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Finance theory is derived in accordance with utility function and risk aversion theory. The
major finance theory based upon utility function and risk aversion theory includes capital
asset pricing model, option pricing model, and hedging theory. In this research project, we
firstly extend the risk aversion parameter estimation methods proposed by Gibbons and
Brown (1985). Secondly, we review alternative utility functions applied in hedging and
hedge ratio estimation and also alternative hedge ratio models and their estimation
methods. Finally, we integrate the estimate of risk aversion parameter with hedging
theory and hedge ratio estimation in terms of real-world data. The data used in this
research include market rate of return, risk-free rate, and the spot and futures data of
foreign exchange, and the spot and futures data of S&P 500 index. In sum, this research
has contributed theoretically and empirically in financial research.
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II.

The main results of this project include two parts as follows:

Part A: Econometric Approachesfor Utility-Based Asset Pricing M odel:
Theory and Empirical Results

Abstract

The Journal of Finance has published an important paper entitled “A Simple Econometric
Approach for Utility-Based Asset Pricing Model” by Brown and Gibbon (1985). The main
purpose of this paper is to extend the research of Brown and Gibbons (1985) and Karson et al.
(1995) in estimating the relative risk aversion (RRA) parameter £ in utility-based asset pricing

A

model. First, we review the distributions of RRA parameter estimate /[ . Then, a new method

to the distribution of ,3 is derived, and a Bayesian approach for the inference of £ is

proposed. Finally, empirical results are presented by using market rate of return and riskless

rate data during the period December 1926 through December 2001.

A. Introduction

Brown and Gibbons (1985) and Karson, Cheng, and Lee (1995) have proposed different
methods for estimating the relative risk aversion parameter. This paper first proposes a new
approach to deal with the statistical distribution of the relative risk aversion estimator derived
by Karson, Cheng, and Lee. In addition, a Bayesian statistical methodology is used to construct
the interval estimation for the relative risk aversion. Furthermore, it also examines the
statistical distribution of excess market rate of return in accordance with Box and Cox (1964)
transformation to determine whether the lognormal distribution is suitable for the data at hand
in estimating the relative risk aversion.

In section B, an exact distribution for parametric estimation of the relative risk aversion (RRA)

is examined in detail. In section C an alternative method to the distribution of 7 is explored.

Section D proposed a Bayesian approach for the inference of (/. Empirical results are

presented in section E.  Finally, section F summarized the results of the paper.

B. A brief literaturereview of RRA Estimation

Let Ry be the market rate of return, Rbe the riskless rate of return, X=(1+Ry)/(1+Ry) and
Y=logX. Furthermore, let {R\x} and {Rs}, t=1,..., T, be the observed samples. Then the

sample mean and the sample variance of excess market rate of return are



Y =logX = tle , (1)
and
T [r—
(Yt _Y)Z
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Assuming normality for ¥ with mean x and variance o, Brown and Gibbons (1985)

established the following relative risk aversion (RRA),

uo 1
= 4, 3
p o’ 2 3
Following Brown and Gibbons, a natural maximum likelihood estimator for S is
Y 1
b=—+—. 4
s* 2 )

Using asymptotic theory, Brown and Gibbons have derived the variance of JTh as:

- E{n%,} ] +Var{ln%}
VariTh} = A )

Alternatively, following Karson et al. (1995), the minimum variance unbiased (MVU)

estimator of fis

»_ (T-3)Y 1
Prns T2 ©

In case the normality assumption for Y is violated, the estimator b canbe inconsistent, as
pointed out by Brown and Gibbons. In order to remedy this possible shortcoming, they

proposed a method of moment estimator which is the solution of
1< _
f(b)=?Z(X,—1)X,b=0, (7)
t=1
with the asymptotic variance
E{[(X, -DX, "1}
[E{(X, -DX; log X,]*

where [ is the relative risk aversion.

Var(\'Th) = (8)

Karson et al. (1995) have derived the exact distribution of ,3, which is defined in Equation (6),

as:
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The exact distribution presented in the above equation is expressed in terms of an infinite sum,

therefore, it is not easy to compute in practice.

