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Recent empirical studies have shown that the modern computer network traffic is much
more appropriately modeled by long-range-dependent self-similar processes than traditional
short-range-dependent processes such as Poisson. Hence, if long-range dependence is not
considered when synthesizing experimental network traffic, it will lead to incorrect assessments
of performance evaluation in network system. This arise the need of a well synthesizing trace
with long-range dependence.

In the first year of this 3-year project, we defined and subsequently analyzed the degree of
self-similarity for Markov packet sources. In this second-year project term, we developed a
filter-based self-similar traffic generator, and theoretically analyze its self-similar property.
Notably, the true measured network traffic, although appearing self-similar beyond the range of
engineering manageability, is still ultimately non-self-similar. Therefore, it may be arguable to
synthesize and use an ultimate self-similar traffic for system performance evaluation. An
alternative that generates a traffic that has the desired degree of self-similarity in a controlled
range, and that becomes non-self-similar beyond may be closer to the true traffic behavior. As
expected, our generator can fulfill the above need. Most importantly, our generator eliminates two
of the problems of two other well-known self-similar traffic generators (Paxson-FFT and
Random-Mid-Point): (1) the synthesized traffic may be negative; (2) the length of the synthesized
traffic must be pre-specified; namely, for different length of the synthesized traffic, the entire
traffic must be re-generated. In the third-year project term, we extended the finite duration
impulse response (FIR) filter-based self-similar traffic generator developed in the second year to
the infinite duration impulse response (IIR) filter-based self-similar traffic generator. Besides,
we discuss the information theoretic characteristic of the self-similar traffic. We found that the
autocorrelation function and the mutual information of the traffic generated by the FIR
filter-based self-similar traffic generator have a direct relationship.

Keywords. Network Traffic Model, Self-Similarity, Long-Range Dependence, Traffic generator,
Mutual Information
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Recent empirical studies have demonstrated that the packet network traffic is actually
self-similar in nature [1, 2]. Therefore, the analysis and simulations, as well as their implications,
based on the traditional traffic models, such as Poisson, may no longer be applicable to such
self-similar networks. This results in the need of a new research direction over packet networks.

In early days, Poisson processes were commonly used as traffic models for packet network
system. This was done under the premise that the traffic behavior in network system is similar to
that in circuit-switch telephony system. Although the traffic behaviors of these two systems are
both due to human behavior, the situation for the network system is more complicated because of
its packet-switch nature. Other factors [3], such as network protocols, even further complicate the
resultant traffic characteristic.

The measurement studies in [2, 4, 5, 7, 8] have shown that the actual network traffics for
different networks (e.g. Ethernet LAN, WAN, CCSN/SS7, ISDN, and VBR Video) are clearly
distinguishable from the synthesized traffics by traditional Poisson or related models. Specifically,
Leland and Wilson, who recorded hundreds of millions of Ethernet packets with recorded
time-stamp accurate to within 100 us, compared the measured traffic data on Ethernet LAN at
Bellcore with the Markovian modeled sequences for the same load [2]. They found that in
contras to traditional models, measured traffic varies over a wide range of time scales, and the
predicted performance with traditional models as the input stream is quite different from the
performance with measured data as the input stream. Therefore, for performance assessments and
predictions of these network systems, a good model that emulates the long-range dependence of
the measured data becomes necessary. A representative long-range-dependent model is the
self-similar model.

Self-similar processes were first introduced by Mandelbrot and his co-workers in 1968 [9,
10, 11]. These processes were thereafter found applications in many fields, such as astronomy,
chemistry, economics, engineering, mathematics, physics, statistics, etc. Recently, measurement
studies have shown that the actual traffic from computer networks is long-range dependent [2, 4,
5, 7, 8], and thus another new application of self-similar processes on network was initiated.
Mandelbrot [12] characterizes the self-similarity as. “When each piece of a shape is
geometrically similar to the whole, both the shape and the cascade that generates it are caled
self-smilar.”

