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a b s t r a c t

We extend the Rayleigh–Ritz method to the eigen-problem of periodic matrix pairs.
Assuming that the deviations of the desired periodic eigenvectors from the corresponding
periodic subspaces tend to zero, we show that there exist periodic Ritz values that converge
to the desired periodic eigenvalues unconditionally, yet the periodic Ritz vectorsmay fail to
converge. To overcome this potential problem,weminimize residuals formedwith periodic
Ritz values to produce the refined periodic Ritz vectors, which converge under the same
assumption. These results generalize the correspondingwell-knownones for Rayleigh–Ritz
approximations and their refinement for non-periodic eigen-problems. In addition, we
consider a periodic Arnoldi process which is particularly efficient when coupled with the
Rayleigh–Ritzmethodwith refinement. Thenumerical results illustrate that the refinement
procedure produces excellent approximations to the original periodic eigenvectors.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let Ej, Aj ∈ Cn×n (j = 1, . . . , p), where Ej+p = Ej and Aj+p = Aj for all j. We denote the periodic matrix pairs of
periodicity p by {(Aj, Ej)}

p
j=1. In this paper, the indices j for all periodic coefficient matrices are chosen in {1, . . . , p} modulo

p. The equations

βjAjxj−1 = αjEjxj (j = 1, 2, . . . , p) (1)

with x0 = xp define the nonzero periodic right eigenvectors {xj}
p
j=1 for complex ordered pairs {(αj, βj)}

p
j=1. Similarly, the

equations

βj−1yHj Aj = αjyHj−1Ej−1 (j = 1, 2, . . . , p) (2)

with y0 = yp define the nonzero periodic left eigenvectors {yj}
p
j=1. The ordered pairs (πα, πβ) ≡

∏p
j=1 αj,

∏p
j=1 βj


then

constitute the spectrum, with the traditional eigenvalues being the quotients πα/πβ . Because of the possibility of infinite
eigenvalues, we shall deal with spectra in their ordered pair representation, with equality interpreted in the sense of the
corresponding equivalent relationship for quotients. Using the notation col[xj]

p
j=1 ≡ [x⊤

1 , . . . , x⊤
p ]

⊤ and
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C


α1, . . . , αp
β1, . . . , βp


≡


α1E1 −β1A1

−β2A2 α2E2
. . .

. . .

−βpAp αpEp

 , (3)

the eigen-equations (1) and (2) can also be written as the multivariate eigen-problems, respectively,

C


α1, . . . , αp
β1, . . . , βp


col[xj]

p
j=1 = 0 (4)

and 
col[yj]

p
j=1

H C


α2, . . . , αp; α1
βp; β1 . . . , βp−1


= 0⊤. (5)

In this paper, we consider only regular periodic matrix pairs for which

det C


α1, . . . , αp
β1, . . . , βp


=

n−
k=0

ckπ k
απn−k

β ≢ 0, (6)

and consequently all eigenvalues (πα, πβ) ≢ (0, 0). For regular periodic matrix pairs, at least one of the coefficients ck ≠ 0
and there are exactly n eigenvalues for {(Aj, Ej)}

p
j=1, counting multiplicities. The spectrum, or the set of all eigenvalue pairs,

of {(Aj, Ej)}
p
j=1 is denoted by λ({(Aj, Ej)}

p
j=1).

For the periodic matrix pairs {(Aj, Ej)}
p
j=1, we have the periodic Schur decomposition of {(Aj, Ej)}

p
j=1 [1–3].

Theorem 1.1 (Periodic Schur Decomposition). Let {(Aj, Ej)}
p
j=1 be regular matrix pairs. There exist unitary matrices Qj, Zj (j =

1, 2, . . . , p) such that

Q H
j AjZj−1 = Âj, Q H

j EjZj = Êj (j = 1, 2, . . . , p)

are all upper triangular, with Z0 = Zp. Moreover, the diagonal parts

{[diag(αj1, . . . , αjn), diag(βj1, . . . , βjn)]}
p
j=1

of {(Âj, Êj)}
p
j=1 determine all the eigenvalues

∏p
j=1 αjk,

∏p
j=1 βjk

n
k=1

of {(Aj, Ej)}
p
j=1, which can be arranged in any order.

We can also generalize the concept of deflating subspaces as follows [4,3].

Definition. LetXj, Yj (j = 1, 2, . . . , p) be subspaces inCn of equal dimension. The pairs {(Xj, Yj)}
p
j=1 are called the periodic

deflating subspaces of {(Aj, Ej)}
p
j=1 if

AjXj−1 ⊂ Yj, EjXj ⊂ Yj (j = 1, 2, . . . , p)

with X0 = Xp. Furthermore, the subspaces {Xj}
p
j=1 are called the periodic invariant subspaces of {(Aj, Ej)}

p
j=1.

We list some further results and definitions from [3].
(i) Theorem 1.1 implies that λ({(Aj, Ej)}

p
j=1) = λ({(A⊤

j , E⊤

j )}
p
j=1).

(ii) An eigenvalue is said to be simple if it appears in a linear factor of the characteristic polynomial.
(iii) Let Z (j)

1 ,Q (j)
1 ∈ Cn×k satisfy (Z (j)

1 )HZ (j)
1 = (Q (j)

1 )HQ (j)
1 = Ik, and let Xj = span(Z (j)

1 ), Yj = span(Q (j)
1 ) for all j. It can be

verified [3] that {(Xj, Yj)}
p
j=1 are periodic deflating subspaces of the regularmatrix pairs {(Aj, Ej)}

p
j=1 if and only if there

exist unitary matrices Zj = [Z (j)
1 , Z (j)

2 ],Qj = [Q (j)
1 , Q (j)

2 ] ∈ Cn×n such that

Q H
j AjZj−1 =

[
A(j)
11 A(j)

12
0 A(j)

22

]
, Q H

j EjZj =

[
E(j)
11 E(j)

12
0 E(j)

22

]
, (7)

where A(j)
11, E

(j)
11 ∈ Ck×k, and both {(A(j)

11, E(j)
11)}

p
j=1 and {(A(j)

22, E(j)
22)}

p
j=1 are regular for all j. Furthermore, if the intersection

of the spectra of the two sub-matrix pairs is empty, the periodic deflation subspaces {(Xj, Yj)}
p
j=1 are called simple

periodic deflating subspaces, and {Xj}
p
j=1 simple periodic invariant subspaces.

From the periodic Schur decomposition in Theorem 1.1, we also obtain the periodic Kronecker canonical form [5–7] of
{(Aj, Ej)}

p
j=1.

Theorem 1.2 (Periodic Kronecker Canonical Form). Suppose that the periodic matrix pairs {(Aj, Ej)}
p
j=1 are regular. Then there

exist nonsingular matrices Xj and Yj (j = 1, 2, . . . , p) such that

YH
j EjXj =

[
I 0
0 E0

j

]
, YH

j AjXj−1 =

[
Af
j 0
0 I

]
, (8)
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where Af
j and E0

j are all upper triangular,

J (j) ≡ Af
j+p−1A

f
j+p−2 . . . Af

j (j = 1, 2, . . . , p) (9)

are Jordan canonical forms corresponding to the finite eigenvalues of {(Aj, Ej)}
p
j=1, and

N (j)
≡ E0

j E
0
j+1 . . . E0

j+p−1 (j = 1, 2, . . . , p) (10)

are nilpotent Jordan canonical forms corresponding to the infinite eigenvalues.