A

C. A new method to thedistribution of f

~

The exact distribution of /J obtained by Karson et al. (1995) as given in Equation (9) is not

~

easy to compute in practice. We will next propose a new method to the distribution of /. We

first note that the relative risk aversion estimator ,3 , as defined in Equation (6), can be rewritten
as:

(T—3)f’+l_ (T-3)Y/ o> +l_(T—3)f//O'Z 1

B - _ - 12
g (T-DS* 2 (T-DS*/o* 2 w T (12)

where Y and W =(T —1)S? /o are independent, and ¥ ~N (i, o*/T), W~ 1.

It’s easy to show that

()-8, (13)

and

T-3 [l+ 2u°
(T-50" T (T-3)c’

o2 =V(f)- 1, (14)

as given in Karson et al.

From Equation (12) we can express the distribution of £ as
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B = F(Bw)gtwaw, (15)

A T B
where  f (,8|w) is the p.d.f. of normal distribution with mean (T =3u +%’ variance
ow
T _ 2
a3 3 3)2 , and g(w) is the p.d.f. of y;
w' To

The distribution of S given in Equation (15) is a one-dimensional integral. We will next

consider two approximations:

1B~ f(B|w) (16)

where vAv is the mode of y. , whichis T-3. Following Ljung and Box (1980), this

approximation will be reasonable if g(w) is symmetric and concentrated. This will be the

case when T is reasonably large. Under this approximation, £ is normally distributed as

n T-1
indicated in Equation (15) and with w=7-3 and o’ = ﬁ S,
A better approximation is:
A 1 L A ;
FBY= 2 FBw?), (17)
i=1

where w” isthe i” draw from ., Gelfand and Smith (1990), Casella and George
(1992).
L 00 A
It is noted that %Zf(ﬂ‘w(i)) converges to .[0 f(ﬁ|w)g(w)dw as L — oo, and the
i=1
approximation is quite good for L large enough. The theory behind the approximation (17) is

the fact that the expected value of the conditional density f( &|W) , when W is a random

variable, is

ELFBI=[ £(Bwigwdw= £ (). (18).

Thus, the formula in Equation (17) mimicks Equation (18), because w'",..., w" approximate a

random sample from g(w). Alternatively, we can think of Equation (18) as E(X)= u where



. . = 1 . .
L can be efficiently estimated by the sample mean X =— Z X, ,with X,,,.., X beinga
n o

random sample from the distribution of X. For large n, X converges to . Similarly, for

L n . A
large L, %Z f(B|w"”)converges to If(ﬂ|w)g(w)dw , as claimed above. This is also called
i=1

the Rao-Blackwellization and is quite popular in Markov chain Monte Carlo method, a recent

fashion in Bayesian statistics. For more references, see Gilks et al. (1996).

The distribution of S is useful for testing hypothesis regarding f because for any given S,

the 100a% value can be constructed as given in Karson et al. (1995). However, Karson et al.
(1995) did not deal with the issue of the confidence interval of £ under asymmetric

distribution of f. This can be overcome by appealing to the asymptotic normal distribution of

ﬁ as given below,
B~ N(B, G;) :

where o’ is given in (14).
B

One disadvantage of the asymptotic normal distribution for £ is the symmetric assumption of

the distribution of /£, although the exact distribution of [ is not symmetric. A remedy of

this problem is to consider the posterior distribution of [ using a Bayesian approach, which

will lead to a natural posterior interval of f.

D. A Bayesian approach for theinferenceof g
In this section will consider the posterior distribution of £ using a noninformative prior

distribution of # and . Our ultimate goal is to contract a posterior interval of

P.LletY, Y, ...... Yr be i.i.d. M(i,0%) and Y=.,Y,,.....Y;). The likelihood function of u

and o7 is:

z%w—nsﬂw—?)z}
o

L(u,o’ )= 2m) " (0?) " Pe. (19)



Using the noninformative prior

1
P(,U,UZ)OC?,

and considering the transformations:
1
p =i2+—,andc72 =c?,
oc” 2

we have the following posterior density of fand o*:

To? 1 Y ,
o anst A
P(B,c’|Y)x(c?) 2e > e
(20)
=P(plo’*, Y)P(c’[Y),
Y Q2
where Slo”,Y ~ N(%+l, ! -, and 9=w~lffl.
~ o 2 To
Thus,
P(BY) = [ P(Bl0,Y)P(0]Y)d0, (21)
0
where
poy~nN—2 1 0 22)
(T-1S* 2°T(T-1S
and
2
oY ~ 71 23)

The first two posterior moments of £ can be expressed as follows:



E(BY) = SY—ZJ% , (24)

V(B|Y)=EVar(B

o,Y)+VarE(p|o,Y)

T-1 Y
= +(
T(T-1S* (T-1S*

)2 2(T 1)

11 2Y 2
=gl
S*°T (T-1S

1. (25)
This can be compared with Var( ,@) given in (17).

