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Abstract

A consistent co-rotational total Lagrangian formulation of second order beam
theory is presented for the nonlinear analysis of three-dimensional elastic Euler beam
with large rotations but small strains. The beam structure is divided into severa
segments. A set of segment coordinate system is constructed at the current
configuration of the deformed beam segment. The deformations, equilibrium
equations and constitutive equations of the beam segment are defined in the segment
coordinates. The principle of virtual work and the consistent linearization of the
fully geometrically nonlinear beam theory is used to derive the equilibrium equations
and condgtitutive equation of the beam segment. The nonlinear coupling among
bending, twisting, and stretching deformations is considered by retaining all terms up
to the second order and some terms of third order of the deformation parametersin the



equilibrium equations and constitutive equations of the second order beam theory.
Numerical examples are presented to demonstrate the accuracy and effectiveness of
the proposed second order beam theory.

Keywords. Beam, Geometrical Nonlinearity, Co-rotational Formulation, Virtua
Work Principle.



1 INTRODUCTION

Three-dimensional beams are very important structural elements in al type of engineering
systems. In many applications, these beams undergo finite rotations that require a nonlinear
formulation to their structural analysis. In order to capture correctly all coupling among
bending, twisting, and stretching deformations of the beam, the formulation of beam
equations might be derived by the fully geometrically non-linear beam theory [1].

The beam structure is divided into several segments. A set of segment coordinate system
is constructed at the current configuration of the deformed beam segment.  The deformation,
equilibrium equations and constitutive equations of the beam segment are defined in this
segment coordinates. The deformations of the beam segment are determined by the unit
extension of the centroid axis and the rotation of segment cross section coordinates, which are
rigidly tied to segment cross section, relative to the segment coordinate system. Three
rotation parameters proposed in [2] are used to describe the rotation of the segment cross
section coordinates.

The principle of virtual work and the consistent linearization [2] of the fully geometrically
nonlinear beam theory is used to derive the equilibrium equations and constitutive equation of
the beam. In order to consider the nonlinear coupling among bending, twisting, and stretching
deformations, the rotation parameters are retained up to the second order in the equilibrium
equations and constitutive equation of the beam segment. Thus, the beam theory proposed
here is called a second order beam theory. However, some third order terms, which may not
be negligible for some problems, are aso retained. Numerical examples are presented to
demonstrate the accuracy and effectiveness of the proposed second order beam theory.

2 NONLINEAR FORMULATION

2.1 Basic assumptions

In this study, The beam structure is divided into several segments. The following
assumptions are made in derivation of the beam segment behavior.

(1) The beam is prismatic and slender, and the Euler-Bernoulli hypothesisis valid.

(2) The cross section of the beam is doubly symmetric.

(3) The cross section of the beam does not deform in its own plane and strains within this
Cross section can be neglected.

(4) The out-of-plane warping of the cross section is the product of the twist rate of the beam
element and the Saint Venant warping function for a prismatic beam of the same cross
section.

(5 The deformation displacements and rotations of the beam segment are small.

(6) Thestrains of the beam are small.

In conjunction with the co-rotational formulation, assumption (5) can always be satisfied, if
the segment size is properly chosen.

2.2 Coordinate systems

In this paper, a co-rotational total Lagrangian formulation is adopted. In order to describe
the system, we define three sets of right handed rectangular Cartesian coordinate systems.
(1) A fixed global set of coordinates, X; (i =1, 2, 3) (see Fig. 1); the nodal coordinates,
displacements, rotations, the governing equations of the system are defined in this
coordinates.

(2) Segment cross section coordinates, X,-S (i1=1,2,3) (seeFig. 1).



(3) Segment coordinates, x; (/ = 1, 2, 3) (see Fig. 1); a set of segment coordinates is
associated with each segment, which is constructed at the current configuration of the
beam segment.

Fig.1 Coordinate systems. Fig.2 Rotation vector.

2.3 Rotation vector and rotation parameters

For convenience of the later discussion, the term ‘rotation vector' is used to represent a
finite rotation. Figure 2 shows that a vector b which as a result of the application of a
rotation vector fa is transported to the new position b. Therelation between b and b
may be expressed as [3]

b =cosfb + (1- cosf)(a*p) +sinf(a” b) (1)
where f isthe angle of counterclockwise rotation, and a is the unit vector along the axis

of rotation.
Let e; and e,S (7= 1, 2, 3) denote the unit vectors associated with the x; and x,S axes,

respectively. Here, the traid e,-s in the deformed state is assumed to be achieved by the
successive application of the following two rotation vectorsto thetraid e; [2]:

dn=qnn q: =gt (23)
where
n={0, &/ (@ +a5)"?, 0/(@ +a5)V*) @
={0,p, m3}
t={cosqp,q2,93} (%)



cosq, = (1- g% - q2)¥2 6)

G _ av9
G2 =-— o 3= ¢ (7,8)

in which n is the unit vector perpendicular to the vectors e; and ef , and t is the

tangent unit vector of the deformed centroid axis of the beam segment. Note that ef
coincides with t. g, is the inverse of cosq,. WS and w(s are the lateral
deflections of the centroid axis of the beam segment in the x, and Xxz directions,
respectively, and s isthe arc length of the deformed centroid axis.