Remarks.
(i) From [4], the matrices Af

j and E0
j in (8) can be further reduced to block-upper triangular. Each individual block in Af

j or
E0
j relates to the corresponding Jordan block of a multiple eigenvalue of {(Aj, Ej)}

p
j=1.

(ii) For different values of j, the Jordan canonical forms J (j) and N (j) in (9) and (10) may have different structures. Thus, an
eigenvalue with a certain algebraic multiplicity may have different geometric multiplicities dependent on j.

The eigen-problem of the periodic matrix pairs {(Aj, Ej)}
p
j=1 reflects the behavior of the linear discrete-time periodic

systems

Ejxj+1 = Ajxj (j = 1, 2, . . . , p) (11)

with respect to solvability and stability [8–12]. There has been much recent interest in periodic systems. It arises in a large
variety of applications, including queueing network [13,14], analysis of bifurcations and computation of multipliers [15,16],
multirate sampled-data systems, chemical processes, periodic time-varying filters and networks and seasonal phenomena;
see [8,9] and the references therein for further information. Note that the periodic matrix eigen-problem is mathematically
equivalent to the product matrix eigen-problem and the cyclic matrix eigen-problem [17,18]. Recently, some reliable
numerical algorithms have been designed for the computation of the periodic stable invariant subspaces [1,19]. Perturbation
analysis of eigenvalues and periodic deflating subspaces of periodicmatrix pairs have been extensively studied in [20,5,4,21].
For the large product matrix eigen-problems and the periodic matrix eigen-problems with Ej = I (j = 1, 2, . . . , p),
Kressner [17] presents a periodic Arnoldi process that generates orthonormal bases of certain periodic Krylov subspaces.
Based on it, he proposes a periodic Arnoldi method for the product matrix eigen-problem and develops a periodic Arnoldi
algorithm and a periodic Krylov–Schur algorithm.

The Rayleigh–Ritzmethod iswidely used for the computation of approximations to an eigen-spaceX of an ordinary large
matrix eigen-problem Ax = λx, from an approximating subspace X̃. The harmonic Rayleigh–Ritz method is an alternative
for solving the interior eigen-problem (see, e.g., [22, Chapter 4]). Furthermore, when one is concerned with eigenvalues
and eigenvectors, one can compute certain refined (harmonic) Ritz vectors whose convergence is guaranteed [23–27]; see
also [22].

The purpose of this paper is to generalize the concept of the Rayleigh–Ritz approximation for the periodic matrix
pairs, leading to the periodic Rayleigh–Ritz approximation. We study the convergence of the periodic Ritz values and
the corresponding periodic Ritz vectors and extend some of the results in [26,27,22] to the periodic Rayleigh–Ritz
approximation. Similar to the ordinary eigen-problem case (when p = 1) in [26,27,22], periodic Ritz vectors may fail
to converge even if the corresponding periodic projection subspaces contain sufficiently accurate approximations to the
desired periodic eigenvectors. It is thus necessary to refine the periodic Ritz vectors, as described in Section 5.We shall prove
the convergence of the refined periodic Ritz vectors and propose an algorithm for their computation. All the convergence
results are nontrivial generalizations of some of the known ones for Rayleigh–Ritz approximations and their refinement for
the ordinary eigenvalue problem in [26,27]; see also [22]. As an important special casewhen theperiodic Arnoldi process [17]
is employed to generate the periodic orthonormal bases of the periodic Krylov subspaces, the refinement can be realized
much more efficiently.

In the rest of the paper, ‖ · ‖ denotes both the Euclidean vector norm and the subordinate spectral matrix norm, unless
otherwise stated. The conjugate of a complex number α is denoted by ᾱ and the unit imaginary number is denoted by
ι =

√
−1.

The paper is organized as follows. We first consider the Rayleigh–Ritz procedure for the periodic eigen-problem (1) in
Section 2. The convergence of the Ritz value pairs and their corresponding periodic Ritz vectors will be treated in Sections 3
and 4, respectively. In Section 5, we shall establish the convergence of the refined periodic Ritz vectors and propose a
numerical method to compute them. In Section 6, we consider the special case when the periodic Krylov subspaces are
generated by the periodic Arnoldi process. In Section 7, some numerical examples are given to illustrate the accuracy of the
refined periodic Ritz vectors and the sharpness of their convergence bounds. The paper concludes with a brief summary in
Section 8.

2. The periodic Rayleigh–Ritz approximation

As is known [17,18], the eigen-problem of the periodic matrices {Aj}
p
j=1 is very closely related to the product matrix

eigen-problem and the cyclic matrix eigen-problem. Recently, based on the periodic Arnoldi process, a periodic Arnoldi
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algorithm and its Krylov–Schur version have been developed for solving eigenvalue problems associated with products of
large and sparse matrices [17]. One of the central problems in this method is how to extract approximations to the desired
eigenvalues and periodic eigenvectors from the given periodic subspaces {X̃j}

p
j=1. The algorithm is based on a variant of the

Rayleigh–Ritz procedure applied to the eigen-problems (1) for the periodic matrix pairs {(Aj, Ej)}
p
j=1. It performs restarts

and deflations via reordered periodic Schur decompositions and generates an approximate sequence of periodic subspaces
{X̃j}

p
j=1 containing increasingly accurate approximations to the desired periodic eigenvectors.

For the periodic subspaces {X̃j}
p
j=1, suppose that they are spanned by the periodic orthonormal bases {Uj}

p
j=1 with

dim(X̃j) = k (j = 1, 2, . . . , p). Compute the (thin or compact) QR-decompositions

EjUj = VjNj (j = 1, 2, . . . , p) (12)

where VH
j Vj = Ik and Nj is upper triangular. Let, for all j,

VH
j AjUj−1 = Mj. (13)

Then (12) and (13) define the periodic Rayleigh–Ritz pairs {(Mj,Nj)}
p
j=1 with respect to {Uj}

p
j=1. The following theorem shows

that for any periodic orthonormal bases {Uj}
p
j=1, the periodic Rayleigh–Ritz pairs yield minimal residuals.