As for the distribution of /2, the posterior distribution of [, as given in Equation (21),

can be approximated by

P(AIY) = S P(AIO".Y), 26)

where 6" isthe ith draw of ;.

Thus, an approximate 1—«a posterior interval (a,b) of S can be constructed from

[[P(pIV)Ap=1-0. 27)
It is noted that equal tail probability can be used in selecting a and b, i.e., a and b can be

selected such that both tail probabilities are %. A better result is possible if we use the highest

probability density (HPD) interval (a”,b") to insure the shortest posterior interval. However,
if the posterior distribution of /S is nearly symmetric, as it is the case here, the construction of

the HPD interval (a ,b") is not highly recommended.

E. Empirical Results

To estimate the RRA parameter f, we use market rate of return and riskless rate data during the
period of December 1926 through December 2001. The summary statistics on the log month
“Excess Return” on the value-weighted indexes (1926-2001) is presented in Table 1. And, the
summary statistics on the log month “Excess Return” on the equal-weighted indexes (1926 -
2001) is presented in Table 2.



In both Tables 1 and 2, column 1 presents the subperiods while the number in the parentheses
of each subperiod stands for the number of months. For example, in the first row of column 2,
the number 912 represents for 912 monthly observations; in the fourth row of column 2, the
number 76 stands for 76 annual observations; and finally, in the tenth row of column 2, the
number of 44 stands for 44 tri-monthly observations. In both Table 1 and 2, Sample Mean,
Sample Standard Deviation, Sample Skewness, and Sample Kurtosis are presented in column 3,
4,5,and 6. Finally, the column 7 presents K-S Test Statistic for testing the normality of data
in terms of different observation horizons.

We have used two alternative methods — Parametric with Lognormal Distribution Method and
Method of Moments, to estimate the relative risk aversion parameter . The results are
presented in Table 3 and Table 4, respectively. The data in Table 3 are estimated in terms of
value-weighted indexes and in Table 4 are estimated in terms of equal-weighted indexes. In
columns 1 and 2 in both Tables 3 and 4 are identical to column 1 and 2 in both Tables 1 and 2.
Estimated RRA parameters in terms of Method of Moments and Parametric with Lognormal

Distribution Method presented in columns 3 and 5, respectively.

F. Summary

In this project, we first briefly discussed the RRA estimation methods. Then, we use monthly
market rate of return and riskless rate data to do the empirical study. The validity of the
lognormal distribution for the excess market rate of return are also examined and tested before
the RRA parameters are estimated. We use both the Parametric with Lognormal Distribution
Method and the Method of Moments to estimate RRA parameters.

Table 1. Summary Statistics on the Log Month “Excess Return”
on the Value-Weighted Indexes (1926-2001)

Value-Weighted No. of |Sample| Sample | Sample | Sample | K-S Test
Sub-period  |Observations| Mean | Std. Dev. |Skewness|Kurtosis | p-Value

1/1926-12/2001(1) 912 0.0050| 0.0550] -0.4983| 6.8096| 0.0002
1/1926-12/2001(3) 304 0.0022| 0.0532| -1.5471| 8.4415| 0.0047
1/1926-12/2001(6) 152 0.0113] 0.0454] -0.1009, 3.9826| 0.1302
1/1926-12/2001(12) 76 0.0145| 0.0375] -1.1509| 3.6284| 0.0512
1/1926-12/2001(24) 38 0.0131] 0.0427| -1.1619/ 3.8003| 0.2691
1/1926-12/1966(1) 492 0.0061| 0.0615] -0.4118 7.1200{ 0.0001
1/1967-12/1980(1) 168 0.0017| 0.0479| -0.2801| 0.7115] 0.4240
1/1981-12/2001(1) 252 0.0052| 0.0455| -1.0976| 4.4722| 0.1534
1/1991-12/2001(1) 132 0.0072|  0.0424| -0.9536| 1.9747| 0.1083
1/1991-12/2001(3) 44 0.0079]  0.0408] -0.3622| -0.0172] 0.7291
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Table 2. Summary Statistics on the Log Month “Excess Return”
on the Equal-Weighted Indexes (1926-2001)

