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Abstract
A new speech recognition technique that is 

used in the environment inside the intelligent 
vehicles is proposed for continuous 
speech-independent recognition of spoken 
Mandarin digits. One popular tool for solving 
such a problem is the HMM-based one-state 
algorithm. However, two problems existing in 
this conventional method prevent it from 
practical use on our target problem. One is the 
lack of a proper selection mechanism for robust 
acoustic models for speaker-independent 
recognition. The other is the information of 
intersyllable co-articulatory effect in the acoustic 
model is contained or not. In this paper, we adopt 
the principle component analysis (PCA) 
technique to solve these two problems. At first, a 
generalized common-vector (GCV) approach is 
developed based on the eigenanalysis of 
covariance matrix to extract an invariant feature 
over different speakers as well as the acoustical 
environment effects and the phase or temporal 
difference. The GCV scheme is then integrated 
into the conventional HMM to form the new 
GCV-based HMM, called GCVHMM, which is 
good at speaker- independent recognition. For the 
second problem, context-dependent model is 
done in order to account for the co-articulatory 
effects of neighboring phones. It is important 
because the co-articulatory effect for continuous 
speech is significantly stronger than that for 
isolated utterances. However, there must be 
numerous context-dependent models generated 
because of modeling the variations of sounds and 
pronunciations. Furthermore, if the parameters in 
those models are all distinct, the total number of 
model parameters would be very huge. To solve 
the problems above, the decision tree state tying 
technique is used to reduce the number of 
parameter, hence reduce the computation 
complexity.

1. Introduction

Automatic speech recognition (ASR) is 
useful as a form of input. It is especially useful 
when someone's hands or eyes are busy. It also 

allows people with handicaps such as blindness 
or palsy to use computers. Especially for the 
environment inside the intelligent vehicles, 
automatic speech recognition is a helpful and 
friendly man-machine interface for the drivers of 
the intelligent vehicles. Because of the potential
applications mentioned above, we attempt to 
develop a speaker-independent automatic speech 
recognition system for Mandarin digits.

In recent years, most automatic speech 
recognition technologies were based on the 
so-called Hidden Markov Models (HMM) and 
used the connected word pattern matching 
method to achieve continuous speech 
recognition. There exists many methods to solve 
the connected word pattern-matching problem. 
One well-known method is called one-state 
algorithm. There are two problems in continuous 
speech recognition based on the one-stage 
algorithm, one is how to build a reference model 
to characterize the acoustic feature of speech 
signal, the other is the information of 
intersyllable co-articulatory effect in the acoustic 
model is contained or not.

Due to the first problem mentioned above, 
the one-state algorithm is sensitive to the 
reference patterns, and thus the choice of
reference patterns is important. One well-known 
and widely used statistical method of 
characterizing the spectral properties of the 
frames of a speech pattern is the HMM approach. 
The better the HMM models the acoustic signals, 
the better performance the one-state algorithm 
can achieve. One of the most important issues of 
speaker-independent (SI) speech recognition 
system is the estimation of robust speech model 
over different speakers. The statistical speech 
models for each phone unit of the recognition
system should be estimated to cover the spectral 
variations in speech signal caused by 
intra-speaker differences. In this thesis, we 
propose a new framework of HMM called 
generalized common-vector-based HMM
(GCVHMM) as a reference for speaker-
independent automatic speech recognition.

For the second problem, context-dependent 
model is done in order to account for the 
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co-articulatory effects of neighboring phones. It 
is important because the co-articulatory effect 
for continuous speech is significantly stronger 
than that for isolated utterances. However, there 
must be numerous context-dependent models 
generated because of modeling the variations of 
sounds and pronunciations. Furthermore, if the 
parameters in those models are all distinct, the 
total number of model parameters would be very 
huge. To solve the problems above, the decision 
tree state tying technique is used to reduce the 
number of parameter, hence reduce the 
computation complexity.

2. HMM

The HMM, which uses probabilistic 
functions of Markov chains to model random 
processes, is a model of stochastic process. The
effectiveness of this model class lies in its ability 
to deal with non-stationarity that often appears in 
the observed data sequences. HMMs usually turn 
out to be a good model for non-stationary process, 
such as the sequence of the speech observation 
vectors.

2.1 Elements of an HMM

An HMM can be characterized by the set of 
parameters A, δ , and B. We list all these 
parameters as following to represent an HMM.

