
中文摘要 
近年來的網路流量特性之量測研究顯示，真實網路封包序列 (Packet-Train) 流量具有

自我類似 (Self-Similar) 的特性。換句話說，封包序列的瞬時增減 (Bursty) 特性具有非常

長時程的統計相關性。這個觀察與分析的結果，正好與傳統使用的僅具有短時程統計相關

性之封包序列流量模式大不相同。並且，過去根植於傳統封包序列流量模式如波以松 
(Poisson) 與瞬時波以松 (Bursty Poisson)的分析與模擬結果，所得到的評估效能將會和此
裝置在真實網路上使用所得到的量測效能產生相當大的差異。在此三年的研究計畫中，我

們先探討現今網路之封包流量的長程相依特性是如何從原本的馬可夫模式的網路 
(Markov-Modeled Network Arrival) 中產生。在計畫的第二年，我們提出一個根據濾波器原

理所設計的類化封包訊務產生器，並且從理論上分析其類化性質。我們注意到網路量測封

包訊務的類化性質，雖然延續至超越目前工程技術可掌控的範圍，但終究會收斂為非類化

訊務。因此合成並使用一個類化性質延續至極限範圍的訊務來作為模擬依據是否為必要，

是一個值得商確的問題。基於此，另一種出發點為合成一個類化性質延續至所需要的範圍，

而極限時則呈現非類化性質的訊務似乎更合乎實際量測訊務的行為。我們所提出的方法不

僅程式相當簡單且符合以上的觀察需求，更要的是我們的模式也不會有另外兩個知名類化

訊務產生器(傅立業轉換模式、隨機中點取代模式)的兩個問題: (1)所產生的封包序列可能為

負整數；(2)需事先設定所需產生的封包量，換句話說，當所需要製造的封包序列長度改變

時，整個封包序列必需要重新產生。在計畫的第三年，我們首先將第二年的濾波器類化封

包訊務產生器，由有限時間脈衝響應 (FIR) 延伸到無限時間脈衝響應 (IIR) 的情況。然

後，我們對自我類化訊務模式在資訊理論 (Information Theoretic) 上的特性展開探討。我們

發現，我們提出的類化訊務產生器所生成的訊務在自相關函數 (Autocorrleation Function) 
上的長程相依性質與其在交互資訊 (Mutual Information) 的長程相依性質存在一個直接的

關係。 

 
關鍵詞：統計模式、自我類似特性、長時程相關性、訊務產生器、交互資訊 
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英文摘要 

Recent empirical studies have shown that the modern computer network traffic is much 
more appropriately modeled by long-range-dependent self-similar processes than traditional 
short-range-dependent processes such as Poisson. Hence, if long-range dependence is not 
considered when synthesizing experimental network traffic, it will lead to incorrect assessments 
of performance evaluation in network system. This arise the need of a well synthesizing trace 
with long-range dependence. 

In the first year of this 3-year project, we defined and subsequently analyzed the degree of 
self-similarity for Markov packet sources. In this second-year project term, we developed a 
filter-based self-similar traffic generator, and theoretically analyze its self-similar property. 
Notably, the true measured network traffic, although appearing self-similar beyond the range of 
engineering manageability, is still ultimately non-self-similar. Therefore, it may be arguable to 
synthesize and use an ultimate self-similar traffic for system performance evaluation. An 
alternative that generates a traffic that has the desired degree of self-similarity in a controlled 
range, and that becomes non-self-similar beyond may be closer to the true traffic behavior. As 
expected, our generator can fulfill the above need. Most importantly, our generator eliminates two 
of the problems of two other well-known self-similar traffic generators (Paxson-FFT and 
Random-Mid-Point): (1) the synthesized traffic may be negative; (2) the length of the synthesized 
traffic must be pre-specified; namely, for different length of the synthesized traffic, the entire 
traffic must be re-generated.  In the third-year project term, we extended the finite duration 
impulse response (FIR) filter-based self-similar traffic generator developed in the second year to 
the infinite duration impulse response (IIR) filter-based self-similar traffic generator.  Besides, 
we discuss the information theoretic characteristic of the self-similar traffic.  We found that the 
autocorrelation function and the mutual information of the traffic generated by the FIR 
filter-based self-similar traffic generator have a direct relationship. 
 