Consider a wide-sense stationary real-valued stochastic process X = {X}iz12.. with finite
marginal mean u, marginal variance o2, and autocorrelation function r(k). Let X™ denote

the m-averaged process of the original series, where X™ = (X™ , X™ yand X™ = (Xunme1

2

+ Ximome2 + ... + Xen) / m. Obviously, X™ is also a wide-sense stationary stochastic process.
Denote the autocorrelation function of X™ by r™(k). Then we can introduce several definitions
of self-similar processes as follows.



Definition 1.1 [13] A wide-sense stationary stochastic process X = {Xi}i=12,.... Is called exactly
second-order self-smilar with parameter H = 1- (8 / 2), where 0 < g < 1, if either of the
following conditions holds:

2
(1) r(k) =%{|k+]f“ ~ 2k 4k -1} k=...,-1,0,1,2,...
@ r™=r(kym?*,k=...,-1,0,1,2,...,andm=1, 2, ....
Definition 1.2 [13] A wide-sense stationary stochastic process X = {X}i=12.. is caled

asymptotically second-order self-similar with parameter H=1 — (5 / 2), where 0 < < 1, if either
of the following conditions holds:

2
() limr™ (k) =%{|k+]jZH — 2k +k -1} k=...,-1,0,1,2,...

()] Iim& =1, where L(z) isaslowly varying function, satisfying for any x > O,
koo L(7)x kK

lim__ L(xx)/L(x) =1.

The simplest self-similar process is the Fractional Gaussian Process, which has the
autocorrelation function r(k):(|k+1|2H — |k F* +|k—1|2H)/2. For other commonly used
models including Fractional Autoregressive Integrated M oving-Average (FARIMA) Processes,
see[10, 14, 15, 16].
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2.1 Extensions of Self-Similarity to M arkov Processes

2.1.1 Motivations

Among all researches on network self-similarity, determination of its cause seems the most
essential. Without a right interpretation of incoming traffic statistics, the network designers may
not be able to come up with a due scheme to accommodate such network sources. For example, if
the self-similar nature of the network arrivals is a consequence of the existing network protocols,
to examine the performance of a newly proposed replacement protocol in terms of a self-similar
incoming traffic will become an unjustifiable circle.

In [8], Paxson and Floyd found through the investigation of 24 network traces that
user-initiated traffics, such as TELNET and FTP connection arrivals, are well-modeled as Poisson
processes, however, protocol-involved packet arrivals, such as SMTP, NNTP and FTP data
transfers, are better modeled using self-similar processes [17]. In addition, non-self-similar
models such as Poisson are ill the typical source models for circuited-switched
telecommunication traffics [18], where the initiation and termination of a call are both controlled
by the users. Although it is likely that there are multiple factors contributing to the self-similar
behavior observed in real packet networks, the above observations seem to suggest the
coincidence between the self-similarity phenomenon of aggregated traffics and the situation
where the source (or end-point) protocols are involved in traffic generation. It is then nature to
conjecture that the protocol-involved traffic generation, such asre-transmission, is perhaps one of
the main causes for the self-similar statistics of overall incoming traffics.

The previous conjecture is numerically substantiated by Peha [19]. In his work, he showed
that even with the traditional Poisson packet arrival, a simple re-transmission mechanism makes
the aggregated traffic appear self-similar over time scales of engineering interest. Moreover, he
found that some conventional techniques intended to decrease the likelihood of congestion also
have the effect of prolonging congestion when it does occur and reinforcing the appearance of
self-similarity. This motivates usto seek atheoretical interpretation for his results.

Along this research direction, we first found that his simple network scenario can be
described through Markovians. Specifically, the network arrivals can be modeled as a stochastic
function of the previous system state, where the system state parameterizes through the number
of backlog packets in the system. From the knowledge of the current arrival and the previous
network state comes the next network state. Since the state-dependent stochastic arrival function
is assumed time-stationary, the system arrival is further simplified to a first-order Markov
process.