Equal-Weighted No. of Sample | Sample | Sample |Sample | K-S Test
Subperiod Observations| Mean |Std. Dev. |Skewness|Kurtosis| p-Value
1/1926-12/2001(1) 912 0.0072| 0.0725| 0.3385| 8.5721| 0.0000
1/1926-12/2001(3) 304 -0.0005| 0.0682| -0.8294| 7.2269, 0.0023
1/1926-12/2001(6) 152 0.0056| 0.0601| 0.0482| 3.8892| 0.2176
1/1926-12/2001(12) 76 0.0061| 0.0526| -1.1844| 3.2306| 0.2125
1/1926-12/2001(24) 38 0.0042|  0.0590, -1.2534| 2.9910] 0.3926
1/1926-12/1966(1) 492 0.0085| 0.0821| 0.5936| 8.4501| 0.0000
1/1967-12/1980(1) 168 0.0071| 0.0671| -0.2185| 4.5158| 0.8312
1/1981-12/2001(1) 252 0.0048| 0.0535| -1.0498| 9.0858| 0.3193
1/1991-12/2001(1) 132 0.0100]  0.0530, -0.5031| 6.0060] 0.5043
1/1991-12/2001(3) 44 0.0037| 0.0423| -0.7094| 1.2108| 0.5747
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Table 3 Estimation of Relative Risk Aversion on the Value-Weighted Indexes (1926-2001)

Method of
1e-Weighted No. of Moments Parameteric with Lognormal Distribution Hausman's
Specification
ubperiod Observations | RRA | Std. Error |RRA_ml|Std. Error | RRA mvu | Std. Error Test p-Ve
26-12/2001(1) 912 2.115 0.621 2.166 0.607 2.163 0.607 137.978| 0.
26-12/2001(3) 304 1.264 1.088 1.291 1.080 1.286 1.084 12.778| 0.
26-12/2001(6) 152 5.767 2.059 5.990 1.895 5918 1.910 11.657| 0.
26-12/2001(12) 76 8.872 3.726] 10.839 3.489 10.563 3.554 171.964| 0.
26-12/2001(24) 38 6.655 4.359 7.688 4.144 7.299 4.297 22.181| 0.
26-12/1966(1) 492 2.062 0.762]  2.110 0.741 2.103 0.742 35914, O
67-12/1980(1) 168 1.248 1.618 1.248 1.613 1.239 1.623 0.000f 1
81-12/2001(1) 252 2.881 1.440 3.039 1.404 3.018 1.410 61.444| O
91-12/2001(1) 132 4.224 2.148 4.508 2.111 4.447 2.129 67.562| 0
91-12/2001(3) 44 5.173 3.855 5.221 3.830 5.001 3.936 0.528) O
Table 4 Estimation of Relative Risk Aversion on the Equal-Weighted Indexes (1926-2001)
“qual-Weighted No. of Method of Moments | Parameteric with Lognormal Distribution Hausman's
Specification

Subperiod Observations | RRA | Std. Error [RRA ml|Std. Error| RRA mvu |Std. Error Test p-Va
926-12/2001(1) 912 1.878 0.478 1.873 0.461 1.870 0.462 1.428 0.
)26-12/2001(3) 304 0.386 0.843]  0.389 0.841 0.390 0.844 0.812| 0.
926-12/2001(6) 152 2.045 1.386] 2.041 1.362 2.020 1.371 0.037) 0.
926-12/2001(12) 76 2.577 2.246|  2.699 2.210 2.640 2.242 7.052| 0.
926-12/2001(24) 38 1.671 2.810 1.695 2.764 1.630 2.848 0.085| 0.
026-12/1966(1) 492 1.779 0.576 1.756 0.555 1.750 0.556 10.958| 0.
067-12/1980(1) 168 2.062 1.175]  2.076 1.163 2.057 1.170 1.174) 0.
981-12/2001(1) 252 2.108 1.215]  2.191 1.188 2.177 1.193 26.757| 0.
991-12/2001(1) 132 3.880 1.779]  4.065 1.700 4.011 1.715 16.438| 0.
991-12/2001(3) 44 2.526 3.644| 2544 3.593 2.449 3.686 0.039] 0.
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Part B: Alternative Hedge Ratio Estimates: Theory and Empirical Results

1. Introduction

One of the best uses of derivative securities such as futures contracts is in hedging. In
the past, both academicians and practitioners have shown great interest in the issue of hedging
with futures. This is evident from a large number of articles written in this area.