Using Egs. (2)-(8), the relation between the vectors e; and e,S /=1, 2, 3) in the
segment coordinate system may be obtained as

e’ =[t,R1,R]e; = Re; 9)

where R isthe so-called rotation matrix. The rotation matrix is determined by q; (i =1, 2,
3). Thus, g; arecdled rotation parametersin this study.
Let 9={91,92,g3} bethe column matrix of rotation parameters, dq be the variation of

gq. The trad e,S (1 =1, 2, 3) corresponding to g may be rotated by a rotation vector
daf ={df,,df,df1} to reach their new positions correspondingto q +dq [2]. When g,
and g3 are much smaller than unity, the relationship between dg and of may be
approximated by [2]

¢l g3/2 -qg/20
d=5q 1 0 gof =T Y. (10)
eg, O 14

2.4 Kinematics of beam segment

The deformations of the beam segment are described in the current segment coordinate
system. From the kinematic assumptions made in this paper, the deformations of the beam
segment may be determined by the displacements of the centroid axis of the beam segment,
orientation of the cross section (segment cross section coordinates), and the out-of-plane
warping of the cross section. Let Q(Fig. 1) be an arbitrary point in the beam segment and P
be the point corresponding to @ on the centroid axis. The position vector of point Qin the
undeformed and deformed configurations may be expressed as

fo=xep + )& + 23 (11)
and
r=xc(9ey + U9ey + M(e3 +qy f + o5 + 23 (12)
where
Xc(9 = x+ U9 (13)

is the x; coordinate of point P, (9 is the displacement of point Pin the x; direction,
U9 and ws ae the latera deflections of point P in the x, and x3 directions



respectively as mentioned, sis the arc length of the deformed centroid axis measured from
node 1 to point P.

In this study, the Green strains are used for the measure of strain.  Using assumption 3, we
only consider the strain components eyq,e, and e3. If x y and zin Eqg. (11) are

regarded as the Lagrangian coordinates, the Green strain e1,6> and e;3 aregiven by [4]

1
el ZE(r,l;(r,x -1

_1 ¢
€12 —Er,xr,y

1
€13 =31 2 (14)
Using the chain rule for differentiation, r , in Eq. (14) may be expressed as

rx=rs(l+ep) (15)
s
=—-1 1
€o x (16)

where gy istheunit extension of the centroid axis.

X1

Fig.3 Free body of a portion of beam segment.
2.5 Equilibrium equations and constitutive equations

Here the equilibrium equations and constitutive equations of the beam segment are
derived by the virtual work principle in the current segment coordinate. It is
assumed that no external load is applied between the end points of the beam segment.
The generdlized displacements are chosen to be v, (/ = 1, 2, 3)
(th=u,up = v,u3=w), the displacements of the centerline in the x; directions,



q; (I=1, 2, 3), the rotation parameters, and g s, the twist rate of the centerline.
The generalized forces corresponding to u;, q;, andgy s are F; (/ =1, 2, 3), the

forces in the x; directions, M{ (i = 1, 2, 3), the generalized moments, and BY,

the generalized bimoment. Figure 3 shows a portion of the deformed centerline of

the beam segment and the generalized forces at sectionsaand b. From Eq. (10) and
the contragradient law [5], the relation between the conventional moment M; (/i =1,

2, 3), the moments about the x; axes, and the generalized moments MY may be

given by

M=T M9 (17)

where M ={M; M, M3} , Mq:{Mf My Mg}, and T ! is the

transpose of T1 givenin Eq. (10).

Consider infinitesimal generalized virtual displacements from the equilibrium
configuration, with components alj;, dg; (/=1, 2, 3), anddq, s as functions of the
arc length of the centerline, s The generalized forces at sections a and b are regarded
as the external forces for the free body shown in Fig. 3. The virtual work of the
external forces may be expressed by

, b
Mg :§F“ou +(|v| q)taq+BqdqlS§ (18)
a
F={F.F, Fs}
adu ={dw,du,,dus} ={du,dv,aw}
dq={dq.,dq, ,dqs} (19)

where []g denotes that the value of the term in brackets at the upper limit subtracts

the corresponding value at the lower limit.