Theorem 2.1. Let {(Mj,Nj)}
p
j=1 be the periodic Rayleigh–Ritz pairs with respect to the periodic bases {Uj}

p
j=1. Suppose that Nj is

nonsingular for all j. Then the residuals

Rj ≡ AjUj−1 − EjUj(N−1
j Mj) (j = 1, 2, . . . , p) (14)

are minimal in the matrix 2-norm:

min
Cj∈Ck×k

‖AjUj−1 − EjUjCj‖ = ‖Rj‖. (15)

Proof. Let Pj ≡ N−1
j Mj (j = 1, 2, . . . , p). For any Cj ∈ Ck×k, denote ∆j ≡ Pj − Cj. From (I − VjVH

j )EjUj = 0 and
CH
j UH

j EH
j EjUjPj = CH

j UH
j EH

j AjUj−1, we have

‖AjUj−1 − EjUjCj‖
2

= ρ(UH
j−1A

H
j AjUj−1 − CH

j UH
j EH

j AjUj−1 − UH
j−1A

H
j EjUjCj + CH

j UH
j EH

j EjUjCj)

= ρ(UH
j−1A

H
j AjUj−1 + ∆H

j U
H
j EH

j EjUj∆j − PH
j U

H
j EH

j EjUjPj)

= ρ[(UH
j−1A

H
j − PH

j U
H
j EH

j )(AjUj−1 − EjUjPj) + ∆H
j U

H
j EH

j EjUj∆j]

≥ ρ(RH
j Rj) = ‖Rj‖

2,

where ρ(·) denotes the spectral radius. �

Remark. The residuals Rj’s in (14) possess the following geometric meaning

Rj = AjUj−1 − EjUj(VH
j EjUj)

−1(VH
j AjUj−1)

= [I − EjUj(VH
j EjUj)

−1VH
j ]AjUj−1 = (I − PEjUj)AjUj−1,

where PEjUj is the orthogonal projector onto the subspace span(EjUj). Furthermore, if Nj is nonsingular, it is easily verified
that PEjUj = VjVH

j . So ‖Rj‖ is the distance of AjUj−1 from span(Vj) and should be minimal over all projections of AjUj−1 onto
span(Vj) = (EjUj).

We now describe the periodic Rayleigh–Ritz (pRR) procedure with respect to {Uj}
p
j=1 to approximate an eigen-pair

((πα, πβ); {xj}
p
j=1) of the periodic matrix pairs {(Aj, Ej)}

p
j=1.

(i) Construct the periodic orthonormal bases {Uj}
p
j=1, where Uj ∈ Cn×k.

(ii) Compute the QR-decompositions EjUj = VjNj with VH
j Vj = Ik (j = 1, 2, . . . , p).

(iii) Compute Mj = VH
j AjUj−1 (j = 1, 2, . . . , p).

(iv) Compute a desired eigenvalue pair (πµ, πν) ≡
∏p

j=1 µj,
∏p

j=1 νj


of the periodic Rayleigh–Ritz matrix pairs
{(Mj,Nj)}

p
j=1 and the corresponding periodic right eigenvectors {zj}

p
j=1 with ‖zj‖ = 1, by using the periodic QZ algorithm

with eigenvalue reordering techniques [1,2], such that

νjMjzj−1 = µjNjzj (j = 1, 2, . . . , p).

(v) With x̃j ≡ Ujzj, take the Ritz value pair and periodic Ritz vectors ((πµ, πν); {x̃j}
p
j=1) as an approximate eigenvalue pair

and periodic eigenvectors.
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3. Convergence of Ritz value pairs

Let (πα, πβ) ≡
∏p

j=1 αj,
∏p

j=1 βj

be a simple eigenvalue pair of {(Aj, Ej)}

p
j=1 and {xj}

p
j=1 be the corresponding periodic

right eigenvectors with ‖xj‖ = 1 (j = 1, 2, . . . , p). That is, we have
βjAjxj−1 = αjEjxj,
‖xj‖ = 1 (j = 1, 2, . . . , p). (16)

We assume that the periodic subspaces {X̃j}
p
j=1 contain accurate approximations to the periodic eigenvectors {xj}

p
j=1. For

given periodic orthonormal bases {Uj}
p
j=1 with [Uj,U⊥

j ] being unitary, we define, for all j,

θj = ̸ (xj, X̃j) (17)

vj = UH
j xj, v⊥

j = (U⊥

j )Hxj. (18)

Then it holds for all j that

‖v⊥

j ‖ = sin θj, ‖vj‖ =


1 − sin2 θj = cos θj, (19)

assuming without loss of generality that all θj are in the first quadrant. We now show that the spectrum of the periodic
Rayleigh–Ritz matrix pairs

(Mj,Nj) = (VH
j AjUj−1, VH

j EjUj) (j = 1, 2, . . . , p) (20)

obtained by (iv) in the pRR approximation contains a Ritz value pair (πµ, πν) ≡
∏p

j=1 µj,
∏p

j=1 νj

that converges to

(πα, πβ) when sin θj → 0 for all j.

Theorem 3.1. Let {(Mj,Nj)}
p
j=1 be the periodic Rayleigh–Ritz matrix pairs defined by (20). Then for all j, there exist matrices EMj

and ENj which satisfy

‖EMj‖ ≤
|βj|

|αj|
2 + |βj|

2
min{ϵ

(1)
j , ϵ

(2)
j } (21)

and

‖ENj‖ ≤
|αj|

|αj|
2 + |βj|

2
min{ϵ

(1)
j , ϵ

(2)
j } (22)

with

ϵ
(1)
j = |αj|‖Ej‖

1 −
cos θj

cos θj−1

+ |αj|‖Ej‖
sin θj

cos θj−1
+ |βj|‖Aj‖ tan θj−1 (23)

and

ϵ
(2)
j = |βj|‖Ej‖

1 −
cos θj−1

cos θj

+ |αj|‖Ej‖ tan θj + |βj|‖Aj‖
sin θj−1

cos θj
(24)

such that (πα, πβ) is an eigenvalue pair of the periodic matrix pairs {(Mj + EMj ,Nj + ENj)}
p
j=1.

Proof. As [Uj,U⊥

j ] (j = 1, 2, . . . , p) are unitary, pre-multiplying the equations in (16) by VH
j produces

βjVH
j Aj[Uj−1,U⊥

j−1]


UH
j−1

(U⊥

j−1)
H


xj−1 − αjVH

j Ej[Uj,U⊥

j ]


UH
j

(U⊥

j )H


xj = 0.

From (18) and (20), it follows that

βj(Mjvj−1 + VH
j AjU⊥

j−1v
⊥

j−1) − αj(Njvj + VH
j EjU⊥

j v⊥

j ) = 0. (25)

Let v̂j ≡ vj/‖vj‖ (j = 1, 2, . . . , p). Dividing (25) by ‖vj−1‖, we obtain, for all j,

βjMjv̂j−1 − αjNjv̂j = αjNjv̂j
‖vj‖

‖vj−1‖
− αjNjv̂j + αjVH

j EjU⊥

j

v⊥

j

‖vj−1‖
− βjVH

j AjU⊥

j−1

v⊥

j−1

‖vj−1‖
. (26)
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If we define the residuals

rj ≡ βjMjv̂j−1 − αjNjv̂j (j = 1, 2, . . . , p), (27)

then (26), (19) and (23) imply ‖rj‖ ≤ ϵ
(1)
j . Similarly, dividing (25) by ‖vj‖ yields ‖rj‖ ≤ ϵ

(2)
j , and consequently ‖rj‖ ≤

min{ϵ
(1)
j , ϵ

(2)
j }. Next we define, for all j,

EMj ≡
−β̄j

|αj|
2 + |βj|

2
rjv̂H

j−1, ENj ≡
ᾱj

|αj|
2 + |βj|

2
rjv̂H

j . (28)

It then follows from (27) and (28) that

αj(Nj + ENj)v̂j = βj(Mj + EMj)v̂j−1 (j = 1, 2, . . . , p) (29)

with EMj and ENj satisfying (21) and (22) by construction. �

Remark.
(i) Though ϵ

(1)
j , ϵ

(2)
j → 0 as θj → 0 for j = 1, 2, . . . , p, they are somehow complex and less clear. We shall simplify them,

first by defining ϵ = maxj=1,2,...,p sin θj. Applying Taylor expansions and observing that1 −
cos θj

cos θj−1

 , 1 −
cos θj−1

cos θj

 = O(ϵ2),

we obtain, by ignoring higher order small terms,

ϵ
(1)
j , ϵ

(2)
j ≤ (|αj| ‖Ej‖ + |βj| ‖Aj‖)ϵ. (30)

From Theorem 3.1 and the continuity of the eigenvalues of {(Mj,Nj)}
p
j=1, we immediately have the following corollary.