1. N, the number of states in the model. The 
states are hidden in HMM, which have some 
physical significance attached.

2. M, the number of mixtures per state for the 
output probability distribution of a 
continuous probability density function (pdf) 
of Gaussian mixtures.

3. The state transition probability distribution 
A = [a i,j], where

( | ), 1 , ., 1a P j i i j Ni j t tθ θ= = = ≤ ≤−
4. The observation probability distribution in 

state j, B = {bj(ot)}, where
.1),|()( NjjoPob tttj ≤≤== θ

5. The initial state distribution δ ={ δ i} 
where

.1),( 0 NiiPi ≤≤== θδ
It can be seen from the above discussion 

that a complete specification of a HMM requires 
specification of two model parameters (N and M), 
and the specification of the three probability 
measures A, B, and finally the initial state
distribution δ. For convenience, we indicate 
the complete parameter set of the model by:

Ù =(A, ä, B)

2.2 Three Basic Issues for  HMMs

In order to solve that the HMM can be used
in real-world applications, there are three basic 
problems as follows:

Issue 1: Given the observation sequence O, and 
a model Ù , how do we efficiently 
compute P(O|Ù ), the probability of the 
observation sequence given the model?

Issue 2: Given the observation sequence O, and 
the model Ù , how do we choose a 

corresponding state sequence Θ̂ , 
which is optimal in some meaningful 
sense?

Issue 3: How do we adjust the model 
parameters Ù  = {A, ä, B} to maximize 
P(O|Ù )?

3. GCVHMM

The statistical speech models for each phone 
unit of the speaker-independent (SI) recognition 
system should be estimated to cover the spectral 
variations in speech signals caused by 
intra-speaker differences. Gülmezoðlu, et al. 
proposed a common vector approach (CVA) for 
SI isolated word recognition. In CVA, a common 
vector that represents common properties of one 
specific spoken word is obtained by estimating a 
common subspace. However, CVA needs the
impractical assumption that the training data 
form a set of linearly independent vectors.

In this chapter, we generalize the CVA to 
relax its constrain and propose a new extension 
of HMM called generalized common-vector-
based HMM (GCVHMM). There are two phases 
in the GCVHMM, extraction of robust features 
and estimation of HMM. In the first phase, a 
generalized CVA is developed based on the 
eigenanalysis of covariance matrix to extract an 
invariant feature, called generalized common 
vector (GCV). To relax the linearly independent 
assumption in the original CVA, we divide the 
eigenvalues of covariance matrix into two sets 
such that all the eigenvalues of the first set are
greater than those of the second set. The common 
vector is obtained by projecting feature vectors 
on the subspace spanned by the eigenvectors 
whose corresponding eigenvalues are in the 
second set. In the second phase, the GCVs are
used for the estimation of continuous observation 
density in HMM and form the so-called 
GCVHMM. In GCVHMM, in addition to the 
original elements of a traditional HMM, a new 
element, GCV transformation matrix, is added to 
extract GCV from speech feature vectors. Finally, 
a re-estimation algorithm based on Baum-Welch 
method to estimate all the parameters of 
GCVHMM is derived.

3.1 Structure of GCVHMM
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In this thesis, a N state, left-to-right 
continuous observation density HMM, denoted 
as Ω, is considered. The initial probability for 
state i is denoted by δi = P(θ0 = i), 1 ≤ i ≤ N, and 
the transition probability from state i to state j by
a i,j = P(θt=j | θt-1=i) for 1 ≤ i, j ≤ N. Denote 

{ } 1

N
i i

δ δ
=

= , and { }, , 1

N

i j i j
A a

=
= . For the 

calculation of the observation density in state i, 
denoted as bi(ot), for observation ot, the 
generalized common vector of ot given the 
matrix transformation of generalized common 
vector is first extracted. Then bi(ot) = P(ot | θt=i), 
1 ≤ i ≤ N assumed to be a mixture of Gaussians 
is then given as

( ), ,
1

( ) ,  1
M

i t i k i k t
k

b o c b o i N
=

= ≤ ≤∑
where M is the mixture number, ci,k is the 
probability of mixture k in state i, and bi,k(o) is 
the gaussian distribution given by

1
, , , , , , ,

1
( ) ( )

2
,

,

1
( )