The virtual work done by the internal stresses going through the virtual strains (that
corresponding to the imposed virtual displacements) for the free body shown in Fig. 3
may be expressed by

b
W = (S 110811 +S 12081 + S 130E13) AV (20)

where Vis the volume of the undeformed beam segment between section a and b,

dV=dAds/ (1+eg), dey; (j =1, 2, 3) are the variation of e; with respective

genearlized displacements. s1; (j = 1, 2, 3) are second Piola-Kirchhoff stresses.

For linear elastic material, the stress-strain relations are given by
S11= Eep1, S12=2Gep, S13=2Ge3 (21)
where Eisthe Young's modulus and Gis shear modulus.

The principle of virtual work requires that

d Wy = d Wey (22)

Substituting Egs. (14), (18)-(20), and (21) into Eq. (22), and equating the terms on
both sides of Eg. (22) corresponding to the same virtual generalized displacements
and their derivatives, we may obtain

Mfs: E(/y' /z)q2,5q3,s (23)

1
Mis+F = Al3+ 5 C,sh2,s
Fs=0, Fs=0, Fs=0

1 1 1
M{ + B = Eegl pth s + A1+ &)y s + 50283 5020l * El 4G5
1
Mg - E[(1+ 460) 1Az s+ (/y - 1)q1G3 s - 3Wyzq1,ssq3,s] + > Ca1, 493

1
Mg = E[(1+4ep)! 35+ (- 1 )T2,s - 3Wy0 &2, 5] - > G2

Mg,s' F3

(25)
(26-28)

(29)
(30)

(31)



Bq = Cl(1+ 4eo)q1,$ - 3EWqu2,5q3'5

S 1 S
A= E A+ e0) + 21 pals* ()35 + 1 855+ thssAm) + Cofs

where C= GJ isthetorsional rigidity, and C, = EA,,, isthewarping rigidity.

Equations (23)-(28) are equilibrium equations and Egs. (29)-(33) are constitutive
equations of the beam segment in the current segment coordinates. Note that
because al the terms up to the second order of the generalized displacements are
retained in Egs. (23)-(33), the beam theory proposed here is called second order beam
theory. However, some third order terms (the underlined terms in Egs. (24), (25),
and (29)), which may not be negligible for some problems, are also retained.

3. NUMERICAL EXAMPLES

Consider a cantilever beam subjected to end torsion T as shown in Fig . 4.
Because only the primary equilibrium path is considered, the ways of generating end
torsion are rendered irrelevant here. It is assumed that warping is free at both end
sections. Three cases of cross section are considered: (1) b=0.6mm, h=10mm,
(2) b=06mm, h=30mm. Therest geometry and material properties of the beam

ae L=240mm, Young's modulus E=71240 N/ mn? , and shear modulus

G=27190 N/ mn?.

It is observed that if V(9 =9 = g1 (5 =0 areassumed in Egs. (23)-(33), all

force and displacement boundary conditions may be satisfied, and only Egs. (26), (29),

and (33) are not trivial.
From F =0 at the free end, Egs. (26) and (33), and using the approximation

1+ g €y » 1 , one may obtains

_-1C 3
€0 _7(E+ I p)0is (34)

N

Substituting Eq. (34) and B =0 into Eq. (29), one may obtain

(32)

(33)
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The results for cases (1)-(2)are shown in Figs. (5)-(6).

discrepancy between curves A, B, and C are remarked for case (2).

1 )(El p+ Olgis

(35)

As can be seen, the
Thus the

underline term in Eq. (29) (or.Eq. (35))] may be required for reliable solutions.

X, V
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Fig. 4. Cantilever beam subjected to end torsion.
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Fig. 6. Torsion-twist rate curve (case 2).
4 CONCLUSIONS

A consistent co-rotational total Lagrangian formulation of second order beam
theory is presented for the nonlinear analysis of three-dimensional elastic Euler beam
with large rotations but small strains.

The beam structure is divided into several segments. A set of segment coordinate
system is constructed at the current configuration of the deformed beam segment.
The deformation, equilibrium equations and constitutive equations of the beam
segment are defined in the segment coordinates. In order to describe the orientation
of the beam cross section, a set of segment cross section coordinates associated with
each cross section of the beam segment is employed. Three rotation parameters are
used to describe the rotation of the segment cross section coordinates. In this paper
the deformations of the beam segment are determined by the unit extension of the
centroid axis and rotations of segment cross section coordinate systems relative to
segment coordinate system.

The principle of virtual work and the consistent linearization of the fully
geometrically nonlinear beam theory is used to derive the equilibrium equations and
constitutive equation of the beam segment. In order to consider the nonlinear coupling
among bending, twisting, and stretching deformations, al terms up to the second
order of the deformation parameters are retained in the equilibrium equations and
constitutive equations of the second order beam theory. However, some third order
terms, which may not be negligible for some problems, are also retained. Numerical
examples are presented to demonstrate the accuracy and effectiveness of the proposed
second order beam theory.
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