Corollary 3.2. There exists a Ritz value pair (πµ, πν) that converges to the simple eigenvalue pair (πα, πβ) when sin θj → 0 for
all j.

4. Convergence of periodic Ritz vectors

From Theorem 1.1, there are unitary matrices [xj, Xj] and [yj, Yj], with Xj, Yj ∈ Cn×(n−1), such that[
yHj
YH
j

]
Aj[xj−1, Xj−1] =

[
αj lHj
0 Lj

]
,

[
yHj
YH
j

]
Ej[xj, Xj] =

[
βj kHj
0 Kj

]
, (31)

where the matrices Lj and Kj are (n − 1) × (n − 1) for j = 1, 2, . . . , p. The periodic eigenvalue pairs of the periodic
matrix pairs {(Lj, Kj)}

p
j=1 are the periodic eigenvalue pairs of {(Aj, Ej)}

p
j=1 other than (πα, πβ). Also, (31) implies the spectral

decompositions

Aj = αjyjxHj−1 + yjlHj X
H
j−1 + YjLjXH

j−1 (32)

and

Ej = βjyjxHj + yjkHj X
H
j + YjKjXH

j . (33)

For any approximate eigen-pair, we have the following residual bound for the approximate eigenvectors.

Theorem 4.1. Let {(Aj, Ej)}
p
j=1 have the spectral representations (32) and (33) with [xj, Xj] and [yj, Yj] being unitary for all

j, ((πα̃, πβ̃); {x̃j}
p
j=1) be an approximation to the simple eigen-pair ((πα, πβ); {xj}

p
j=1),

τj ≡ α̃jEjx̃j − β̃jAjx̃j−1 (j = 1, 2, . . . , p), (34)

and

sep((πα̃, πβ̃), {(Lj, Kj)}
p
j=1) ≡ ‖C−1

‖
−1 (35)

with

C ≡


α̃1K1 −β̃1L1
−β̃2L2 α̃2K2

. . .
. . .

−β̃pLp α̃pKp

 .
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If sep((πα̃, πβ̃), {(Lj, Kj)}
p
j=1) > 0, then

 p−
j=1

sin2 ̸ (xj, x̃j) ≤


p∑

j=1
‖τj‖2

sep((πα̃, πβ̃), {(Lj, Kj)}
p
j=1)

. (36)

Proof. Pre-multiplying (34) by YH
j , we get, with the help of (32) and (33),

YH
j τj = α̃jYH

j Ejx̃j − β̃jYH
j Ajx̃j−1 = α̃jKjXH

j x̃j − β̃jLjXH
j−1x̃j−1. (37)

This implies

C

XH
1 x̃1
...

XH
p x̃p

 =

YH
1 τ1
...

YH
p τp

 . (38)

Note that C is invertible in the neighborhood of (πα, πβ) if and only if the eigenvalue pair (πα, πβ) is simple. As [xj, Xj] is
unitary, we have sin ̸ (xj, x̃j) ≡ ‖XH

j x̃j‖ for all j. Note that ‖YH
j τj‖ ≤ ‖τj‖ for all j. The theorem then follows from inverting

C in (38) and taking norms. �

Theorem 4.1 leads easily to the following corollary.

Corollary 4.2. For j = 1, 2, . . . , p, we have

sin ̸ (xj, x̃j) ≤

√
p max

j=1,2,...,p
‖τj‖

sep((πα̃, πβ̃), {(Lj, Kj)}
p
j=1)

. (39)

In Corollary 3.2, we see that there is a Ritz value pair (πµ, πν) approaching the simple eigenvalue pair (πα, πβ) when
sin θj → 0 for all j. If, in addition, the p residual norms ‖τj‖ (j = 1, 2, . . . , p) defined in (34) approach zero, the periodic Ritz
vectors {x̃j}

p
j=1 converge to the periodic right eigenvectors {xj}

p
j=1. Thus, Theorem4.1 andCorollary 4.2 show that a converging

Ritz value pair and vanishing residuals imply the convergence of the periodic Ritz vectors since ‖C−1
‖ is uniformly bounded

when (πµ, πν) converges to the simple eigenvalue (πα, πβ).
When p = 1, it has been proved that the Ritz vector may fail to converge for a (nearly) multiple Ritz value (see, e.g. [26,

27]). We now perform a convergence analysis of the periodic Ritz vectors and establish some a priori error bounds, showing
why the periodic Ritz vectors can fail to converge. Let the periodic Ritz pair ((πµ, πν); {x̃j}

p
j=1) be used to approximate the

simple periodic eigen-pair ((πα, πβ); {xj}
p
j=1).

Again, from Theorem 1.1, there are unitary matrices [zj, Zj] and [wj,Wj], with Zj,Wj ∈ Cr×(r−1), such that[
wH

j
WH

j

]
Mj[zj−1, Zj−1] =

[
µj dHj
0 Dj

]
,

[
wH

j
WH

j

]
Nj[zj, Zj] =

[
νj f Hj
0 Fj

]
, (40)

where the matrices Dj and Fj are (k − 1) × (k − 1) for j = 1, 2, . . . , p.
Since the only assumption on {X̃j}

p
j=1 is that they contain accurate approximations to the periodic eigenvectors {x̃j}

p
j=1,

the eigenvalue pairs of {(Dj, Fj)}
p
j=1 are not necessarily near the eigenvalue pairs of {(Aj, Ej)}

p
j=1 rather than (πµ, πν).

Particularly, this means that an eigenvalue pair of {(Dj, Fj)}
p
j=1 could be arbitrarily near and even equal to the Ritz value

pair (πµ, πν). For a multiple (πµ, πν), there are more than one {x̃j}
p
j=1 to approximate the unique periodic eigenvectors

{xj}
p
j=1. It will be impossible for the periodic Rayleigh–Ritz method to tell which particular approximation is better. If

(πµ, πν) is near an eigenvalue of {(Dj, Fj)}
p
j=1, wewill get a unique periodic {x̃}pj=1, but there is no guarantee that it converges

to {xj}
p
j=1.

The above analysis leads us to postulate that the periodic Ritz vectors {x̃}pj=1 will converge provided that (πµ, πν) is
uniformly away from those eigenvalues (other Ritz values) of {(Dj, Fj)}

p
j=1, independent of θj, j = 1, 2, . . . , p. We next

prove that this is indeed the case quantitatively.