Keywords: Network Traffic Model, Self-Similarity, Long-Range Dependence, Traffic generator, 

Mutual Information 
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一、前言 

Recent empirical studies have demonstrated that the packet network traffic is actually 
self-similar in nature [1, 2]. Therefore, the analysis and simulations, as well as their implications, 
based on the traditional traffic models, such as Poisson, may no longer be applicable to such 
self-similar networks. This results in the need of a new research direction over packet networks. 

In early days, Poisson processes were commonly used as traffic models for packet network 
system. This was done under the premise that the traffic behavior in network system is similar to 
that in circuit-switch telephony system. Although the traffic behaviors of these two systems are 
both due to human behavior, the situation for the network system is more complicated because of 
its packet-switch nature. Other factors [3], such as network protocols, even further complicate the 
resultant traffic characteristic. 

The measurement studies in [2, 4, 5, 7, 8] have shown that the actual network traffics for 
different networks (e.g. Ethernet LAN, WAN, CCSN/SS7, ISDN, and VBR Video) are clearly 
distinguishable from the synthesized traffics by traditional Poisson or related models. Specifically, 
Leland and Wilson, who recorded hundreds of millions of Ethernet packets with recorded 

time-stamp accurate to within 100 s, compared the measured traffic data on Ethernet LAN at 
Bellcore with the Markovian modeled sequences for the same load [2]. They found that in 
contrast to traditional models, measured traffic varies over a wide range of time scales, and the 
predicted performance with traditional models as the input stream is quite different from the 
performance with measured data as the input stream. Therefore, for performance assessments and 
predictions of these network systems, a good model that emulates the long-range dependence of 
the measured data becomes necessary. A representative long-range-dependent model is the 
self-similar model. 

Self-similar processes were first introduced by Mandelbrot and his co-workers in 1968 [9, 
10, 11]. These processes were thereafter found applications in many fields, such as astronomy, 
chemistry, economics, engineering, mathematics, physics, statistics, etc. Recently, measurement 
studies have shown that the actual traffic from computer networks is long-range dependent [2, 4, 
5, 7, 8], and thus another new application of self-similar processes on network was initiated. 
Mandelbrot [12] characterizes the self-similarity as: “When each piece of a shape is 
geometrically similar to the whole, both the shape and the cascade that generates it are called 
self-similar.” 

Consider a wide-sense stationary real-valued stochastic process X  = {Xi}i=1,2,… with finite 
marginal mean  , marginal variance  2 , and autocorrelation function r k( ) . Let X(m) denote 

the m-averaged process of the original series, where X(m) = ( )(
1

mX , )(
2

mX ,…) and )(m
tX  = (Xtmm+1 

+ Xtmm+2 + … + Xtm) / m. Obviously, X(m) is also a wide-sense stationary stochastic process. 
Denote the autocorrelation function of X(m) by r(m)(k). Then we can introduce several definitions 
of self-similar processes as follows. 
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Definition 1.1 [13] A wide-sense stationary stochastic process X = {Xi}i=1,2,… is called exactly 

second-order self-similar with parameter H = 1 (β / 2), where 0 < β < 1, if either of the 
following conditions holds: 

(1) }121{
2

)( 222
2

HHH kkkkr 


, k =…, 1, 0, 1, 2,… 

(2) r km( ) ( ) = mkr )( , k =…, 1, 0, 1, 2,…, and m = 1, 2, …. 

Definition 1.2 [13] A wide-sense stationary stochastic process X = {Xi}i=1,2,… is called 

asymptotically second-order self-similar with parameter H = 1  (β / 2), where 0 < β < 1, if either 
of the following conditions holds:  

(1) }121{
2

)(lim 222
2

)( HHHm

m
kkkkr 




, k =…, 1, 0, 1, 2,…. 

(2) 1
)(

)(
lim 

   kL
kr

k
, where )(τL  is a slowly varying function, satisfying for any x  0, 

1)(/)(lim  LxL . 

The simplest self-similar process is the Fractional Gaussian Process, which has the 
autocorrelation function   2/|1||||1|)( 222 HHH kkkkr  . For other commonly used 

models including Fractional Autoregressive Integrated Moving-Average (FARIMA) Processes, 
see [10, 14, 15, 16]. 
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二、研究目的、方法、結果與討論 

2.1 Extensions of Self-Similarity to Markov Processes 

2.1.1 Motivations 

Among all researches on network self-similarity, determination of its cause seems the most 
essential. Without a right interpretation of incoming traffic statistics, the network designers may 
not be able to come up with a due scheme to accommodate such network sources. For example, if 
the self-similar nature of the network arrivals is a consequence of the existing network protocols, 
to examine the performance of a newly proposed replacement protocol in terms of a self-similar 
incoming traffic will become an unjustifiable circle. 

