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Abstract

A new speech recognition technique that is
used in the environment inside the intelligent
vehicles is proposed for  continuous
speech-independent  recognition of  spoken
Mandarin digits. One popular tool for solving
such a problem is the HMM-based one-state
algorithm. However, two problems existing in
this conventional method prevent it from
practical use on our target problem. One is the
lack of a proper selection mechanism for robust
acoustic models for  speaker-independent
recognition. The other is the information of
intersyllable co-articulatory effect in the acoustic
model is contained or not. In this paper, we adopt
the principle component analysis (PCA)
technique to solve these two problems. At first, a
generalized common-vector (GCV) approach is
developed based on the eigenanaysis of
covariance matrix to extract an invariant feature
over different speakers as well as the acoustical
environment effects and the phase or temporal
difference. The GCV scheme is then integrated
into the conventiona HMM to form the new
GCV-based HMM, called GCVHMM, which is
good at speaker- independent recognition. For the
second problem, context-dependent model is
done in order to account for the co-articulatory
effects of neighboring phones. It is important
because the co-articulatory effect for continuous
speech is significantly stronger than that for
isolated utterances. However, there must be
numerous context-dependent models generated
because of modeling the variations of sounds and
pronunciations. Furthermore, if the parameters in
those models are all distinct, the total number of
model parameters would be very huge. To solve
the problems above, the decision tree state tying
technique is used to reduce the number of
parameter, hence reduce the computation
compl exity.

1. Introduction
Automatic speech recognition (ASR) is

useful as a form of input. It is especialy useful
when someone's hands or eyes are busy. It also
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allows people with handicaps such as blindness
or palsy to use computers. Especialy for the
environment inside the intelligent vehicles,
automatic speech recognition is a helpful and
friendly man-machine interface for the drivers of
the intelligent vehicles. Because of the potential
applications mentioned above, we attempt to
develop a speaker-independent automatic speech
recognition system for Mandarin digits.

In recent years, most automatic speech
recognition technologies were based on the
so-caled Hidden Markov Models (HMM) and
used the connected word pattern matching
method to achieve continuous speech
recognition. There exists many methods to solve
the connected word pattern-matching problem.
One well-known method is called one-state
algorithm. There are two problems in continuous
speech recognition based on the one-stage
algorithm, one is how to build a reference model
to characterize the acoustic feature of speech
signal, the other is the information of
intersyllable co-articulatory effect in the acoustic
model is contained or not.

Due to the first problem mentioned above,
the one-state algorithm is sensitive to the
reference patterns, and thus the choice of
reference patterns is important. One well-known
and widely used dtatistical method of
characterizing the spectral properties of the
frames of a speech pattern is the HMM approach.
The better the HMM models the acoustic signals,
the better performance the one-state algorithm
can achieve. One of the most important issues of
speaker-independent (SI) speech recognition
system is the estimation of robust speech model
over different speakers. The datistical speech
models for each phone unit of the recognition
system should be estimated to cover the spectral
variations in speech signal caused by
intra-speaker differences. In this thesis, we
propose a new framework of HMM called
generalized  common-vector-based ~ HMM
(GCVHMM) as a reference for speaker-
independent automatic speech recognition.

For the second problem, context-dependent
model is done in order to account for the



co-articulatory effects of neighboring phones. It
is important because the co-articulatory effect
for continuous speech is significantly stronger
than that for isolated utterances. However, there
must be numerous context-dependent models
generated because of modeling the variations of
sounds and pronunciations. Furthermore, if the
parameters in those models are all distinct, the
total number of model parameters would be very
huge. To solve the problems above, the decision
tree state tying technique is used to reduce the

number of parameter, hence reduce the
computation complexity.
2. HMM

The HMM, which wuses probabilistic

functions of Markov chains to model random
processes, is a model of stochastic process. The
effectiveness of this modd class liesin its ability
to deal with non-stationarity that often appearsin
the observed data sequences. HMMs usually turn
out to be a good model for non-stationary process,
such as the sequence of the speech observation
Vectors.

2.1 Elementsof an HMM

An HMM can be characterized by the set of
parameters A 6, and B. We ligt al these
parameters as following to represent an HMM.

1. N, the number of states in the model. The
states are hidden in HMM, which have some
physical significance attached.

2. M, the number of mixtures per state for the
output probability distribution of a
continuous probability density function (pdf)
of Gaussian mixtures.

