行政院國家科學委員會補助專題研究計畫成果報告 ※※※※※※※※※※※※※※※※※※※※※ ※ ※

※ 介電液 FC-72 在垂直微小渠道的兩相熱流模擬(2/2) ※

※

▓

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

計畫類別:□個別型計畫 □整合型計畫 計畫編號:NSC-90-2212-E-009-046 執行期間:90年8月1日至 91年7月31日

計畫主持人: 盧定昶 教授

共同主持人:

計畫參與人員:陳文忠 交通大學機械工程研究所 研究生

本成果報告包括以下應繳交之附件:

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

Ш出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

執行單位:交通大學機械工程學系

中華民國 91 年 8 月 8 日

## 介電液 FC-72 在垂直微小渠道的兩相熱流模擬

The Simulation of Two Phase Flow of Dielectric Fluid FC-72 in Vertical Micro

# Channels

計畫編號: NSC 90-2212-E-009 -071 執行期限: 90 年 8 月 1 日至 91 年 7 月 31 日 主持人: 盧定昶 交通大學機械工程學系 教授 共同主持人: 計畫參與人員: 陳文忠 交通大學機械工程研究所 研究生

一. 摘要

本計畫首先探討介電液 FC-72 在小間隙 間的飽和池沸騰現象。在實驗中,加熱片上 方有一壓克力板,兩者形成間隙(gap),由 所輸入的熱通量(q")及測量到的過熱度 ( $\Delta$ T)畫出沸騰曲線。間隙的大小(S)有 2.0mm、1.5mm、1.0mm、0.5mm與無間隙(開 放式),另外加熱片的角度( $\Theta$ )有0°、45° 與90°,因此本實驗共有15組數據。實驗目 的在於比較間隙大小與加熱片角度兩者對沸 騰曲線的影響。

從實驗結果觀察到較小的間隙在小熱通 量時有較佳的熱傳係數( $\mathbf{h} = \mathbf{q}''/ \triangle T$ ),但在 較高熱通量與  $\Theta$ 等於 0°時,較大間隙會有較 好的熱傳係數,也有較高的臨界熱通量。 $\Theta$ 等於 45°及 90°, S = 2.0 mm 與 1.5mm 時,熱 傳係數及臨界熱通量皆趨近或高於開放式。 而間隙的大小在  $\Theta$ 等於 45°及 90°時對熱傳係 數的影響不如在  $\Theta = 0°$ 時來得大。

#### Abstract

The project is devoted to study the saturated pool boiling phenomena of dielectric fluid FC-72 in small gaps • The experimental data including heat flux q" and overheat  $\Delta T$ of the heating surface are used to produce boiling curves • An acrylic plate is located above the heating surface to form a gap with widths of four sizes -  $2.0 \cdot 1.5 \cdot 1.0$  and 0.5 mm along with an unconfined condition • There are three different angles ,  $\Theta$  , relative to horizontal of the heating surface at  $0^{\circ} \cdot 45^{\circ} \cdot$  and  $90^{\circ} \circ$  The influences of both the size of gaps and the inclination angles of the heating surface on the boiling curves are investigated in this experiment •

It is observed that heat transfer coefficients are higher in smaller gaps when the heat flux is low  $\circ$  When it comes to the conditions of higher heat fluxes at horizontal heating surface , higher heat transfer coefficients and critical heat fluxes (CHF) happen at larger gaps  $\circ$  While  $\Theta$  is 45° and 90° and S equals 2.0 and 1.5 mm, heat transfer coefficients and CHFs approach to or rise higher than those of the unconfined condition  $\circ$  In general, the influences of gaps are greater when  $\Theta = 0^{\circ}$  than those when  $\Theta$  equals 45° and 90°  $\circ$ 

# 二. 計畫緣由與目的

直接沉浸式的冷卻是目前被認為最有效 的冷卻方法之一,由於許多高功率的電子裝 置體積極小,因此研究小間隙的熱傳便日趨 重要,而介電液應用於電子系統的散熱被認 為十分有效。最早使用浸泡式液冷的記錄可 追溯到1940年代的軍用電子系統,近年來數 位電腦的散熱要求不斷提高,傳統的氣體冷 卻方式已無法滿足,因此直接液冷可說是必 然趨勢。