In [8], Paxson and Floyd found through the investigation of 24 network traces that 
user-initiated traffics, such as TELNET and FTP connection arrivals, are well-modeled as Poisson 
processes; however, protocol-involved packet arrivals, such as SMTP, NNTP and FTP data 
transfers, are better modeled using self-similar processes [17]. In addition, non-self-similar 
models such as Poisson are still the typical source models for circuited-switched 
telecommunication traffics [18], where the initiation and termination of a call are both controlled 
by the users. Although it is likely that there are multiple factors contributing to the self-similar 
behavior observed in real packet networks, the above observations seem to suggest the 
coincidence between the self-similarity phenomenon of aggregated traffics and the situation 
where the source (or end-point) protocols are involved in traffic generation. It is then nature to 
conjecture that the protocol-involved traffic generation, such as re-transmission, is perhaps one of 
the main causes for the self-similar statistics of overall incoming traffics. 

The previous conjecture is numerically substantiated by Peha [19]. In his work, he showed 

that even with the traditional Poisson packet arrival, a simple re-transmission mechanism makes 
the aggregated traffic appear self-similar over time scales of engineering interest. Moreover, he 
found that some conventional techniques intended to decrease the likelihood of congestion also 
have the effect of prolonging congestion when it does occur and reinforcing the appearance of 
self-similarity. This motivates us to seek a theoretical interpretation for his results. 

Along this research direction, we first found that his simple network scenario can be 
described through Markovians. Specifically, the network arrivals can be modeled as a stochastic 
function of the previous system state, where the system state parameterizes through the number 
of backlog packets in the system. From the knowledge of the current arrival and the previous 
network state comes the next network state. Since the state-dependent stochastic arrival function 
is assumed time-stationary, the system arrival is further simplified to a first-order Markov 
process. 

We then notice that there are two possible gaps between the Markovian techniques and the 
current self-similar definitions. First, in the conventional definitions of exact and asymptotic 
discrete-time self-similarities, (second-order) stationary is always assumed [13], where the 
autocovariance function is required to be a function of the time difference only. This is not always 
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the case even for the commonly used first-order Markov-modeled network arrival, and the 
autocovariance function is in general a function of both the absolute time and the time difference. 
Yet, simulations that aim at determining the self-similar parameter of the network arrivals, based 
on these second-order self-similar definitions, often implicitly assume that the possible 
non-stationary arrival behavior is only transient in time and can be negligible if the simulation 
data are collected after a sufficiently large initial time period. A likely mis-interpretation of the 
simulation data may therefore arise. 

Secondly, a Markov process can be made stationary by selecting a proper initial statistics. 
However, the most common initial state taken in system simulations is an empty backlog queue 
(more specifically, the number of backlog packets is initially set to zero). These two initial 
conditions often do not coincide. This may lead to a gap between the implication concluded from 
system simulations, and the analysis obtained through assuming stationary on Markovians, 
especially when the equilibrium initial probability is not asymptotic achievable in time from zero 
backlog queue. 

We therefore propose an extension definition of self-similarity to Markov processes by 
incorporating the prior probability as an argument. If the prior is taken to be the equilibrium 
initial distribution of the Markov process, our definition reduces to the conventional second-order 
self-similarity. As did by the conventional definition to second-order-stationary processes, the 
extension definition answers the main concern of self-similarity that whether the variability of a 
Markov-modeled network arrival can be smoothed out by block averaging. 

2.1.2 Main Results and Discussions 

Suppose that X1, X2, X3, … is a first-order Markov process with stationary transition 

probability ],[ ijpT where ),|Pr( 12 ijij xXxXp  and {x1, x2, x3, …} is the state space of 

the Markov process. We assume that the state space is either finite or countable. The tth order 

transition probability of 
1}{ iiX  is equal to tT . This implies that the autocovariance function 

for the initial probability 


 is 

,),( TTT xxxtb tt 
TXT    

where the capital letter “T” on superscript denotes the transpose operation, and X is a diagonal 

matrix with diagonal being the states x1, x2, … and Tx


=[ x1, x2, …]. It can be seen from the 
formula that the autocovariance function of a first-order Markov process depends on both the 
time difference and the prior probability on X1. We thus propose to define the asymptotic 
self-similarity for first-order Markov processes as follows. 