One of the main theoretical issues in hedging involves the determination of the optimal
hedge ratio. However, the optimal hedge ratio depends on the particular objective function to
be optimized. Many different objective functions are currently being used. For example,
one of the most widely used hedging strategies is based on the minimization of the variance of
the hedged portfolio (e.g., see Johnson, 1960; Ederington, 1979; and Myers and Thompson,
1989). This so-called minimum-variance (MV) hedge ratio is simple to understand and
estimate. However, the MV hedge ratio completely ignores the expected return of the hedged
portfolio.  Therefore, this strategy is, in general, inconsistent with the mean-variance
framework unless the individuals are infinitely risk-averse or the futures price follows a pure
martingale process (i.e., expected futures price change is zero).

Other strategies that incorporate both the expected return and risk (variance) of the
hedged portfolio have been recently proposed (e.g., see Howard and D'Antonio, 1984;
Cecchetti, Cumby and Figlewski, 1988; and Hsin, Kuo and Lee, 1994). These strategies are
consistent with the mean-variance framework. However, it can be shown that if the futures
price follows a pure martingale process, the optimal mean-variance hedge ratio will be the
same as the MV hedge ratio.

Another aspect of the mean-variance based strategies is that even though they are
improvement over the MV strategy, for them to be consistent with the expected utility
maximization principle, either the utility function needs to be quadratic or the returns should be
jointly normal. If neither of these assumptions is valid, the hedge ratio may not be optimal
with respect to the expected utility maximization principle. Some researchers have solved
this problem by deriving the optimal hedge ratio based on maximization of the expected utility
(e.g., see Cecchetti et al. (1988) and Lence (1995 and 1996)). However, this approach
requires the use of specific utility function and specific return distribution.

Some attempts have been made to eliminate these specific assumptions regarding the
utility function and return distributions. Some of them involve the minimization of mean
extended-Gini (MEG) coefficient, which are consistent with the concept of stochastic
dominance (e.g., see Cheung, Kwan and Yip, 1990; Kolb and Okunev, 1992 and 1993; Lien
and Luo, 1993a; Shalit, 1995; and Lien and Shaffer, 1999). Shalit (1995) has shown that if
the prices are normally distributed, the MEG based hedge ratio will be the same as the MV
hedge ratio.

Recently, hedge ratios based on the generalized semivariance (GSV) or lower partial

moments have been proposed (e.g., see De Jong, De Roon and Veld, 1997; Lien and Tse, 1998

14



and 2000; and Chen, Lee and Shrestha, 2001). These hedge ratios are also consistent with the
concept of stochastic dominance. Furthermore, these GSV based hedge ratios have another
attractive feature that they measure portfolio risk by the GSV, which is consistent with the risk
perceived by managers because of its emphasis on the returns below the target return (see
Crum, Laughhunn and Payne, 1981; and Lien and Tse, 2000). Lien and Tse (1998) have
shown that if the futures and spot returns are jointly normally distributed and if the futures
price follows a pure martingale process, the minimum-GSV hedge ratio will be equal to the
MYV hedge ratio.

Most of the studies mentioned above (except Lence (1995 & 1996)), ignore transaction
costs as well as investments in other securities. Lence (1995 & 1996) derives the optimal hedge
ratio where transaction costs and investments in other securities are incorporated in the model.
Using a CARA utility function, Lence finds that under certain circumstances the optimal hedge
ratio is zero, i.e., the optimal hedging strategy is not to hedge at all.