1980 年代末期的超級電腦如 Cray-2 與 ETA-10,使用氟碳介電液 FC-77 的沸騰來 達到較高的散熱能力。目前被廣泛所知的介 電液有 3M 公司生產的 FC-72,FC-87, FC-40,FC-84 等。用這種液體的核沸騰區域 中的良好熱傳特性,會比使用空氣作強制對 流在效果上好許多。

在許多高密度的平行印刷電路板之間的 散熱問題多屬於本論文所欲討論的微小間隙 的池沸騰機構,小間隙的池沸騰亦常見於各 種熱傳設備,因爲熱傳現象不同於一般開放 式的池沸騰,所以有進一步研究的必要。而 間隙大小與平板角度是這個問題的兩大重要 參數,故探討此二參數與池沸騰熱傳的關係 將有很好的參考價值。

## 三. 文獻回顧

Katto 與 Yokoya [1,2]以飽和水為工作 流體研究小間隙的沸騰熱傳 。 間隙大小 S 介於 0.1mm ~ 10mm ,加熱面為水平銅片, 結果發現間隙 S = 0.2~0.5mm時 ,熱傳係數 在較小熱通量時高於開放式的池沸騰熱傳, 熱通量較高時,小間隙間的熱傳則低於開放 式的池沸騰,如果間隙距離為 0.1mm 時,臨 界熱通量不會存在於某一特定的位置。

Katsuta 與 Nagata [3]用兩片垂直銅片, 其中一片為加熱片,工作流體為飽和水,來 進行池沸騰研究,發現間隙介於 1~2mm 時 有熱傳加強的效果。

Xia [4]以飽和 R-113 為工作流體,加熱 面為垂直陶瓷平板附著一層氧化矽,實驗觀 察間隙大小對池沸騰熱傳的影響,發現當間 隙大於 3mm 時,流動方式類似在垂直管道向 上流動的強制熱對流沸騰。當間隙小於 3mm 時,熱傳效果較開放式的池沸騰佳,但臨界 熱通量 (CHF)會降低。

Nowell, Bharnani 和 Jaeger [5] 以 FC-72 為工作流體,垂直有鰭片的加熱片來 研究間隙大小對沸騰熱傳的影響,間隙大小 為 6、4、2、1 mm,發現間隙大小為 1 mm 時,熱傳效果接近開放式的池沸騰,其餘皆 較差,文中並以虹吸效應(thermosyphon) 解釋實驗結果。

Misale,Guglielmini,Frogheri 與 Bergles [6]以兩種鰭片的加熱面及以FC-72 為工作流 體,以間隙 2mm 與 0.5mm 來研究小間隙時 的沸騰熱傳,實驗發現加熱面呈垂直時,間 隙大小對沸騰熱傳無太大影響,而加熱面為 水平時,小間隙會對沸騰熱傳有負面影響, 且臨界熱通量也會下降。

關於本實驗,較詳細的資料見碩士論文 [7]。

四. 實驗設備

本研究所使用的工作流體為介電液 FC-72在一大氣壓下的沸點為 56.6℃,臨界 溫度為178℃。

整個實驗系統由加熱系統、測試容器、 冷凝系統、環控恆溫系統及數據擷取系統五 大部分,如圖1所示。

所使用的加熱裝置(測試片)如圖2所 示。銅片面積為1cm ×1cm 厚度2mm的光 滑面,距底面1mm 處埋有兩根直徑0.5mm E-type 熱電偶,熱電偶量到的溫度T<sub>i</sub>須要以 傅立葉(Fourier)一維熱傳導定律修正至測 試片表面溫度Tw

$$T_{w} = T_{i} - \frac{QL}{kA}$$

L 為熱電偶至測試板面的距離。

由電源供應器可讀出熱通量(q"),再由 測試片表面溫度減去 FC-72 的飽和溫度而得 過熱度△T,以 q"及△T 即可畫出沸騰曲線。

五. 結果與討論

圖 3 是水平加熱面、四種間隙時的沸騰 曲線,在熱通量小於 20 kW/m<sup>2</sup>時,間隙 2.0mm 時的熱傳係數最差,超過 20 kW/m<sup>2</sup> 後,間隙 2.0 mm 時的熱傳係數成為最高者。 在圖 4 中可見在四種間隙時,直到臨界熱通 量之前,熱傳係數都高於開放式的。臨界熱 通量的大小順序為開放式、間隙 2.0 mm、間 隙 1.0 mm、間隙 1.5 mm 及間隙 0.5 mm,但 在間隙 0.5 mm、1.0 mm 與 1.5 mm 時臨界熱 通量的差距很小。開放式時的臨界熱通量遠 高於有間隙的臨界熱通量。