(2 )

t i k i k i k t i k i k

s

y y

i k t
D

i k

b o e
η η

π

−− − Λ −
=

Λ

where Ds=D-Dg is the dimension of the extracted 
GCV yt,i,k from ot, yt,i,k is the GCV of ot for
mixture k in state i, and Λi,k and ηi,k are the 
covariance matrix and mean vector 
corresponding to mixture k in state i, 
respectively. Λi,k is assumed to be diagonal, i.e.,

, ,1

, ,2
,

, ,

0 0
0 0

0 0
s

i k

i k
i k

i k D

σ
σ

σ

 
 
 Λ =  
 
  

L
L

M M O M
L

so that -1 1
, , ,1

sD
i k i k ll

σ −
=

Λ = ∏ . The GCV yt,i,k from 

ot for mixture k in state i is defined as

, , , , tt i k i k oy V=

where

, , ,1 , ,2 , ,, ,...,
s

T

i k i k i k i k DV v v v =  
is matrix transformation of generalized common 
vector for mixture k in state i. For convenience 
in the following derivation, we also define

, , ,i k i k i kVη µ=
then we can write

( ), , , , , , ,t i k t i k i k i k t i kz y V oη µ= − = −

Denote { } 1

N
i i

B b
=

=  and Ω = {δ, A, B}.

3.2 Reestimation algor ithm for  the 
parameters of GCVHMM

For an observation sequence O = (o1, o2, …  , 
oT) unobserved state sequence Θ = (θ0, θ1,
θ2, …  , θT), and unobserved mixture component
sequence K = (k1, k2, …  , kT), the joint 

probability density of P(O, Θ, K | Ω) is defined 
as

( )
0 1 , , ,

1

, , | ( )
t t t t t t

T

k k t
t

P O K a c b oθ θ θ θ θδ
−

=

Θ Ω = ∏
where T is the number of observation in O. It
follows that the likelihood of O given Ω has the 
form

( )| ( , , | )
K

P O P O K
Θ

Ω = Θ Ω∑∑
where the summations are over all possible state 
sequences and mixture component sequences.

Given an observation sequence O, the
objective is to maximize P(O|Ω) over all 
parameters in Ω. It is, however, difficult to solve 
this problem by directly maximizing ( | )P O Ω
over Ω. In this following, we shall use the EM 
algorithm to estimate the parameters of HMM. 
The EM algorithm is a two-step iterative 
procedure. In the first step, called the 
expectation step (E step), we compute the 
auxiliary function for the equation

  

( , ') ( , , | )log ( , , | ')
all all K

Q P O K P O K
Θ

ΩΩ = Θ Ω Θ Ω∑∑
In the second step, called the maximization 

step (M step), we find the value of Ω' that 
maximizes Q(Ω,Ω'), i.e.,

'
arg max ( , ')Q

Ω
Ω = Ω Ω

It has been shown that if Q(Ω,Ω') ≥ Q(Ω,Ω), 
then P(O|Ω') ≥ P(O|Ω). Therefore, iteratively 
applying the E and M steps of equations 
guarantees monotonic increase in the likelihood. 
The iterations are continued until the increase in 
the likelihood is less than some predetermined 
threshold.

From the following decomposition:

log ( , , | ')P O KΘ Ω =

0 1

' ' ' '
, , ,

1 1 1

log log log log ( )
t t t t t t

T T T

k k t
t t t

a c b oθ θ θ θ θδ
−

= = =

+ + +∑ ∑ ∑
it is straightforward to shown that Q(Ω,Ω') can 
be decomposed into a sum of four auxiliary 
functions:

{ }'
, 1

1

( , ') ( , ') [ , ]
i

N N

a i j j
i

Q Q Q aδ δ
=

=

Ω Ω = Ω + Ω∑

{ }'
, 1

1

[ , ]
j

N M

c j k k
j

Q c
=

=

+ Ω∑ '
,

1 1

( , )
N M

b j k
j k

Q b
= =

+ Ω∑∑
where

'
0

1

( , ') ( , , | ) log
N

i
i K

Q P O i Kδ δ θ δ
=

Ω = = Ω∑∑

{ }' '
, 1 ,1

1 1

[ , ] ( , , , | )log
i

N TN

a i j t t i jj
j t K

Q a P O i j K aθ θ−=
= =

Ω = = = Ω∑∑∑

{ }' '
, ,1

1 1

[ , ] ( , , | )log
j

M TM

c j k t t j kk
k t

Q c P O j k k cθ
=

= =

Ω = = = Ω∑∑
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' '
, ,

1

( , ) ( , , | )log ( )
T

b j k t t j k t
t

Q b P O j k k b oθ
=

Ω = = = Ω∑
This implies that the four sets of parameters 

can be independently maximized. The 
maximization results of first three auxiliary
functions are