3. The dtate transition probability distribution
A=[a], where

a ;=RG,=jla,_ =) 1£/JEN

4. The observation probability distribution in
state j, B = { (0)}, where
b,(0)=HRolq, =), 1£ jEN.
5. The initid sate distribution 6 ={ & }
where
d=Pqg,=1), 1EIi£ N.

It can be seen from the above discussion
that a complete specification of a HMM requires
specification of two model parameters (NVand M),
and the specification of the three probability
measures A, B, and finally the initia state
distribution 6. For convenience, we indicate
the compl ete parameter set of the model by:

U=(A, & B)

2.2 ThreeBasiclssuesfor HMMs

In order to solve that the HMM can be used
in real-world applications, there are three basic
problems as follows:

Issue 1: Given the observation sequence O, and
a mode U, how do we efficiently
compute P(OJU), the probability of the
observation sequence given the model ?

Issue 2: Given the observation sequence O, and
the model U, how do we choose a

corresponding state sequence Q
which is optimal in some meaningful
sense?

Issue3: How do we adjust the model
parameters U = { A, &, B} to maximize
P(OjU)?

3. GCVHMM

The statistical speech models for each phone
unit of the speaker-independent (SI) recognition
system should be estimated to cover the spectral
variations in speech signals caused by
intra-speaker differences. Gulmezodlu, et al.
proposed a common vector approach (CVA) for
Sl isolated word recognition. In CVA, acommon
vector that represents common properties of one
specific spoken word is obtained by estimating a
common subspace. However, CVA needs the
impractical assumption that the training data
form a set of linearly independent vectors.

In this chapter, we generalize the CVA to
relax its constrain and propose a new extension
of HMM caled generalized common-vector-
based HMM (GCVHMM). There are two phases
in the GCVHMM, extraction of robust features
and estimation of HMM. In the first phase, a
generalized CVA is developed based on the
eigenanalysis of covariance matrix to extract an
invariant feature, called generalized common
vector (GCV). To relax the linearly independent
assumption in the original CVA, we divide the
eigenvalues of covariance matrix into two sets
such that all the eigenvalues of the first set are
greater than those of the second set. The common
vector is obtained by projecting feature vectors
on the subspace spanned by the eigenvectors
whose corresponding eigenvalues are in the
second set. In the second phase, the GCVs are
used for the estimation of continuous observation
densty in HMM and form the so-called
GCVHMM. In GCVHMM, in addition to the
original elements of a traditional HMM, a new
element, GCV transformation matrix, is added to
extract GCV from speech feature vectors. Finally,
a re-estimation algorithm based on Baum-Welch
method to estimate al the parameters of
GCVHMM isderived.

3.1 Structure of GCVHMM



In this thesis, a N date, left-to-right
continuous observation density HMM, denoted
as W, is considered. The initial probability for
dtate / is denoted by d;= PAlgp=14), 1 £i £ N, and
the transition probability from state / to state j by
&;= P(g=J | g=0) for 1 £i, j £ N. Denote

d={d}" and A={a,.};’j:1. For the

iJji=1 2/

calculation of the observation density in state /,
denoted as b(o), for observation o, the
generalized common vector of o, given the
matrix transformation of generalized common
vector isfirst extracted. Then b(o) = Ao | g=i),
1 £ /£ Nassumed to be a mixture of Gaussians
isthen given as

M
b(o) = é Ci,kbi,k(ot)’ 1E£/E£N
k=1

where M is the mixture number, ¢ is the
probability of mixture k in state /, and b;4(0) is
the gaussian distribution given by

1 3k L Y i)

(2p)° L ]

where D&=D-D, is the dimension of the extracted
GCV yik from o, yix is the GCV of o for
mixture k in state /, and L;, and h;, are the
covariance matrix and mean  vector
corresponding to mixture k in state
respectively. L; «is assumed to be diagonal, i.e.,
A ikl 0 0 u
s 0

b/‘k(ol) =
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so that |L;?k| =®>s:1, . The GCV y;;x from

1=1" ik,
o;for mixture kin state / is defined as

Vi = \/I,k,u,
where

. T
Vik = 8Yk1r Vikzs- Vo, B
is matrix transformation of generalized common
vector for mixture k in state /. For convenience
in the following derivation, we also define
hi,k = ‘/I,km,k
then we can write

Ziik = Yok~ h/,k = ‘/i,k(ot b mk)
Denote B={h}" andW={d, A, B}.