In addition to the use of different objective functions in the derivation of the optimal
hedge ratio, previous studies also differ in terms of the dynamic nature of the hedge ratio. For
example, some studies assume that the hedge ratio is constant over time. Consequently, these
static hedge ratios are estimated using unconditional probability distributions (e.g., see
Ederington, 1979; Howard and D'Antonio, 1984; Benet 1992; Kolb and Okunev, 1992 and
1993; and Ghosh, 1993). On the other hand, several studies allow the hedge ratio to change
over time. In some cases, these dynamic hedge ratios are estimated using conditional
distributions associated with models such as ARCH and GARCH (e.g., see Cecchetti et al.,
1988; Baillie and Myers, 1991; Kroner and Sultan, 1993; and Sephton, 1993a).  Alternatively,
the hedge ratios can be made dynamic by considering a multi-period model where the hedge
ratios are allowed to vary for different periods. This is the method used by Lien and Luo
(1993Db).

When it comes to estimating the hedge ratios, many different techniques are currently
being employed. These techniques range from simple to complex ones. For example, some
of them use such simple method as ordinary least squares (OLS) technique (e.g., see
Ederington, 1979; Malliaris and Urrutia, 1991; and Benet, 1992). However, others use more
complex methods such as the conditional heteroscadestic (ARCH or GARCH) method (e.g.,
see Cecchetti et al., 1988; Baillie and Myers, 1991; and Sephton, 1993a), the random
coefficient method (e.g., see Grammatikos and Saunders, 1983), the cointegration method (e.g.,
see Ghosh, 1993; Lien and Luo, 1993b; and Chou, Fan and Lee, 1996), and the
cointegration-heteroscadestic method (e.g., see Kroner and Sultan, 1993).

From the above discussion, it is clear that there are several different ways of deriving and
estimating hedge ratios. In this report, we review these different techniques and approaches,
and examine their relations.

The report is divided into four sections. In Section 2, alternative theories for deriving
the optimal hedge ratios are reviewed while some empirical results of hedge ratios are
discussed in Section 3. The Section 4 concludes with a summary.
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2. Alternative Theoriesfor Deriving the Optimal Hedge Ratio
The basic concept of hedging is to combine investment in the spots and futures to form

a portfolio that will eliminate (or reduce) fluctuations in its value. Specifically, consider a

portfolio consisting of C, units long spot position and C, units short futures position.' Let

S, and F, denote the spot and futures prices at time ¢, respectively. Since the futures

contracts are used to reduce the fluctuations in spot positions, the resulting portfolio is known
as the hedged portfolio. The return on the hedged portfolio, R,, is given by:

_CSR -CFR,
- C.S,

\ =R, —hR,,

(1a)
C . F - —
where h=-—/"is the so-called hedge ratio, and R, _ 5w =S, and R, _Fnoh are

st t t
so-called one-period returns on the spot and futures positions, respectively. Sometimes, the
hedge ratio is discussed in terms of price changes (profits) instead of returns. In this case, the
profit on the hedged portfolio, AV}, , and the hedge ratio, H , are, respectively, given by:

C,
AV, =C,AS,—C,AF, andH =F/’ (1b)
where AS, =S

t+1

—-S, and AF, = F,.
The main objective of hedging is to choose the optimal hedge ratio (either # or H). As

+1

mentioned above, the optimal hedge ratio will depend on a particular objective function to be
optimized. Furthermore, the hedge ratio can be static or dynamic. In subsections A and B,
we will discuss the static hedge ratio and then the dynamic hedge ratio.

It is important to note that in the above setup, the cash position is assumed to be fixed
and we only look for the optimum futures position. Most of the hedging literature assumes
that the cash position is fixed. This setup is suitable for financial futures. However, when we
are dealing with commodity futures, the initial cash position becomes an important decision
variable that is tied to the production decision. One such setup considered by Lence (1995,
1996) will be discussed in subsection C.

A. Static Case

In this section, we will discuss the following three alternative hedge ratios:

A. 1. Minimum-Variance Hedge Ratio
The most widely used static hedge ratio is the minimum-variance (MV) hedge ratio.
Johnson (1960) derives this hedge ratio by minimizing the portfolio risk, where the risk is

given by the variance of changes in the value of the hedged portfolio as follows:

! Without loss of generality, we assume that the size of the futures contract is one.
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Var(AV, )= C}Var(AS)+ C}Var(AF)-2C,C ,Cov(AS, AF ).