0( , | )
( | )i

P O i
P O

θ
δ

= Ω
=

Ω

11
,

11

( , , | )

( , | )

T
t tt

i j T
tt

P O i j
a

P O i

θ θ

θ
−=

−=

= = Ω
=

= Ω
∑

∑
1

,

1

( , , | )

( , | )

T
t tt

j k T
tt

P O j k k
c

P O j

θ

θ
=

=

= = Ω
=

= Ω
∑

∑
Substituting the following decomposition

' ' 1 ' ' 1 '
, , , , , , ,

1 1
log ( ) (2 ) log( )

2 2 2t t t t t t t t t t

Ts
k t k t k k t k

D
b o z zθ θ θ θ θπ − −=− + Λ − Λ

where
' ' ' ' '
, , , , , , ,( )

t t t t t t t t t tt k t k k k t kz y V oθ θ θ θ θη µ= − = −

for ,log ( )
t tk tb oθ  and differentiating it with 

respect to '
,j kµ  and ' 1

, ,j k lσ − ,, we obtain

1
,

1

( , , | )

( , , | )

T
t t tt

j k T
t tt

P O j k k o

P O j k k

θ
µ

θ
=

=

= = Ω ⋅
=

= = Ω
∑
∑

' 2
, , ,1

, ,

1

( , , | )

( , , | )

T
t t t j k lt

j k l T
t tt

P O j k k z

P O j k k

θ
σ

θ
=

=

= = Ω ⋅
=

= = Ω
∑

∑
where '

, , ,t j k lz is the lth element of '
, ,t j kz .

To obtain the solution for '
, ,j k lv , which is 

the lth element of '
,j kv :

' '
, , , ,, 1,  1j k l j k l sv v l D= ≤ ≤

the constrains

' '
, , , , , ,

1

1
( , 1)

2

sD

i k l j k l j k l
l

v vρ
=

−∑
are added to '

,( , )b j kQ bΩ . Then,
'
,

'
, ,

( , )
0b j k

j k l

Q b
v

∂ Ω
=

∂

r

we obtain

, , , , , , ,j k j k l j k l j k lR v vε=
where

' '
, , ,

1

( , , | )( )( )
T

T
j k t t t j k t j k

t

R P O j k k o oθ µ µ
=

= = = Ω − −∑
It can be said that Rj,k characterizes the 

variations for mixture k in state j so that it plays 
the same role as ΦX in previous section. Thus, 
the eigenvectors of Rj,k corresponding to the 
eigenvalues of smallest Ds are selected to 
constitute the GCV matrix transformation for 
mixture k in state j.

4. A Hybr id Decision Tree

To overcome this limitation, we have 
introduced the integrated generalized common 
vector approach into the conventional HMM in 
chapter 3, which is better at speaker-independent 
recognition because of its ability to extract 
common invariant features over different 
speakers. Besides modeling acoustic parameters, 
most of the variations are due to consistent 
contextual effects in practice. Therefore, we can 
focus our research on context-based information. 
Since the co-articulatory effect for continuous 
speech is significantly stronger than that for 
isolated utterances, it is important to study the 
modeling of context-dependent “subword” units. 
Here, “subword” means “Mandarin digits”, 
which indicate syllable equally.

The most important reason why we use the 
method of decision tree state tying is that the 
total number parameters in all models is 
prohibitively large. The computation complexity 
to train all these parameters would be intolerable. 
To reduce the total number of model parameters, 
one approach is to reduce the number of 
parameters in each model. The way of using 
continuous HMMs with tied parameters, 
parameter tying, reduces the parameter count 
while maintaining the model accuracy, and is 
popularly used in most ASR systems.