We then notice that there are two possible gaps between the Markovian techniques and the
current self-similar definitions. First, in the conventional definitions of exact and asymptotic
discrete-time self-similarities, (second-order) dationary is aways assumed [13], where the
autocovariance function is required to be a function of the time difference only. Thisis not aways

3



the case even for the commonly used first-order Markov-modeled network arrival, and the
autocovariance function is in general a function of both the absolute time and the time difference.
Yet, simulations that aim at determining the self-similar parameter of the network arrivals, based
on these second-order self-similar definitions, often implicitly assume that the possible
non-stationary arrival behavior is only transient in time and can be negligible if the simulation
data are collected after a sufficiently large initial time period. A likely mis-interpretation of the
simulation data may therefore arise.

Secondly, a Markov process can be made stationary by selecting a proper initial statistics.
However, the most common initial state taken in system simulations is an empty backlog queue
(more specifically, the number of backlog packets is initially set to zero). These two initial
conditions often do not coincide. This may lead to a gap between the implication concluded from
system simulations, and the analysis obtained through assuming stationary on Markovians,
especially when the equilibrium initial probability is not asymptotic achievable in time from zero
backlog queue.

We therefore propose an extension definition of self-similarity to Markov processes by
incorporating the prior probability as an argument. If the prior is taken to be the equilibrium
initial distribution of the Markov process, our definition reduces to the conventional second-order
self-similarity. As did by the conventional definition to second-order-stationary processes, the
extension definition answers the main concern of self-similarity that whether the variability of a
Markov-modeled network arrival can be smoothed out by block averaging.

2.1.2 Main Results and Discussions

Suppose that X;, Xp, X3, ... is a first-order Markov process with stationary transition
probability T =[p;],where p; =Pr(X,=x;[X,;=x),and {x, X, X3, ...} is the state space of
the Markov process. We assume that the state space is either finite or countable. The tth order
transition probability of {X.}”*, isequal to T'. This implies that the autocovariance function
for theinitial probability 7 is

b(t,7) =7 XT'X—X"77 T'X,
where the capital letter “T” on superscript denotes the transpose operation, and X is a diagonal
matrix with diagonal being the states xy, X, ... and X' =[ Xy, Xz, ...]. It can be seen from the
formula that the autocovariance function of a first-order Markov process depends on both the

time difference and the prior probability on X;. We thus propose to define the asymptotic
self-similarity for first-order Markov processes as follows.

Definition 2.1.2.1 (Asymptotic self-similarity for Markov processes) A discrete-time first-order
Markov process X, Xz, X3, ... is asymptotic second-order self-smilar with parameter H, where
1/2<H<1, andprior 7, if
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m bmj (O,ﬁ:) —
i== b, (0,7)

for me{1,23...}.

With the above definition, a nature query for a Markov process is "Does there exist a

justifiable sufficient condition on the transition matrix T and prior 7 under which the Markov

process becomes self-similar?' The question can be answered by obtaining the formula of
bm(0,7), i.e,

i=l j=0

This formula can be reduced to a computable formula if the transition probability matrix is
simple [20, Sec. 5.7], where T can be decomposed into T = SAS™, and the superscript “~1”
represents the matrix inverse operation, and A is the diagonal matrix with diagonals being the
eigenvalues of T, and the columns of S are the eigenvectors of T. For example, a two-gate