Definition 2.1.2.1 (Asymptotic self-similarity for Markov processes) A discrete-time first-order 
Markov process X1, X2, X3, … is asymptotic second-order self-similar with parameter H, where 
1/2  H  1, and prior 


, if 
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This formula can be reduced to a computable formula if the transition probability matrix is 

simple [20, Sec. 5.7], where T can be decomposed into T = SS1, and the superscript “1” 
represents the matrix inverse operation, and  is the diagonal matrix with diagonals being the 
eigenvalues of T, and the columns of S are the eigenvectors of T. For example, a two-state 
Markov process will yield 
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where hij is the component of XSSH 1 , locating at ith row and jth column, and v is the second 
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component of TS . We can then examine the degree of asymptotic self-similarity of such a 
Markov process as: 
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where a = Pr{X2=x2|X1=x1} and b = Pr{X2=x1|X1=x2}. With the above formulas, we conclude that 
the variation of the block-average of the Markov process with simple transition probability matrix 
asymptotic vanishes in block size, and the prior does not affect the degree of asymptotic 
self-similarity but highly affect the time-finite self-similarity. 
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2.2. On the Generator of Network Arrivals with Self-Similar 
Nature 

2.2.1 Motivation 

Whether a communication system is well operated or not resides on its reliability in 
communication quality from the user point of view. To illustrate, the current wired telephone 
system has been held in high esteem because it provides users reliable circuit-switch-based 
connections. In order to ensure the reliability of a system, a certain number of testing is a must-do 
before its deployment. These tests must be properly conducted so that the system performance 
after deployment can be predictable. This leads to the need of a synthesizing experimental traffic 
trace that well approximates the true traffic, possibly encountered in practice. As an example, the 
well-known Erlang B and Erlang C formulas, derived from the Markovian models, successfully 
characterize the user behaviors by accurately predicting the overall call blocking and queuing 
probability. We therefore realize the significance of a traffic model for system testing. 

Several approaches have been proposed for synthesizing long-range dependent self-similar 
traffic data. In [21], Paxson synthesized self-similar traffic data by means of traffic spectrum 
fitting to fractional Gaussian noise. Lau, et al, [6] proposed a so-called random midpoint 
displacement algorithm to generate a self-similar network trace. We then noted two drawbacks of 
adopting these approaches. First, the required length of a traffic data should be determined prior 
to the generation of the traffic data; hence, when a longer traffic sequence is required, one needs 
to go through the entire process of data synthesization to obtain it. In other words, the traffic data 
cannot be generated in an on-the-fly fashion. In addition, their traffic generators may produce 
negative integers, unreasonable for any packet train arrival. Most importantly, the true measured 
network traffic, although appearing self-similar beyond the range of engineering manageability, is 
still ultimately non-self-similar. Therefore, it may be arguable to synthesize and use an ultimate 
self-similar traffic for system performance evaluation. An alternative that generates a traffic that 
has the desired degree of self-similarity in a controlled range, and that becomes non-self-similar 
beyond may be closer to the true traffic behavior. This leads us to develop a new approach that 
can compensate these drawbacks. 

2.2.2 A Filter-Based Self-Similar Traffic Generator 

The key idea of our generator is based on power spectrum fitting. Let Sy(w) denote the 
power spectrum of the discrete random process Y[n] obtained by passing the random process X[n] 
with power spectrum Sx(w) through a filter with transfer function H(w). Then Sy(w) = |H(w)|2 
Sx(w). As a result, if we let the input X[n] be i.i.d., and also design a filter whose transfer function 
satisfies that |H(w)|2 approximates the power spectrum of self-similar traffics, then the filter 
output straightforwardly become self-similar. 