Theorem 4.3. Assume that the periodic Rayleigh–Ritz pairs {(Mj,Nj)}
p
j=1 have the spectral decompositions (40) and

sep((πα, πβ), {(Dj, Fj)}
p
j=1) ≡ ‖Ĉ−1

‖
−1 > 0 (41)
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with

Ĉ ≡


α1F1 −β1D1

−β2D2 α2F2
. . .

. . .

−βpDp αpKp

 .

Let ϵ = maxj=1,2,...,p sin θj. Then for j = 1, 2, . . . , p, we have

sin ̸ (xj, x̃j) ≤ sin θj +

√
pmax{min{ϵ

(1)
j , ϵ

(2)
j }}

sep((πα, πβ), {(Dj, Fj)}
p
j=1)

(42)

≤


1 +

√
p(|αj| ‖Ej‖ + |βj| ‖Aj‖)

sep((πα, πβ), {(Dj, Fj)}
p
j=1)


ϵ (43)

with ϵ
(1)
j , ϵ

(2)
j defined as in (23) and (24).

Proof. Let the periodic Ritz pair ((πµ, πν); {x̃j}
p
j=1) be an approximation to the periodic eigen-pair ((πα, πβ); {xj}

p
j=1). As in

the proof of Theorem 3.1, let v̂j = UH
j xj/‖UH

j xj‖. Then we get

rj ≡ βjMjv̂j−1 − αjNjv̂j (j = 1, 2, . . . , p),

which is defined by (26). It is seen from the proof of Theorem 3.1 that

‖rj‖ ≤ min{ϵ
(1)
j , ϵ

(2)
j }

with ϵ
(1)
j , ϵ

(2)
j in (23) and (24).

Note that we can regard ((πα, πβ); {v̂j}
p
j=1) as an approximate periodic eigen-pair to the periodic eigen-pair ((πµ, πν);

{zj}
p
j=1) of {(Mj,Nj)}

p
j=1. Then from Corollary 4.2, it follows for j = 1, 2, . . . , p that

sin ̸ (zj, v̂j) ≤

√
p max

j=1,2,...,p
‖rj‖

sep((πα, πβ), {(Dj, Fj)}
p
j=1)

≤

√
p max

j=1,2,...,p
min{ϵ

(1)
j , ϵ

(2)
j }

sep((πα, πβ), {(Dj, Fj)}
p
j=1)

.

Since Uj is orthonormal for j = 1, 2, . . . , p, we have from the definitions of x̃j, v̂j and θj that

sin ̸ (zj, v̂j) = sin ̸ (Ujzj,Ujv̂j) = sin ̸ (x̃j,UjUH
j xj).

Note the triangle inequality
̸ (xj, x̃j) ≤ ̸ (xj,UjUH

j xj) + ̸ (UjUH
j xj, x̃j) = ̸ (xj, X̃j) + ̸ (x̃j,UjUH

j xj)

with the equality holding when the vectors xj, x̃j and UjUH
j xj are linearly dependent. Therefore, we get

sin ̸ (xj, x̃j) ≤ sin θj + sin ̸ (zj, v̂j)

≤ sin θj +

√
p max

j=1,2,...,p
{min{ϵ

(1)
j , ϵ

(2)
j }}

sep((πα, πβ), {(Dj, Fj)}
p
j=1)

,

which proves (42). Furthermore, from (30) we get (43). �

From Theorem 3.1, since the Ritz value pair (πµ, πν) approaches the eigenvalue pair (πα, πβ) as θj → 0 for j = 1,
2, . . . , p, by the continuity argument we have

sep((πα, πβ), {(Dj, Fj)}
p
j=1) → sep((πµ, πν), {(Dj, Fj)}

p
j=1).

We see that a sufficient condition for the convergence of the periodic Ritz vectors {x̃j}
p
j=1 is that sep((πµ, πν), {(Dj, Fj)}

p
j=1)

is uniformly bounded away from zero. This condition can be checked during the procedure. However, as we have argued
above, sep((πµ, πν), {(Dj, Fj)}

p
j=1) can be arbitrarily small (and even be exactly zero) when (πµ, πν) is arbitrarily near other

eigenvalue pairs (or is associated with a multiple eigenvalue pair) of {(Mj,Nj)}
p
j=1. Consequently, while the periodic Ritz

value pair converges unconditionally once θj → 0 for j = 1, 2, . . . , p, its corresponding periodic Ritz vectors may fail to
converge or may converge very slowly or irregularly.



2634 E.K.-W. Chu et al. / Journal of Computational and Applied Mathematics 235 (2011) 2626–2639

5. Refinement of periodic Ritz vectors

As we have seen, the periodic Ritz vectors may fail to converge. Since the Ritz value pair is known to converge to the
simple eigenvalue pair (πα, πβ) when sin θj → 0 for all j, this suggests that we can deal with non-converging Ritz vectors
by retaining the Ritz value pair while replacing the periodic Ritz vectors with a set of unit vectors x̂j ∈ X̃j = span(Uj) (j = 1,
2, . . . , p) with suitably small residuals. Thus, we construct x̂j (j = 1, 2, . . . , p) from

min
x̂j

 p−
j=1

‖µjEjx̂j − νjAjx̂j−1‖
2

subject to x̂j ∈ span(Uj), ‖x̂j‖ = 1 (j = 1, 2 . . . , p).

(44)

We call the minimizer {x̂j}
p
j=1, the refined periodic Ritz vectors.

The following theorem shows that the refined periodic Ritz vectors converge when sin θj → 0 for all j.

Theorem 5.1. Let {(Aj, Ej)}
p
j=1 have spectral representations (32) and (33), where ‖xj‖ = 1 for all j. Let (πµ, πν) ≡ (

∏p
j=1 µj,∏p

j=1 νj) be a Ritz value pair with respect to the orthonormal bases {Uj}
p
j=1 and let {x̂j} be the corresponding refined periodic Ritz

vectors. If sep((πµ, πν), {(Lj, Kj)}
p
j=1) > 0, then

sin ̸ (xj, x̂j) ≤
‖η‖

sep((πµ, πν), {(Lj, Kj)}
p
j=1)

(j = 1, 2, . . . , p), (45)

where η = [η1, . . . , ηp]
⊤ and

ηj ≡
ρj + 2|µj||βj| sin2 θj−1

2 + 2|νj||αj| sin2 θj
2

cos θj−1 cos θj
+

|µj|‖Ej‖ sin θj

cos θj
+

|νj|‖Aj‖ sin θj−1

cos θj−1
(46)

with ρj ≡ |µjβj − αjνj| for all j.