Markov process will yield
m-1 m 0
il _qm -1
(ZT j_ o A4S
1= 1-4

and
v(1- ™)
TV =T | ey T 1-2 -1
[;(T Y ar T j—(s ) v(l-A")  v(d-2A%") S
1-2 1-4°
and
m(m-1) m 1-A
[mlml_l_jx_l_ij: My 2 hul(l—l (1—1)2J 1
& 5 hﬂ(lml_ 1—/1m2j hzz/{ft(l—?t";)_mflmj
—A (1-2) 1-1) 1-2
and
m(m-1) v( m  1-A j
mindd [N W 2 1-1 (1—),)2 .
(gg(T)mT j—(S) w1y o m 1 s?,
1-2  (1-A)? -2 (1-»2)

where hjj is the component of H =S™XS, locating at ith row and jth column, and v is the second
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component of S'7 . We can then examine the degree of asymptotic self-similarity of such a
Markov process as:

HmnWQAQﬁ):{Q p>1
M- 0, 0<pB<]
and
2
limm-b, (0,7) = E[x?] - (& t)
imm-b, 0.) = E[ ] T

, 2ab(l-a-b)(x - %,)’
(a+hb)®
2(ar, —bm,)? (X, —X,)?
~ (2-a-b)(a+b)®
_ 2(arr, —bm,)(@x, +bx)(X, — X,)
(a+b)® ’
where a = Pr{ Xo=xo|X1=x1} and b = Pr{Xo=x31|X1=x2} . With the above formulas, we conclude that
the variation of the block-average of the Markov process with simple transition probability matrix
asymptotic vanishes in block size, and the prior does not affect the degree of asymptotic
self-similarity but highly affect the time-finite self-similarity.




2.2. On the Generator of Network Arrivalswith Salf-Similar
Nature

2.2.1 Motivation

Whether a communication system is well operated or not resides on its reliability in
communication quality from the user point of view. To illustrate, the current wired telephone
system has been held in high esteem because it provides users reliable circuit-switch-based
connections. In order to ensure the reliability of a system, a certain number of testing is a must-do
before its deployment. These tests must be properly conducted so that the system performance
after deployment can be predictable. This leads to the need of a synthesizing experimental traffic
trace that well approximates the true traffic, possibly encountered in practice. As an example, the
well-known Erlang B and Erlang C formulas, derived from the Markovian models, successfully
characterize the user behaviors by accurately predicting the overall call blocking and queuing
probability. We therefore realize the significance of a traffic model for system testing.

Several approaches have been proposed for synthesizing long-range dependent self-similar
traffic data. In [21], Paxson synthesized self-similar traffic data by means of traffic spectrum
fitting to fractional Gaussian noise. Lau, et a, [6] proposed a so-caled random midpoint
displacement algorithm to generate a self-similar network trace. We then noted two drawbacks of
adopting these approaches. First, the required length of a traffic data should be determined prior
to the generation of the traffic data; hence, when a longer traffic sequence is required, one needs
to go through the entire process of data synthesization to obtain it. In other words, the traffic data
cannot be generated in an on-the-fly fashion. In addition, their traffic generators may produce
negative integers, unreasonable for any packet train arrival. Most importantly, the true measured
network traffic, although appearing self-similar beyond the range of engineering manageability, is
gtill ultimately non-self-similar. Therefore, it may be arguable to synthesize and use an ultimate
self-similar traffic for system performance evaluation. An alternative that generates a traffic that
has the desired degree of self-similarity in a controlled range, and that becomes non-self-similar
beyond may be closer to the true traffic behavior. This leads us to develop a new approach that
can compensate these drawbacks.

2.2.2 A Filter-Based Salf-Similar Traffic Gener ator

The key idea of our generator is based on power spectrum fitting. Let S(w) denote the
power spectrum of the discrete random process Y[ n] obtained by passing the random process X[n|
with power spectrum S¢(w) through a filter with transfer function H(w). Then S(w) = IHW)[?
S«(w). Asareault, if we let the input X[n] bei.i.d., and also design a filter whose transfer function
satisfies that |H(w)[> approximates the power spectrum of self-similar traffics, then the filter
output straightforwardly become self-similar.