The MV hedge ratio, in this case, is given by:
. C,  Cov(AS,AF)

A P e

Alternatively, if we use definition (1a) and use Var(R,) to represent the portfolio risk, the MV

hedge ratio is obtained by minimizing Var(Rh) which is given by:
Var(R,)=Var(R,)+ thar(Rf )— ZhCov(Rs R, )
In this case, the MV hedge ratio is given by:

b= Cov(RS,Rf) ol

=p—=, 2b
’ Varini pO'f (20)

where p is the correlation coefficient between R, and R,, and o, and o, are standard

f >
deviations of R, and R, respectively. The attractive features of the MV hedge ratio are

that it is easy to understand and simple to compute. However, in general, the MV hedge ratio
is not consistent with the mean-variance framework since it ignores the expected return on the
hedged portfolio. For the MV hedge ratio to be consistent with the mean-variance framework
either the investors need to be infinitely risk-averse or the expected return on the futures

contract needs to be zero.

A.2. Optimum Mean-Variance Hedge Ratio
Various studies have incorporated both risk and return in the derivation of hedge ratio.
For example, Hsin ef al. (1994) derive the optimal hedge ratio that maximizes the following

utility function:

Max V(E(R,).0;4)=E(R,)-0.540;, (3)
;

where A represents the risk aversion parameter. It is clear that this utility function
incorporates both risk and return. Therefore, the hedge ratio based on this utility function
would be consistent with the mean-variance framework. The optimal number of futures

contract and the optimal hedge ratio are, respectively, given by:

cF [ER,) &
hy=——t o | 2 50 4
T7Cs |:AG; P } )

o,

One problem associated with this type of hedge ratio is that in order to derive the optimum
hedge ratio, we need to know the individual's risk aversion parameter. Furthermore, different
individuals will choose different optimal hedge ratio, depending on the values of their risk
aversion parameter.
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Since the MV hedge ratio is easy to understand and simple to compute, it will be
interesting and useful to know under what condition the above hedge ratio would be the same

as the MV hedge ratio. It can be seen from equations (2b) and (4) that if 4 —> o or
E (Rf) =0, h, would be equal to the MV hedge ratio 4,. The first condition is simply a

restatement of the infinitely risk-averse individuals. However, the second condition does not
impose any condition on the risk-averseness, and it is important. It implies that even if the
individuals are not infinitely risk averse, the MV hedge ratio would be the same as the optimal
mean-variance hedge ratio if the expected return on the futures contract is zero (i.e. futures
prices follow a simple martingale process). Therefore, if futures prices follow a simple
martingale process, we do not need to know the risk aversion parameter of the investor to find

the optimal hedge ratio.

A.3. Sharpe Hedge Ratio

Another way of incorporating the portfolio return in the hedging strategy is to use the
risk-return tradeoff (Sharpe measure) criteria. Howard and D'Antonio (1984) consider the
optimal level of futures contracts by maximizing the ratio of portfolio excess return to its

volatility:

Max 0 — M, (5)
Cy o,

where o = Var(Rh) and R, represents the risk-free interest rate. In this case, the optimal

number of futures position, C} , 1s given by:

o)
¢ - {1_; ( m ﬂ ©)

From the optimal futures position, we can obtain the following optimal hedge ratio:

s
o sy
Again, if E(R,)=0, h, reduces to:

hy = (; ]p, ®)
f
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which is the same as the MV hedge ratio /,. As pointed out by Chen et al. (2001), the

Sharpe ratio is a highly nonlinear function of the hedge ratio. Therefore, it is possible that
equation (7), which is derived by equating the first derivative to zero, may lead to the hedge
ratio that would minimize, instead of maximizing, the Sharpe ratio. This would be true if the
second derivative of the Sharpe ratio with respect to the hedge ratio is positive instead of
negative. Furthermore, it is possible that the optimal hedge ratio may be undefined as in the
case encountered by Chen et al. (2001), where the Sharpe ratio monotonically increases with

the hedge ratio.

3. Some Empirical Results of Hedge Ratios

In this section, we will demonstrate how three alternative hedge ratios described in equations
(2b), (4), and (7). To do the empirical work, we collect daily S&P index spot, S&P index
futures, foreign exchange spot of British Pound, Deutsche Mark, and Japanese Yen, and foreign
exchange futures of British Pound, Deutsche Mark, and Japanese Yen. The sample periods of

this data are described in column 2 of Table 1.