Proof. Let xj = qj + q⊥

j , where qj = UjUH
j xj and q⊥

j = (I −UjUH
j )xj for all j. Then ‖qj‖ = cos θj and ‖q⊥

j ‖ = sin θj. Define the
normalized vectors

q̂j ≡
qj

‖qj‖
=

qj
cos θj

, j = 1, 2, . . . , p. (47)

By (47), the residuals r̂j satisfy

r̂j ≡ µjEjq̂j − νjAjq̂j−1

=
µjEjqj
cos θj

−
νjAjqj−1

cos θj−1
=

µjEj(xj − q⊥

j )

cos θj
−

νjAj(xj−1 − q⊥

j−1)

cos θj−1
. (48)

Denote the ith column of the identity matrix by ei. Pre-multiplying (48) by the unitary matrix ŶH
j ≡ [yj, Yj]

H and using (32)
and (33), we have, for all j,

ŶH
j r̂j =

µjβje1
cos θj

−
νjαje1
cos θj−1

−
µjŶH

j Ejq⊥

j

cos θj
+

νjŶH
j Ajq⊥

j−1

cos θj−1

=
µjβj cos θj−1 − νjαj cos θj

cos θj cos θj−1
e1 −

µjŶH
j Ejq⊥

j

cos θj
+

νjŶH
j Ajq⊥

j−1

cos θj−1
. (49)

Using the identity cos θ = 1 − 2 sin2 θ
2 and taking norm of (49), we obtain ‖r̂j‖ ≤ ηj for all j. By the minimization in (44),

we also have
p−

j=1

‖µjEjx̂j − νjAjx̂j−1‖
2

≤

p−
j=1

‖r̂j‖2
≤ ‖η‖

2. (50)

The inequalities (45) then follow from Theorem 4.1 and (50). �

Since (πµ, πν) converges to (πα, πβ) as θj → 0 for j = 1, 2, . . . , p, we have

sep((πµ, πν), {(Lj, Kj)}
p
j=1) → sep((πα, πβ), {(Lj, Kj)}

p
j=1),

which is a positive constant independent of the procedure, whenever (πα, πβ) is a simple eigenvalue pair of {(Aj, Ej)}
p
j=1. So

the refined periodic Ritz vectors {x̂j}
p
j=1 converge provided that ‖η‖, i.e., ρj, j = 1, 2, . . . , p in (46), tends to zero.
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Remarks. In order to ensure the convergence of ρj, we should renormalize the complex ordered pairs {(αj, βj)}
p
j=1 and

{(µj, νj)}
p
j=1 in Theorem 5.1 by periodic complex numbers of modulo one so that

(i) 
αj := |αj|, βj := |βj| (j = 1, 2, . . . , p − 1),

αp := |αp|e
ι


p∑

j=1
arg(αj)−arg(βj)


, βp := |βp|,

whenever πα ≠ 0 and πβ ≠ 0;
(ii)

αj := |αj|, βj := |βj| (j = 1, 2, . . . , p),

whenever πα = 0 or πβ = 0. A similar renormalization for {(µj, νj)}
p
j=1 can also be carried out. With these new normalized

ordered pairs {(αj, βj)}
p
j=1 and {(µj, νj)}

p
j=1, by Theorem 3.1 and the periodic Bauer–Fike theorem [5], we have ρj → 0 when

sin θj → 0 for all j. It follows from Theorem 5.1 that ̸ (xj, x̂j) → 0; i.e., unlike the periodic Ritz vectors, the refined Ritz
vectors are guaranteed to converge.

(iii) Again, let ϵ = maxj=1,2,...,p sin θj. Then using Taylor expansions and ignoring higher order terms, we have

ηj ≤ ρj + (|µj| ‖Ej‖ + |γj| ‖Aj‖)ϵ. (51)

We now propose a numerical procedure to compute the refined periodic Ritz vectors efficiently and reliably.
From (44), the set of refined periodic Ritz vectors can be computed via the following constrained minimization problem

min
ẑ

f (ẑ) ≡

p−
j=1

‖µjEjUjẑj − νjAjUj−1ẑj−1‖
2

subject to cj(ẑ) ≡ ẑHj ẑj − 1 = 0 (j = 1, 2 . . . , p),

(52)

where ẑ ≡ [ ẑ⊤

1 , . . . , ẑ⊤
p ]

⊤
∈ Ckp. Newton’s method can be applied to the Lagrangian function of the constrained optimiza-

tion problem (52), with the periodic Ritz vectors utilized as the feasible initial iterate. An approximate solution to (52) will
be acceptable in the sense of Theorems 3.1, 4.1 and 5.1 if the associated residuals are reasonably small.

Remarks. (i) For periodicity p = 1, the minimization problem (44) can be solved via the singular value decomposition
(SVD). Indeed, as mentioned in [26,27], it is easily seen that the refined Ritz vector x̂1 = U1ẑ1, where ẑ1 is the right singular
vector of (µ1E1−ν1A1)U1 corresponding to its smallest singular value. Unfortunately, the refined periodic Ritz vectors {x̂j}

p
j=1

with periodicity p ≥ 2 cannot be computed via (52) by any SVD-like algorithm since, instead of ‖[ ẑ⊤

1 , ẑ⊤

2 , . . . , ẑ⊤
p ]

⊤
‖ = 1,

the constraints ‖ẑj‖ = 1 (j = 1, 2, . . . , p) have to be satisfied simultaneously.
(ii) The Newton optimization of (52) is straightforward, but can be expensive since EjUj and AjUj−1 (j = 1, 2, . . . , p),

though already available when forming the periodic Rayleigh–Ritz pairs {(Mj,Nj)}
p
j=1, are n × k. However, it is possible to

reduce the optimization problem to amuch smaller onewhen the Rayleigh–Ritzmethod is applied to certain special periodic
Krylov subspaces. In Section 6, we will consider a periodic Arnoldi process that generates periodic orthonormal bases of the
periodic Krylov subspaces. Based on it, we propose the refined periodic Arnoldi method and show that Newton optimization
is particularly efficient.

6. Refined periodic Ritz vectors from a periodic Arnoldi process

Recall the eigen-equations in (1):

βjAjxj−1 = αjEjxj (j = 1, 2, . . . , p).

Without loss of generality, Ej can be assumed to be nonsingular, as a shift can always be applied to the periodic eigenvalue
problem. To apply the Arnoldi process for matrix products [17] to our periodic matrix pairs, we may consider two different
products

Pl ≡ (E−1
p Ap)(E−1

p−1Ap−1) · · · (E−1
1 A1), Pr ≡ (ApE−1

p−1)(Ap−1E−1
p−2) · · · (A1E−1

p ).

First, construct A ∈ Rnp×np from C in (3) by substituting αj = 0, βj = −1 (j = 1, 2, . . . , p). Similarly, denote by E the
matrix constructed with αj = 1, βj = 0 (j = 1, 2, . . . , p) in (3). Denote C in (3) slightly differently as C(A, E; α, β),
with α = [α1, . . . , αp]

⊤ and β = [β1, . . . , βp]
⊤. From the equivalence of (1) and (2) to (4) and (5), respectively, we can

see clearly that C(A, E; α, β) defines the periodic eigenvalue problem under consideration. An appropriate shift σ can be
applied to C(A, E; α, β), producing an equivalent periodic eigenvalue problem defined by C(A, E − σA; α, β). Obviously,
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an eigenvalue (πα, πβ) = (
∏p

j=1 αj,
∏p

j=1 βj) for C(A, E; α, β) is transformed to (π̃α, π̃β) =
∏p

j=1 αj,
∏p

j=1(βj + σαj)

for

C(A, E − σA; α, β), with identical eigenvectors and βj + σαj ≠ 0 for all j.
Utilizing Pl, the Arnoldi process is applied to the equivalent eigenvalue equations after inverting Ej:

βjE−1
j Ajxj−1 = αjxj (j = 1, 2, . . . , p),

resulting in the refinement of the corresponding periodic Ritz vectors as summarized in (52).
Alternatively with Pr , we consider another set of equivalent eigenvalue equations:

βjAjE−1
j−1(Ej−1xj−1) = αj(Ejxj)

⇒ βjAj(Ej−1xj−1) = αj(Ejxj), (53)

where Aj ≡ AjE−1
j−1 (j = 1, 2, . . . , p) and Pr =

∏1
k=p Ak.