1
3.2 Reestimation algorithm for the
parameters of GCVHMM

For an observation sequence O= (04, Oy, ... ,
07) unobserved state sequence Q = (qu, Gu
G- ... , g7), and unobserved mixture component
sequence K = (k;, ko, , k7, the joint

probability density of AO, Q, K| W) is defined
as

P
P( O'Q’ K IVV) = d’?o O q?r—lvqr q?rvkrb%vkr (0[)
t=1

where T is the number of observation in O. It

follows that the likelihood of O given W has the
form

P(OIW) =84 & P(O.Q. KW
Q K

where the summations are over all possible state
sequences and mixture component sequences.

Given an observation sequence O, the
objective is to maximize AOW) over all
parametersin W. It is, however, difficult to solve
this problem by directly maximizing P(O|W)
over W. In this following, we shall use the EM
algorithm to estimate the parameters of HMM.
The EM agorithm is a two-step iterative
procedure. In the first step, caled the
expectation step (E step), we compute the
auxiliary function for the equation

AWW) =3 & RAQKIWIgRAQ KIW)

dalQal K

In the second step, called the maximization
step (M step), we find the value of W that
maximizes QW,W), i.e.,

W= argmax QW,W)

It has been shown that if QW,W) 3 Q(W,W),
then AIOW) 3 AOW). Therefore, iteratively
applying the E and M steps of equations
guarantees monotonic increase in the likelihood.
The iterations are continued until the increase in
the likelihood is less than some predetermined
threshold.

From the following decomposition:

log A(O,Q,K|W) =
T T T
logd, +a logd, , +al0gg, , +alogh . (@)
=1 =1 =1
it is straightforward to shown that Q(W,W) can
be decomposed into a sum of four auxiliary
functions:
N
QAW W) = Q,(Wd)+§ Q,[W{a ]
i=1

"

Jj=1

& Y Ny .
+a Q wfc,},_1+aa oW,
j=1 j=1 k=1
where
N
QWd)=a & POg, =i, K|Wlogd,
=1 K
N T
QW4 1=A8&RAq.=iq=)KIWiwd,
A K

o

T
o

Q¢ 1=48 RAq =jk=KWiloyG,

k==L



QWB,) =8 AQq, = j.k =k|Wlagh, ,(a)

Thisimplies that the four sets of parameters
can be independently maximized. The
maximization results of first three auxiliary
functions are

_ P0G, =i1W
T PoIW)

L 8.,P04. =i = jIW
Y AL Pog.,=ilw
A& P0G, =jk=kW
ijk—

& M0, =jIW
Substituting the following decomposition
) D 1 . 1. —
logly, . (Q)=- E@)*"Zlow-w 1‘)' E%%’?TL%’Y Zak
Where
b = Vo (0 M)
for Iogbwt(o) and differentiating it with

[qr ¢ )/t‘h L/

respectto m, and s, ', weobtain
& . POg, = j.k = kIWx,
& P04, = j k= kIW
e BP0z k=KW,

=
: & P04 = jik = kIW
where z,,, isthe thelementof z .

my =

which is

To obtain the solution for v,

the thelement of v, ,:
(VikrVus) =L 1EIE£D,

theconstrams
2a r/k/(< J.k, 11 /kl> 1)
/=1
areaddedto Q,(W,b,,). Then,
QMW b, _s
1.I-Vj,k,/
we obtain
R/kV/k/ e/k//k/
where

R.=aRaq=jk=kIW@- m)g- m)"

It can be said that R, characterizes the
variations for mixture kin state j so that it plays
the same role as F x in previous section. Thus,
the eigenvectors of R corresponding to the
eigenvalues of smallest Ds; are selected to
constitute the GCV matrix transformation for
mixture kin state j.

4. A Hybrid Decision Tree

To overcome this limitation, we have
introduced the integrated generalized common
vector approach into the conventional HMM in
chapter 3, which is better at speaker-independent
recognition because of its ability to extract
common invariant features over different
speakers. Besides modeling acoustic parameters,
most of the variations are due to consistent
contextual effects in practice. Therefore, we can
focus our research on context-based information.
Since the co-articulatory effect for continuous
speech is significantly stronger than that for
isolated utterances, it is important to study the
modeling of context-dependent “subword” units.
Here, “subword” means “Mandarin digits’,
which indicate syllable equally.