The autocovariance function of an exactly second-order self-similar process with self-similar
parameter H is given by

(C/2)[|k+1P" 2|k ™ +|k-1P"]
7



for some constant ¢ > O; thus, its power spectrum Fy(w) is
—jw 2 © —1-2H
cli-e™P Y. |w+2nk|

for —z <w< 7z . By taking the mgor term with k = 0, and replacing, inside the summand, |w| by
|1-e ™|, weobtain F,(w)~c|l-e ™[ for —z <w<x.Hence, the problemis reduced
to find a good filter for Poisson i.i.d. input with mean A to yield

S,(W)=[HW) [ S(w)=A[H(W) F=2]1-e™[*".

When transforming the problem to its equivalent domain of Z-transform, we can achieve our goal
by letting H(z) = (1-z"%", and result in

S,(9=S.(9H(9H(z")
_ l(l— Z—l)OErH (1_ Z)OE%H .
_ 1(2_ 71 Z)OA&H

Apparently, by taking z=e into the formula,
S,(w)=A(2-e" —e ™) = |1-e™ [,

Now let us examine the effect of such a filter-based self-similar traffic generator. The impulse
response of the filter is equal to h[n]=T'(n+H -0.5)/[T(n+)I'(H —0.5)] for n>0, where
I'(-) represents the Euler gamma function.

As h[n] is an infinite series, which is impractical in implementation, we limit its window
sizeto W, i.e, h[n] is forced zero for n > W. Denote the variance of m-aggregated series with
average window m and truncation window being W by C(O;W). Figure 1 illustrates the relation
between 1og[Cr(0;10%)] and log[m]. We found that for 0 < logio[m] < logi[W], the straight line
with slope 2H-2 fits the curve of log[Cin(0;10%)] against log[m]. The resultant H’ a the filter
output is listed in Tab. |. From these data, we discovered that when the average window m is less
than or equal to the truncated window W, the resultant H’ tends to be a little smaller than the
target H, although the deviation, defined as (H’—H)/H, is acceptably small in all cases. As aresult,
the degree of self-similarity is more accurate for smaller H.

For the case of m> W, C(0;W) can be represented by Ap(W)m™* — By(W)m 2, and thus

olog[C,(OGW)] _ ,  Bu(W/A, (W)
dlog(m) m—By, (W)/ Ay (W)

Accordingly, the degree of self-similarity is determined by the ratio where O(-) is the big-O
notation.

Besides, we can also establish that if we wish to obtain aresultant H’ € (0.5, 1) (close to the
target H) up to the average window m’ > W, then it requires that



B,(W/AM) 5 on s
m-B, (W)/ A, (W)

which implies

W<m'<[ 2H jBH(W)

2H'-1) A, (W)

Thisindicates that the output self-similarity for the truncated model can be extended up to

( 2H" JBH(W)_[ 2H' J (H -05) [W+(H _1'5)J—O(\N1‘2”)
2H'-1) A (W) \2H'-1) H(H +0.5) 2

Sincefor W>0and 0.5<H <1,

m>W >

(H -0.5) (W+ (H —1.5)j . By (w)
H(H +0.5) 2 A, (W)

provided ideally that H* = H. The above inequality, together with m’ > W, gives that

(H-05wW <->~H —[ 2H jo(\/v12H )
2 \2H-1

contradicting to W> 0. We then conclude that as long as exact self-smilarity is concerned (i.e.,
H’=H), to extend the output self-similarity up to the truncated window isimpossible. From Fig.1,
we further show by numerical that even if H’ is allowed to be alittle smaller than H, the
conclusion remains.