With the k-step periodic Arnoldi process for {Aj}
p
j=1, we have

A1Up = U1H1, . . . , AjUj−1 = UjHj, . . . ,

ApUp−1 = UpHp + hk+1,ku
p
k+1e

⊤

k , (54)

where H1, . . . ,Hp−1 ∈ Ck×k are upper triangular and Hp ∈ Ck×k is upper Hessenberg. DenoteHp =


Hp

hk+1,ke
⊤
k


, we have

ApUp−1 = [Up|u
p
k+1]

Hp.

It is easy to show that Hj = MjN−1
j (j = 1, 2, . . . , p), withMj and Nj as defined in (20).

Without loss of generality, assume νj = 1 (∀j). We then select x̂j (j = 1, 2, . . . , p) from

min
x̂j

p−
j=1

‖Ajx̂j−1 − µjEjx̂j‖2

subject to x̂j ∈ span(E−1
j Uj), ‖x̂j‖ = 1 (j = 1, 2 . . . , p).

(55)

It is easy to show that the refinement in (55) is equivalent to the one in (44) with the periodic Arnoldi process providing
{Uj}, when {E−1

j Uj} are orthogonalized. There is no reason in doing so because of the saving in reusing computed quantities
from the periodic Arnoldi process, as shown below.

From (55), the set of refined periodic Ritz vectors can be computed via the following constrained minimization problem

min
ẑ

f (ẑ) ≡

p−
j=1

‖Aj(E−1
j−1Uj−1)ẑj−1 − µjEj(E−1

j Uj)ẑj‖2

subject to ‖(E−1
j Uj)ẑj‖ = 1 (j = 1, 2 . . . , p),

(56)

where ẑ ≡ [ ẑ⊤

1 , . . . , ẑ⊤
p ]

⊤
∈ Ckp. By (54), we have

min
ẑ

f (ẑ) ≡

p−
j=1

‖Aj(E−1
j−1Uj−1)ẑj−1 − µjEj(E−1

j Uj)ẑj‖2

⇒ min
ẑ

f (ẑ) ≡

p−1−
j=1

‖Uj(Hjẑj−1 − µjẑj)‖2
+

[Uj|uk+1]

Hpẑp−1 − µp

[
ẑp
0

]2

⇒ min
ẑ

f (ẑ) ≡

p−1−
j=1

‖Hjẑj−1 − µjẑj‖2
+

Hpẑp−1 − µp

[
ẑp
0

]2 . (57)

Then we consider the Lagrangian function of the constrained optimization problem (56):

L(ẑ, λ) = f (ẑ) +

p−
j=1

λj(ẑHj Bjẑj − 1), (58)

where λ = [λ1, . . . , λp]
⊤, Bj ≡ (E−1

j Uj)
⊤(E−1

j Uj).
The derivatives of L(ẑ, λ) are:

f1 ≡
∂L
∂ ẑ1

= 2(µ2
1ẑ1 − µ1H1ẑp + H⊤

2 H2ẑ1 − µ2H⊤

2 ẑ2 + λ1B1ẑ1),

fj ≡
∂L
∂ ẑj

= 2(µ2
j ẑj − µjHjẑj−1 + H⊤

j+1Hj+1ẑj − µj+1H⊤

j+1ẑj+1 + λjBjẑj) (j = 2, . . . , p − 2),
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fp−1 ≡
∂L

∂ ẑp−1
= 2(µ2

p−1ẑp−1 − µp−1Hp−1ẑp−2 +H⊤

p
Hpẑp−1 − µpH⊤

p ẑp + λp−1Bp−1ẑp−1),

fp ≡
∂L
∂ ẑp

= 2(µ2
p ẑp − µpHpẑp−1 + H⊤

1 H1ẑp − µ1H⊤

1 ẑ1 + λpBpẑp);

fp+j ≡
∂L
∂λj

= ẑHj Bjẑj − 1, (j = 1, 2, . . . , p).

We then apply Newton’s method to f = [f ⊤

1 , . . . , f ⊤

2p]
⊤

= 0, which can be formulated as[
ẑ
λ

]
new

=

[
ẑ
λ

]
− J−1

f f , Jf =

[
J11 J12
JH12 0

]
,

where J12 = 2(B1z1 ⊕ · · · ⊕ Bpzp) and

J11 ≡



∆1 H⊤

2
H1H2 ∆2 H⊤

3
. . .

. . .
. . .Hj ∆j H⊤

j+1
. . .

. . .
. . .Hp−1 ∆p−1 H⊤

pH⊤

1
Hp ∆p


,

withHj ≡ −µjHj (j = 1, 2, . . . , p) and

∆j = µ2
j Im + H⊤

j+1Hj+1 + λjBj (j = 1, . . . , p − 2),

∆p−1 = µ2
p−1Im +H⊤

p
Hp + λp−1Bp−1,

∆p = µ2
pIm + H⊤

1 H1 + λpBp.

After convergence of the Newton optimization step, we obtain the refined {ẑj}
p
j=1, and in turn the refined Ritz vectors

x̂j = E−1
j Ujẑj.

Note that the efficiency of the above Rayleigh–Ritz method with refinement comes from the fact that the matrices
Hj, Bj ≡ (E−1

j Uj)
⊤(E−1

j Uj) ∈ Rk×k (j = 1, 2, . . . , p) andHp ∈ R(k+1)×k are small in dimensions (relative to n). In addition,
Hj and E−1

j Uj (j = 1, 2, . . . , p) are inherited from the periodic Arnoldi process, without further computations required.

7. Numerical examples

In the following numerical experiments, we shall illustrate the convergence of refined periodic Ritz vectors and the
feasibility of our refinement strategy. All computations were performed in MATLAB/version 6.5 on a PC. The machine
precision is approximately 2.22 × 10−16.

Example 1. Consider the periodic matrix pairs {(Aj, Ej)}
p
j=1 with periodicity p = 3, with

Aj = diag(0, 1, −1), Ej = I3, j = 1, 2, 3.

It is easily seen that xj = [ 1, 0, 0 ]
⊤

∈ R3, j = 1, 2, 3, are the periodic right eigenvectors of {(Aj, Ej)}
p
j=1 corresponding to

the simple eigenvalue λ ≡ πα/πβ = 0. Assume that by some method (e.g. the periodic Arnoldi algorithm or the periodic
Krylov–Schur algorithm presented in [17]), we have come up with the orthonormal bases

Uj =

1 0
0 1/

√
2

0 1/
√
2

 , j = 1, 2, 3.

Then the periodic Rayleigh–Ritz matrix pairs {(Mj,Nj)}
p
j=1 are given by

Mj = U⊤

j AjUj−1 =

[
0 0
0 0

]
, Nj = I2, j = 1, 2, 3.

