100 200 100 7 3600 7200 3600

3 200 400 200 8 7200 14400 7200

4 400 800 400 9 14400 22050 7650

Tablel Thelow, high, and width frequencies of each band of the proposed 10-band equalizer

W, ~ W, are the input weightings of the 10-bands equalizer, and we can change the weighting

of every signal band to generate different kind of music impressions.
The entire structure of the Multi-band rom effect emulator is shown in Fig 8 below.
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Fig8 The proposed multi-bands room effect simulator.

Fuzzy User Interface

We introduce the concept of fuzzy logic to generalize the input variables of the proposed
Multi-Bands Room Effect Eimulator, and build a fuzzy control system as afriendly interface.
the input parameters of the Multi-band room effect ssimulator can be further divided into two groups.
One group is for the decision of room_size, (Fig 9) and the other isfor the decision of music
impressions. (Fig 10)

Ref_Scale

s Fuzzy Del2
—»| Systtm t———»

aw Reverberafor Audio Output

—

Audio Input

Fig9 Fuzzification of the input parametersto the reverberator.
LoFreq — W

Mid-Freq o — W

Hi-Freq Fuz;;lsltgfnelrmoe —_—

Modey —_— W,
Fig10 Fuzzy user interface for deciding the band weighting

Experimental Results and Conclusions

All the experiments were carried out in a general listening room. A PC based operation system
with aset of 5.1 channel sound system isrequired. The detail are listed in Table 2 below. Then we let
ten classmates grading (1 to 10) the sound effects generated by other room effect generators, and all the
users are told the basic theory about room effect at first.

In thisthesis, we implement a room effect generator in Visual C++ in asimple way, and then

apply it into a’5.1 channel sound system. There are three main problems to be focused on in the future
research:

12



Table2 Environment requirement. 1. Cool Edit 2000 Syntrillium
Software Corporation
1. How to reduce the computation loading of FIR Software 2. Winamp Nullsoft, Inc,
filter. 3. InterWinRip,
2. No ahility to eliminate metallic sound effect. 4. Microsoft Windows 2000
3. The usage of Late Low-pass Filter isimproper. professional,
4. How to extract the vocal signal for the center 5.  Microsoft Visual C++ 6.0
channel. 1. Pentium IV 1.5 G 512MB
One of the main problems is about the SDRAM
possibility of real-time processing. Thisisbecause |Hardware |2. Sound Blaster Live 5.1 sound
that, in our structure, we use a high order FIR filter card
(more than 2000 orders) to model the early 3. A pair of 6-pieces loudspeakers
reflection segment, and it would take too much 4. eDio AS-100 CineMaster USB
execution time for computing output signal. Audio box

Lowering FIR order or developing another novel
structure will be an important job for real-time realization.

Another problem is about metallic sound effect in long reverberation time. Basically, the
Multi-Bands Room Effect Smulator won't generate additional metallic sound effect in longer
reverberation time. The only caseisthat, if the original music was heard a little metallic somewhere,
the effect till exist in the outputs of the simulator. In other words, the simulator has no ability to
eliminate metallic sound effect. For this reason, we can further investigate the way to eliminate metallic
sound.

Except to enhance rapid decay for high frequencies, the usage of Late Low-Pass filter isto add
the feeling of listening position from the stage. The more distant listeners sat, the deeper audio signal
they heard. However the usage of enhancing rapid decay for high frequenciesis not correct; it
suppresses eigenfrequencies of high frequencies unnaturally. Therefore, the /ate lowpass filter is
improper for acoustic effect of real situation. Thus we could find another way to model this feature.

At last we can further investigate how to extract vocal signal from music in advance, and then we can
use a Vocal Sgnal Extraction System to replace the block, Band-pass filter, to generate the center
channel of our 2-to-5.1 channel sound system
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