2.2.3 Conclusions

In this section, we proposed a new model for self-similar traffic sythesization, based on the
filter theory. This model is long range dependent with adjustable levels of bustiness and
correlation. The model is parsimonious in its number of input parameters. Specialy, it only
depends on three parameters. H is the self-similar parameter, which controls the burstiness and
autocorrelation of the synthesized traffic, A defines the mean of the synthesized traffic and W
determines not only the length of the filter but also the valid aggregation size of self-similar
nature. Though filter length W limits the valid aggregation size of self-similarity, this
phenomenon turns out to match the measured behavior of true network traffic, where the
self-similar nature only lasts beyond a practically manageable range, but disappears as the
considered aggregated window is much further extended. Other advantages of this model are that
this filter-based model can synthesize traffic on the fly and always generate non-negative integers
to represent network arrivals.

We verify the validity of our filter-based model through the mathematical analysis of its
variance-time relation and statistics tests of V-T plot, R/S plot and periodogram plot (cf. table 11).
And we conclude that our model guarantee to synthesize self-similar traffic with high degree of
accuracy in terms of self-similar parameter, H.



Table|l. The resultant H’ versus the targeted H. Deviation = (H’-H)/H.

Window Length = 10*
Targeted H | Resultant H’ Deviation
0.5001 0.5000961 | —7.7984E-006

0.55 0.5481199 —0.0034
0.6 0.5961926 —0.0063
0.7 0.6909921 -0.0129
0.8 0.7809945 —-0.0238
0.9 0.8599458 —0.0445

Tablell. H used versus H resultant.

Window Length = 10
H H resultant | H resultant H resultant
used (V-T Plot) (R/SPlot) | (Periodogram)
0.5001| 0.4913099 | 0.5423777 0.5149618
0.55 0.5243788 | 0.5839482 0.5433228
0.6 0.5661478 | 0.6248291 0.5953569
0.7 0.6860798 | 0.6991949 0.6902056
0.8 0.7558080 | 0.7792713 0.7968477
0.9 0.8662405 | 0.8784192 0.8822255
H=0.50 Window size=1000 H=0.55 Window size=1000
Oz O

Log, o(Variance)
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Figure 1. Variance-Time Analysis for W= 10°. The slope of the blue line is equal to 2H
—2form<W, and -1 for m> W.
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2.3. On the mutual information function of the saf-similar
traffic

2.3.1 Main Results

(A) Preliminary

A stochastic process is wild-sense stationary (WSS) if the marginal mean and the
autocorrelation function are invariant to a time shift. A stochastic process is asymptotic
second-order self-similar if its autocorrelation function decreases with power law (Boris
Tsybakov and Nicolas D. Georganas [13]). In general, it seems no significant
information-theoretic meaning could be found for the asymptotic second-order self-similar
process. However, we found that the mutual information between two different instant values of
the asymptotic second-order self-similar process also decreases with power law if it is generated
by our filter type generator. Besides, we also show that the mutual information between two
different instant values of any binary-valued WSS or any Gaussian process is about half the
sgquare of the autocorrelation coefficient.

(B) Nearly Independent

Two random processes Xi, Xa, ..., Xpand Y, Yo, ..., Y, are called nearly independent if
when n goes to infinity, the correlation coefficient of X, and Y, approach to zero, and X, and Y,
are amost independent, i.e.,

P, (%)= P (X)P,(y) = p{x_“x" Pxn(x)J( y;‘”ﬂ PYH(X)}O(/DH),

Xﬂ Yﬂ

where p, is the correlation coefficient of X, and Y, that is,

pn:E[[X;ﬂXHJ[y;IaYﬂJ} :an :E{Xn}1 :uYn :E{Yn}l

ox, =E{(x—uyx )}, and oy =E{(x— )%}

(C) Mutual information of two different instant samples

Proposition 1. For two nearly independent random processes Xi, X, ..., X, and Yy, Y, ...,
Yn , the mutual information of X, and Y, are

1
I (Xn’Yn) = Epr? +O<p§)
The proof is omitted here.

(D) Mutual information of a sequence of two Gaussian random variables

If X1, Xp, ..., Xnand Y1, Y, ..., Y, are two nearly independent random processes, and each
(Xn, Yn) aretwo jointly Gaussian random variables, the mutual information of X, and Y, are [2],
11