Thus, any set of nonzero vectors, say the unnormalized zj = [ 1,
√
2 ]

⊤ (j = 1, 2, 3), forms the periodic right eigenvectors
of {(Mj,Nj)}

p
j=1 corresponding to the zero eigenvalue. Then we have x̃j ≡ Ujzj = [ 1, 1, 1 ]

⊤ (j = 1, 2, 3) as the approximate
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periodic eigenvectors, which are completely wrong. Therefore, the periodic Rayleigh–Ritz procedure can fail, even though
the spaces {X̃j}

p
j=1 ≡ {span(Uj)}

p
j=1 contain the desired eigenvectors. However, refinement finds the refined periodic Ritz

vectors x̂j = xj, j = 1, 2, 3 exactly.

In reality, we cannot expect Mj to be exactly zero. For example, if we perturb each Uj by a matrix of random normal
variables with standard deviation of 10−4, then we compute the periodic Rayleigh–Ritz matrix pairs {(Mj,Nj)}

p
j=1 again by

Mj ≡ V⊤

j AjUj−1 = (U⊤

j Uj)
−1U⊤

j AjUj−1, Nj ≡ V⊤

j EjUj = I2

for j = 1, 2, 3. Applying the Rayleigh–Ritz method, the approximate periodic Ritz vectors corresponding to the smallest
eigenvalue of the periodic matrix pairs {(Mj,Nj)}

p
j=1 are

x̃1 =

8.9825e–01 3.1098e–01 3.1092e–01

⊤
,

x̃2 =

−9.2454e–01 2.6936e–01 2.6930e–01

⊤
,

x̃3 =

8.5145e–01 3.7075e–01 3.7074e–01

⊤
,

completely meaningless approximations to the original eigenvectors xj = [ 1, 0, 0 ]
⊤ (j = 1, 2, 3).

On the other hand, the refined periodic Ritz vectors {x̂j}
p
j=1 are

x̂1 =

1.0001e+00 2.8944e–05 −2.8946e–05

⊤
,

x̂2 =

9.9997e–01 −4.8199e–05 4.8196e–05

⊤
,

x̂3 =

1.0000e+00 3.3310e–05 −3.3306e–05

⊤
,

which are excellent approximations to the original eigenvectors xj = [ 1, 0, 0 ]
⊤ (j = 1, 2, 3) of the periodic matrix pairs

{(Aj, Ej)}
p
j=1, in view of perturbation matrices with norms of order 10−4.

Example 2. In this example we look more at the convergence of the refined periodic Ritz vectors {x̂j}
p
j=1 as summarized in

Theorem 5.1. For j = 1, 2, . . . , p, let

Aj =


1 − sinφj 0

21/p . . .

. . . − sinφj

0 n1/p

 , Ej =


n1/p cosφj 0

(n − 1)1/p
. . .

. . . cosφj
0 1

 ,

where φj = 2π j/p for all j. We consider the periodic matrix pairs {(Aj, Ej)}
p
j=1 with p = 8, n = 100, 500, 1000.

For the Ritz value pair (πµ, 1) and approximate periodic eigenvectors {x̃j} computed by the periodic Krylov–Schur
algorithm in [17] and the refined periodic Ritz vectors {x̂j}

p
j=1 computed by Newton’s method, the quantities ‘‘res1’’, ‘‘res2’’,

‘‘sin1’’ and ‘‘sin2’’ are defined as

sin1 = max
1≤j≤p

sin ̸ (x̃j, xj), sin2 = max
1≤j≤p

sin ̸ (x̂j, xj),

res1 = max
1≤j≤p

‖Ajx̃j−1 − µjEjx̃j‖2, res2 = max
1≤j≤p

‖Ajx̂j−1 − µjEjx̂j‖2,

where the periodic eigenvectors {xj}
p
j=1 are computed from (4) with (αj, βj) = (j1/p, (n − j + 1)1/p) (j = 1, . . . , n).

The numerical results for the largest eigenvalue λ ≡ πα/πβ = n are shown in Table 1. Here k is the dimension of
periodic Krylov subspaces. FromTable 1, the refined periodic Ritz vectors {x̂j}

p
j=1 converge to the periodic eigenvectors {xj}

p
j=1

corresponding to λ = nwhen the dimensions of Krylov subspaces increase.
For the results in Table 1, we have the following comments.

(1) The quantities sin2 (the sine of the maximum angle between the refined periodic Ritz vectors and the eigenvectors)
exceeds sin1 (the sine of themaximumangle between the periodic Ritz vectors and the eigenvectors) twicewhen k = 10
and n = 500, 1000, when the bases for Uj from the Arnoldi process do not contain enough information.

(2) The quantity sin2 is bounded by ‖η‖/sep as stated in Theorem 5.1. From our numerical experiments, the bound is sharp
and over-estimates sin2 by 100 folds for n = 100, 500, to a sharper 10 folds for n = 500, 1000.

(3) Refinement always improves the accuracy of the Ritz vectors, with res1 > res2 in Table 1. However, the improvement
is not drastic for this example, but could have been as suggested by Example 1 or Section 4.

(4) Increasing k from 10 to 15 in the Arnoldi process improves the accuracy of the Ritz vectors, but increasing it further from
15 to 25 worsen the accuracy slightly. Refinement is clearly necessary if higher accuracy is required.
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Table 1
Numerical results for Example 2.

n k sin1 sin2 ‖η‖/sep res1 res2

100 10 2.461e−9 2.284e−9 3.890e−7 2.283e−9 8.820e−10
100 15 8.517e−14 5.370e−14 3.736e−12 1.950e−13 2.913e−14
100 25 6.606e−13 6.250e−13 8.318e−11 5.640e−13 4.799e−14

500 10 1.738e−8 2.477e−8 2.442e−6 1.845e−8 6.661e−9
500 15 2.050e−12 1.918e−12 2.110e−10 3.176e−12 6.682e−13
500 25 3.178e−12 2.295e−12 6.796e−11 4.750e−12 5.032e−13

1000 10 2.231e−8 2.608e−8 4.099e−7 2.412e−7 8.410e−8
1000 15 1.075e−12 4.919e−13 6.252e−12 1.358e−11 1.534e−12
1000 25 2.317e−12 7.646e−13 7.264e−12 2.353e−11 2.907e−12

8. Conclusions

In this paper, we first proposed the periodic Rayleigh–Ritz method for the eigen-problem of periodic matrix pairs and
showed how to compute the periodic Ritz values and the periodic Ritz vectors. Then we established convergence theory
of the Ritz values and the periodic Ritz vectors, revealing the possible non-convergence of the periodic Ritz vectors. To
overcome this drawback, we introduced the refined periodic Ritz vectors, which, unlike ordinary periodic Ritz vectors, are
guaranteed to converge whenever the angles between desired periodic vectors and the approximate periodic subspaces
approach zero. These results generalized the corresponding ones of the standardRayleigh–Ritz approximation and its refined
version in [26,27,22]. Numerical examples demonstrated that the refined periodic Ritz vectors are excellent approximations
to the desired periodic eigenvectors, and confirmed the sharpness of the upper bounds in (45) for the angles between the
refined periodic Ritz vectors and the periodic eigenvectors. The computation of the refined Ritz vectors is especially efficient
when coupled with the periodic Arnoldi process in Section 6.
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