After incorporating common vector features 
mentioned in Chapter 3 with the structure of 
decision tree state tying, the decision tree 
algorithm should be modified as follows:

1. Locate a (small) set of left context digit 
syllable questions manually.

2. For  each center  Mandar in digit syllable 
p:
n Estimate all left context digit syllable 

GCVHMMs.
n For each Markov state k in the model 

topology, classify all the k-th output 
distribution in all left context digit 
syllables using a binary tree.
a)Put all the training data in k-th state 

of all left context digit syllables into 
the root node.

b)Classify all the training data by each 
question in the question set. Using the 
clustered data to generate Gaussian 
distr ibution of common features by 
the method of GCVHMM introduced 
in Chapter  3. Then compute the 
likelihood of the parent node from 
Equation (4.15):

( )( ) ( ) ( ),
1

1 ln 2 ln
2 S i k i

i t

L D tπ = − + + Λ ⋅ ϒ  ∑∑

where DS and ,i kΛ  r epresent the 

dimension and the covar iance matr ix 
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of common vector  after  the method 
of GCVHMM.

c)Split the node by each question in the 
question set. By splitting, some 
training data that come from the left 
context digit syllables which answer  
yes to the question go to the yes-child 
node; those which answer  no to the 
no-child node. Then calculate the 
every likelihood of two child nodes. 
Finally, compute the likelihood 
increment by each question in the 
question set.

d)Find the best question in the question 
set by computing the most likelihood 
increment for  each of the newly 
created children.

e) Go to step b) unless some stop-
growing cr iter ia is met.

Third States of * - 0

Question 1

Question 2 Question 3

Yes

YesYes No

No

No

4 - 0
5 - 0
9 - 0

silence - 0
6 - 0
8 - 0

1 - 0
3 - 0
7 - 0

0 - 0
2 - 0

4 - 0

1 - 0

8 - 0

etc. ....

Third States of 0Second States of 0First States of 0 Fourth States of 0 Fifth States of 0

GCVHMM of digit syllable "0"

5. Mandar in Digits Recognition 
Exper iments

The speech data used in our experiments are 
the set of continuous Mandarin digits. We use a 
speech database from 20 persons including 10
males and 10 females. Each one speaks 10 times 
of each Mandarin digit. The recording sampling 
rate is 8kHz and stored as 16-bit integer.

5.1 Balanced Corpora

Digit 

Model

Decision Tree State Tying

 Based on GCVHMMs
GCVHMMs HMM

0 91.667 83.333 58.333

1 61.111 27.778 0.000

2 61.538 53.846 76.923

3 100.000 89.474 100.000

4 83.333 50.000 50.000

5 100.000 94.118 100.000

6 60.000 30.000 0.000

7 100.000 46.154 7.692

8 86.667 40.000 60.000

9 100.000 69.231 23.077

Average 84.432 58.393 47.603

5.2 Unbalanced Corpora

Digit

 Model

Decision Tree 
State Tying Based 
on GCVHMMs

GCVHMMs HMM

0 75.610 65.854 53.659

1 66.522 76.087 28.261

2 72.727 54.545 54.545

3 84.091 56.818 90.909

4 93.182 100.000 88.636

5 81.818 97.727 95.455

6 75.556 51.111 80.000

7 95.455 100.000 95.455

8 93.182 77.273 90.909

9 90.909 95.455 95.455

Average 82.9052 77.487 76.419

5.3 Balanced Tree

Digit 
Model

Balanced Decision 
Tree State Tying 

Based on GCVHMMs

Unbalanced Decision 
Tree State Tying Based 

on GCVHMMs

0 75.610 51.220

1 66.522 34.783

2 72.727 63.636

3 84.091 68.182

4 93.182 86.364

5 81.818 77.273

6 75.556 64.444

7 95.455 88.636

8 93.182 77.273

9 90.909 90.909

Average 82.9052 70.272

6. Conclusion

To consider the contextual effects of
continuous speech that play an important role in 
Mandarin, we combine a method of the Decision 
Tree State Tying with GCVHMM. The balanced 
corpora mean that the count of females and 
males in the database are equivalent entirely. It 
shows 26.039% improvement when we replace 
GCVHMM with Decision Tree State Tying 
based on GCVHMM. Nevertheless, if the 
database is unbalanced, the performance 
comparison shows 5.4% improvement by 
employing the Decision Tree State Tying based 
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on GCVHMM. To overcome leaving the major 
part of models behind in the unbalanced tree, we 
modify the tree as the balanced tree. We can find 
that the results show 12.6332% improvement by 
employing the balanced decision tree state tying 
based on GCVHMM. This technique is utilized 
as a helpful and friendly man-machine interface 
in the environment inside the intelligent 
vehicles.
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