The most important reason why we use the
method of decision tree state tying is that the
total number parameters in al modes is
prohibitively large. The computation complexity
to train all these parameters would be intolerable.
To reduce the total number of model parameters,
one approach is to reduce the number of
parameters in each model. The way of using
continuous HMMs with tied parameters,
parameter tying, reduces the parameter count
while maintaining the model accuracy, and is
popularly used in most ASR systems.

After incorporating common vector features
mentioned in Chapter 3 with the structure of
decision tree state tying, the decision tree
algorithm should be modified as follows:

1. Locate a (small) set of left context digit
syllable questions manually.

2. For each center Mandarin digit syllable
p:
m Estimate al left context digit syllable
GCVHMMs.

m For each Markov state k in the model
topology, classify all the k-th output
distribution in all left context digit
syllables using a binary tree.

a)Put all the training data in k-th state
of all left context digit syllables into
the root node.

b)Classify all the training data by each
question in the question set. Using the
clustered data to generate Gaussian
distribution of common features by
the method of GCVHMM introduced
in Chapter 3. Then compute the
likelihood of the parent node from
Equation (4.15):

o

[=- %gDs(lﬂn(Zp))+|n(‘|-,-,k‘)8’éf. a; ii(1)

where Dsand L,  represent the

dimension and the covariance matrix



of common vector after the method
of GCVHMM.

c¢) Split the node by each question in the
question set. By splitting, some
training data that come from the left
context digit syllables which answer
yes to the question go to the yes-child
node; those which answer no to the
no-child node. Then calculate the
every likelihood of two child nodes.
Finally, compute the likelihood
increment by each question in the
guestion set.

d)Find the best question in the question
set by computing the most likelihood
increment for each of the newly
created children.

e)Go to step b) unless some stop-
growing criteriais met.

GCVHMM of digit syllable "0"

5. Mandarin
Experiments

Digits  Recognition

The speech data used in our experiments are
the set of continuous Mandarin digits. We use a
speech database from 20 persons including 10
males and 10 females. Each one speaks 10 times
of each Mandarin digit. The recording sampling
rateis 8kHz and stored as 16-hit integer.

5.1 Balanced Corpora

Digit | Decision Tree State Tying GCVHMMs|  HMM

Model Based on GCVHMMs
0 91.667 83.333 58.333
1 61.111 27.778 0.000
2 61.538 53.846 76.923
3 100.000 89.474 100.000
4 83.333 50.000 50.000
5 100.000 94.118 100.000

6 60.000 30.000 0.000
7 100.000 46.154 7.692
8 86.667 40.000 60.000
9 100.000 69.231 23.077
Aver age| 84.432 58.393 47.603
5.2 Unbalanced Corpora
Digit Decision Tree
State Tying Based (GCVHMMs|  HMM
Model on GCVHMMs
0 75.610 65.854 53.659
1 66.522 76.087 28.261
2 72.727 54.545 54.545
3 84.091 56.818 90.909
4 93.182 100.000 88.636
5 81.818 97.727 95.455
6 75.556 51.111 80.000
7 95.455 100.000 95.455
8 93.182 77.273 90.909
9 90.909 95.455 95.455
Average 82.9052 77.487 76.419
5.3 Balanced Tree
Digit B_Igl anced Decision | Unbalanced Decision
Model ree State Tying | Tree State Tying Based
Based on GCVHMMs on GCVHMMs
0 75.610 51.220
1 66.522 34.783
2 72.727 63.636
3 84.091 68.182
4 93.182 86.364
5 81.818 77.273
6 75.556 64.444
7 95.455 88.636
8 93.182 77.273
9 90.909 90.909
Average 82.9052 70.272

6. Conclusion

To consider the contextual effects of
continuous speech that play an important role in
Mandarin, we combine a method of the Decision
Tree State Tying with GCVHMM. The balanced
corpora mean that the count of females and
males in the database are equivalent entirely. It
shows 26.039% improvement when we replace
GCVHMM with Decison Tree State Tying
based on GCVHMM. Nevertheless, if the
database is wunbalanced, the performance
comparison shows 5.4% improvement by
employing the Decision Tree State Tying based



on GCVHMM. To overcome leaving the major
part of models behind in the unbalanced tree, we
modify the tree as the balanced tree. We can find
that the results show 12.6332% improvement by
employing the balanced decision tree state tying
based on GCVHMM. This technique is utilized
as a helpful and friendly man-machine interface
in the environment inside the intelligent
vehicles.
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