圖 5 是加熱面角度 45°,四種間隙與開放 式時的沸騰曲線,在熱通量低於 60 kW/m<sup>2</sup>, 間隙 0.5 mm 時的熱傳係數最高,間隙 1.5 mm 與 2.0 mm 時的熱傳係數皆高於開放式的, 而間隙 2.0mm 時的臨界熱通量還高於開放 式的。

圖 6 為加熱面角度 90°,四種間隙與開放 式時的沸騰曲線,趨勢大致與加熱面角度 45° 時的相似,但間隙 1.5 mm 與 2.0 mm 時的臨 界熱通量皆高於開放式的。

從這些結果可以歸納出,在小熱通量下,最小的間隙(0.5mm)有最好的熱傳係數,在較大的熱通量時,較大間隙有較好的熱傳係數, $\Theta=0^{\circ}$ 時,有間隙的臨界熱通量比開放式的低很多,而當 $\Theta=45^{\circ}$ 與90°時,當S=0.5與1.0mm,臨界熱通量雖然低於開放式的,但並不像水平加熱時被抑制得那麼低,當S=1.5mm與2.0mm時,臨界熱通量甚至趨近或高於開放式的。

Bonjour, Clausse, 與 Lallemand [8] 發現

氣泡的合併會使微液膜的範圍增加,熱傳係 數也相應的增加,如圖7所示,小間隙也許 能夠促進氣泡的合併,所以在小熱通量時會 有較高的熱傳係數,如圖8所示,但在高熱 通量時,小間隙會阻止流體的補充,因此熱 傳係數低於開放式的。

六. 計畫成果自評

此次實驗以觀察及比較小間隙間的池沸 騰熱傳,實驗資料可大致歸納出小間隙對池 沸騰的影響,對往後介電液 FC-72 在微小渠 道的流動沸騰實驗具有參考價值。本實驗的 進度達到要求,並妥善運用經費,沒有延期 及超支。

七.參考文獻

- [1] Katto. Y. and Yokoya, S., 1996. "Experimental Study of Nucleat Pool **Boiling** in Case of Making Interference-Plate Approach to the Heating Surface", Third International Heat Transfer Conference, pp.219-227.
- [2] Katto, Y.; Yokoyo, S. and Teraoka, K., 1977, "Nucleat and Transition Boiling in a Narrow Space between Two Horizontal, Parallel Disk Surfaces, Bull", JSME20, v.143, pp.638-643.
- [3] Katsuta, M. and Nagata, K., 1992, "Boiling Induced Heat Transfer Enhancement Using a Narrow Space", Proc.Eng, Fondation Conf, Pool and External Flow Boiling, pp.381-386.
- [4] Xia, C.; Guo, Z. and Hu, W., 1992, "Mechanism of Boiling Heat Transfer in Narrow Channels", in Proc, 28th Nat Heat Trans. Conf, pp.111-119.
- [5] Nowell, Jr.; R. M., Bhavnani; S. H. and Jaeger, R. C., 1995, "Effect of Channel Width on Pool Boiling from a Microconfigured Heat Sink", IEEE Trans. Comp., Packaging, and Manufact Technol, v.18, No. 3, pp. 534-539.
- [6] Misale, M.; Guglielmini, G.; Frogheri, M. and Bergles, A. E., 1999, "FC-72 Pool Boiling from Finned Surfaces Placed in a Narrow Channel: Preliminary Results", Heat and Mass Transfer, v.34, pp.449-452.
- [7] 陳文忠, 2002, "Study of Pool Boiling of Dielectric Fluid FC-72 Between Two Plates", 國立交通大學機械工程研究所碩

士論文.

[8] Bonjour, Jocelyn, Clausse, Marc and Lallemand, 2000, "Experimental Study of The Coalescence Phenomenon during Nucleate Pool Boiling ", Experimental Thermal and Fluid Science, v.20, pp. 180-187.



圖 1. 系統圖



圖 2. 加熱裝置



3









圖 8. 小間隙促進氣泡合併







СНЕ