The autocovariance function of an exactly second-order self-similar process with self-similar 
parameter H is given by 

]|1|||2|1)[|2/( 222 HHH kkkc   

7 



for some constant c > 0; thus, its power spectrum FH(w) is 




 

k
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for   w . By taking the major term with k = 0, and replacing, inside the summand, |w| by 
|1| jwe , we obtain Hjw

H ecwF 21|1|)(   for   w . Hence, the problem is reduced 

to find a good filter for Poisson i.i.d. input with mean  to yield 
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Apparently, by taking jwez   into the formula, 
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Now let us examine the effect of such a filter-based self-similar traffic generator. The impulse 
response of the filter is equal to )]5.0()1(/[)5.0(][  HnHnnh  for 0n , where 

)( represents the Euler gamma function. 

As h[n] is an infinite series, which is impractical in implementation, we limit its window 
size to W, i.e., h[n] is forced zero for n > W. Denote the variance of m-aggregated series with 
average window m and truncation window being W by Cm(0;W). Figure 1 illustrates the relation 

between log[Cm(0;103)] and log[m]. We found that for 0  log10[m]  log10[W], the straight line 
with slope 2H2 fits the curve of log[Cm(0;103)] against log[m]. The resultant H’ at the filter 
output is listed in Tab. I. From these data, we discovered that when the average window m is less 
than or equal to the truncated window W, the resultant H’ tends to be a little smaller than the 

target H, although the deviation, defined as (H’H)/H, is acceptably small in all cases. As a result, 
the degree of self-similarity is more accurate for smaller H. 

For the case of m > W, Cm(0;W) can be represented by AH(W)m1 BH(W)m2, and thus 
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Accordingly, the degree of self-similarity is determined by the ratio where O(·) is the big-O 

notation. 

Besides, we can also establish that if we wish to obtain a resultant H’  (0.5, 1) (close to the 
target H) up to the average window m’ > W, then it requires that 
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This indicates that the output self-similarity for the truncated model can be extended up to 
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provided ideally that H’ = H. The above inequality, together with m’ > W, gives that 

 ,
12

2
2

5.1
)5.0( 21 HWO

H
HH

WH 











  

contradicting to W > 0. We then conclude that as long as exact self-similarity is concerned (i.e., 
H’=H), to extend the output self-similarity up to the truncated window is impossible. From Fig.1, 
we further show by numerical that even if H’ is allowed to be a little smaller than H, the 
conclusion remains. 

2.2.3 Conclusions 

In this section, we proposed a new model for self-similar traffic sythesization, based on the 
filter theory. This model is long range dependent with adjustable levels of bustiness and 
correlation. The model is parsimonious in its number of input parameters. Specially, it only 
depends on three parameters: H is the self-similar parameter, which controls the burstiness and 

autocorrelation of the synthesized traffic,  defines the mean of the synthesized traffic and W 
determines not only the length of the filter but also the valid aggregation size of self-similar 
nature. Though filter length W limits the valid aggregation size of self-similarity, this 
phenomenon turns out to match the measured behavior of true network traffic, where the 
self-similar nature only lasts beyond a practically manageable range, but disappears as the 
considered aggregated window is much further extended. Other advantages of this model are that 
this filter-based model can synthesize traffic on the fly and always generate non-negative integers 
to represent network arrivals. 

We verify the validity of our filter-based model through the mathematical analysis of its 
variance-time relation and statistics tests of V-T plot, R/S plot and periodogram plot (cf. table II). 
And we conclude that our model guarantee to synthesize self-similar traffic with high degree of 
accuracy in terms of self-similar parameter, H. 
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Table I. The resultant H’ versus the targeted H. Deviation = (H’H)/H. 

Window Length = 104 

Targeted H Resultant H’  Deviation 

  E

  

  

  

  

  

 
Table II. H used versus H resultant. 

Window Length = 104 
H 

used 
H resultant 
 (V-T Plot) 

H resultant 
 (R/S Plot) 

H resultant 
(Periodogram) 

0.5001 0.4913099 0.5423777 0.5149618 
0.55 0.5243788 0.5839482 0.5433228 
0.6 0.5661478 0.6248291 0.5953569 
0.7 0.6860798 0.6991949 0.6902056 
0.8 0.7558080 0.7792713 0.7968477 
0.9 0.8662405 0.8784192 0.8822255 

 

 

Figure 1. Variance-Time Analysis for W = 103. The slope of the blue line is equal to 2H 

2 for m  W, and 1 for m > W. 
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2.3. On the mutual information function of the self-similar 
traffic 

2.3.1 Main Results 

(A) Preliminary 

A stochastic process is wild-sense stationary (WSS) if the marginal mean and the 
autocorrelation function are invariant to a time shift. A stochastic process is asymptotic 
second-order self-similar if its autocorrelation function decreases with power law (Boris 
Tsybakov and Nicolas D. Georganas [13]). In general, it seems no significant 
information-theoretic meaning could be found for the asymptotic second-order self-similar 
process. However, we found that the mutual information between two different instant values of 
the asymptotic second-order self-similar process also decreases with power law if it is generated 
by our filter type generator. Besides, we also show that the mutual information between two 
different instant values of any binary-valued WSS or any Gaussian process is about half the 
square of the autocorrelation coefficient. 