(X,3Y,) == =log(1- p?) = = pZ +ofp?)..
2 2

If X, is asymptotic second-order self-similar Gaussian process with parameter H=1- (/2),0<
S <1, and Yp= Xn+m, then

P, = 9(k) =%{(k+1)” —2k*’ + (k—l)z’ﬁ} ~H(2H —1)k”’,as k > oo,
and

H(X5 Xo) = —%log(l— 9(k)*) = % 9(k)* =2H*(H —%)Zk‘z”,k — 0.

(E) Mutual information between two outputs of a filter

In last two years, we proposed a filter based method to generate an asymptotically
self-similar traffic, which not only generates self-similar traffic on the fly but also fits the
required self-similar Hurst parameter, H. The impulse response of the filter is equal to
hn]=T'(n+H -0.5/[[(n+YI'(H —0.5)] for n>0, where I'() represents the Euler gamma

function defined as I[n]= j:t”’le’tdt , and the transfer function of the filter is

H(w) = (L1-e™)**™ . When an uncorrelated wide sense stationary sequence Z[n] is inputted, we

have showed that the filter output X[n] becomes asymptotically second-order self-similar and its
correlation function b(n) is power-law decreasing. Note h[n]>0 for n>0. Define afilter

. 1

. ri+H-5)

A} =y =(H )2
;h[l] '(M+H _E)

for M -1>i>0,and pli]=0 for i >M —1or i<0. If an i.i.d. sequence Z[n] is inputted to

the filter p[i], and the output sequenceis X[n] =" " p[k]Z[n—k]. Then we can find

L (O hiThfi + K))? .
| (X[n]: X[n+Kk]) = = =0 ~2H?(H - 2)’k ¥, ask — 0, M —> o,

n+k

2 (Z A1) i)

(F) Mutual information of a sequence of two binary-valued random variables

If Xq, Xo, ..., Xpand Yy, Y, ..., Y, aetwo binary-valued random processes, and each (X, Yn)
are two binary-valued random variables, the mutual information of X, and Y, are,

r r
I (anYn) = hb(luYn) _:l'txnr-]b(:l'tYn +— )_ (1_:uxn)hb(1_ :uYn + 1 - )’

Hy, Hy,
where hy() is the binary entropy function, uy =E{X )}, —pu, =E{Y}, and
r,=E{(x—uyx )(y— )} If rn approaches zero as n goes to infinity, then we have
| (X ;Y.)= pZ/2. In particular, if X, is any binary-valued asymptotic second-order
self-similar process with parameter H =1 — (5 / 2), where 0 < < 1, then

12



(X, X0) ;%pkz =2H?*(H —%)Zk‘zﬁ,ask—> 0,

is also power law decreasing.

2.3.2 Concluding Remarks and Future Work

We already show that the mutual information between two different instant values of the
asymptotic second-order self-similar process also decreases with power law if it is nearly
independent. We also illustrate three different nearly independent sequences, i.e., the output of
our filter type self-similar traffic generator with any i.i.d. inputs, the self-similar Gaussian process,
and the binary-valued asymptotic second-order self-similar process. However, the mutual
information between two aggregated traffic is still unsolved which is a challenging future work.
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VINY

The study focus on three topics. (1) Discuss how the long-range dependence emerges from
current Markov-modeled network arrival; (2) Synthesize the self-similar traffic; (3) The
information theoretic characteristic of the self-similar traffic. We basically follow up the main
plan of the project, and accomplished three main results. (1) Show the existence of time-finite
self-similarity phenomenon and its definition for Markov-modeled network; (2) Propose and
analyze a real-time, positive valued self-similar traffic generator; (3) Determine that the mutual
information of several self-similar traffics are all power law decreasing. The results of the study
are currently prepared for the submission to the |EEE Transaction on Information Theory.
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