(B) Nearly Independent 

Two random processes X1, X2, … , Xn and Y1, Y2, … , Yn are called nearly independent if 
when n goes to infinity, the correlation coefficient of Xn and Yn approach to zero, and Xn and Yn 
are almost independent, i.e., 
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where ρn is the correlation coefficient of Xn and Yn, that is, 
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(C) Mutual information of two different instant samples 

Proposition 1: For two nearly independent random processes X1, X2, …, Xn and Y1, Y2, …, 
Yn , the mutual information of Xn and Yn are 

 22

2
1

);( nnnn oYXI   . 

The proof is omitted here. 

(D) Mutual information of a sequence of two Gaussian random variables 

If X1, X2, … , Xn and Y1, Y2, … , Yn are two nearly independent random processes, and each 
(Xn, Yn) are two jointly Gaussian random variables, the mutual information of Xn and Yn are [2], 
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If Xn is asymptotic second-order self-similar Gaussian process with parameter H = 1  (β / 2), 0 < 
β < 1, and Yn= Xn+m, then 
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(E) Mutual information between two outputs of a filter 

In last two years, we proposed a filter based method to generate an asymptotically 
self-similar traffic, which not only generates self-similar traffic on the fly but also fits the 
required self-similar Hurst parameter, H. The impulse response of the filter is equal to 

)]5.0()1(/[)5.0(][  HnHnnh  for 0n , where )(  represents the Euler gamma 

function defined as 
 

0

1][ dtetn tn , and the transfer function of the filter is 

HjwewH  5.0)1()( . When an uncorrelated wide sense stationary sequence Z[n] is inputted, we 
have showed that the filter output X[n] becomes asymptotically second-order self-similar and its 
correlation function b(n) is power-law decreasing. Note 0][ nh  for 0n . Define a filter 
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for 01  iM , and 0][ ip  for 1 Mi or 0i . If an i.i.d. sequence Z[n] is inputted to 

the filter p[i], and the output sequence is  
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(F) Mutual information of a sequence of two binary-valued random variables 

If X1, X2, … , Xn and Y1, Y2, … , Yn are two binary-valued random processes, and each (Xn, Yn) 
are two binary-valued random variables, the mutual information of Xn and Yn are,  
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where hb(.) is the binary entropy function, },{ nX XE
n
  },{ nY YE

n
 and 

)}.)({(
nn YXn yxEr    If rn approaches zero as n goes to infinity, then we have 

.2/);( 2
nnn YXI   In particular, if Xn is any binary-valued asymptotic second-order 

self-similar process with parameter H = 1  (β / 2), where 0 < β < 1, then 
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is also power law decreasing. 

2.3.2 Concluding Remarks and Future Work 

We already show that the mutual information between two different instant values of the 
asymptotic second-order self-similar process also decreases with power law if it is nearly 
independent. We also illustrate three different nearly independent sequences, i.e., the output of 
our filter type self-similar traffic generator with any i.i.d. inputs, the self-similar Gaussian process, 
and the binary-valued asymptotic second-order self-similar process. However, the mutual 
information between two aggregated traffic is still unsolved which is a challenging future work. 
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四、研究成果自評 

The study focus on three topics: (1) Discuss how the long-range dependence emerges from 
current Markov-modeled network arrival; (2) Synthesize the self-similar traffic; (3) The 
information theoretic characteristic of the self-similar traffic. We basically follow up the main 
plan of the project, and accomplished three main results: (1) Show the existence of time-finite 
self-similarity phenomenon and its definition for Markov-modeled network; (2) Propose and 
analyze a real-time, positive valued self-similar traffic generator; (3) Determine that the mutual 
information of several self-similar traffics are all power law decreasing. The results of the study 
are currently prepared for the submission to the IEEE Transaction on Information Theory. 
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