Hedge ratio estimate in terms of Equations (2b) and (7) are presented in Table 1. In Table 1,
hedge ratios are classified into (i) daily hedge ratio, (ii) weekly hedge ratio, and (iii) monthly
hedge ratio. The estimated inputs: E(R;), E(Ry), O, Tr, and p needed to estimate hedge ratio

in terms of Equation (7) are presented in Table 2.

Figure 1 presents hedge ratio estimates of S&P500 index in terms of Equation (4). Figure 2
presents hedge ratio estimates of the foreign exchange rates of US Dollar to UK Pound in
terms of Equation (4). Figure 3 presents hedge ratio estimates of the foreign exchange rates
of US Dollar to Deutsche Mark in terms of Equation (4). And, Figure 4 presents hedge ratio

estimates of the foreign exchange rates of US Dollar to Japanese Yen in terms of Equation (4).

4. Summary

In this report of the project, we have first review the literatures related to hedge ratio theories
and estimation methods. Then, we have collected necessary data of S&P500 index, exchange
rates of US Dollar to UK Pound, exchange rates of US Dollar to Deutsche Mark, and exchange
rates of US Dollar to Japanese Yen to estimate hedge ratios in terms of three alternative
methods. These three methods are (i) minimum-variance hedge ratio method, (ii) optimum

mean-variance hedge ratio method, and (iii) Sharpe hedge ratio method.
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Table 1 Hedge Ratio Estimatesin terms of Equations (2b) and (7)

06 70

0 8 36

9526

2397

0710 :

6 096"

Data Period Eq2b | Eq7 2 p Adjusted R-Square
S&P 500
Daily 1982/06/01~2003/09/04 0.8297 12454 6.11E-05 0.82974* 0.894153883
S&P 500
Weekly  [1982/06/01~2003/09/04 09481 21226 9.61E-05 0.94812* 0.967490283
S&P 500
Monthly [1982/06/01~2003/09/04 09519 0.2446 0.000365 0.95186* 0.984070912
US to UK
Daily 1986/01/02~2003/09/04 09214 009641 4.6E-06 0.92136* 0.824164369
US to UK
Weekly  [{1986/01/02~2003/08/29 09879 1.0807 1.11E-05 0.987/87* 0.934145664
US to UK
Monthly [1986/01/02~2003/08/20 09772 1.3067] 5.06E-05 0.97724* 0. 96 43
US to
Mark
Daily 1986/01/02~2001/12/14 09249 09873 341E-06 0.92458* 0.8213091646
US to
Mark
Weekly  [1986/01/02~2001/12/07 09817 1.0733 9.53E-07 0.98174* 0. 9451
US to
Mark
Monthly [1986/01/02~2001/12/12 09881 11005 -9.1E-06 0.98812* 0. 9 8 47
US to Yen
Daily 1986/01/02~2003/09/04 09628 1095 b5.64E-06 0.96275* 0.870
US to Yen
Weekly  [1986/01/02~2003/08/29 09994 12059 1.11E-05 0.99935* 0. 96 13
US to Yen
Monthly (1986/01/02~2003/08/20 1008 15179 1.03E-05 1.00795* 0.977
* 0.0155%
* 5% 0
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Table 2: Inputsfor Estimating Hedge Ratio in ter ms of Equation (7)

B(Ry)] B(Ry)] 8 ™ 8]
S&P 500
Daily 0.000457109 0.000477325 0.010635 0.01212 . 904
S&P 500
Weekly 0.002256921, 0.00227909 0.02267 0.023519 . 928
S&P 500
Monthly 0.010054992 0.010180161 0.049349 0.051432 . 93
US to UK
Daily 3.72134E-05 3.5395E-05 0.00632 0.006227 . 990
US to UK
Weekly 0.000202561 0.000193806 0.013931 0.01363 . 946
US to UK
Monthly 0.000996628 0.00096804 0.030738 0.030886 . 938
US to Mark
Daily 5.05892E-05 5.10328E-05 0.007038 0.006899 . 980
US to Mark
Weekly 0.000249158 0.00025282 0.015507 0.015356 . 987
US to Mark
Monthly 0.001216577 0.001240427 0.03466 0.034814 . 98
US to Yen
Daily 0.000142889 0.000142563 0.007425 0.007195 . 983
US to Yen
Weekly 0.000744107 0.000733485 0.016995 0.016672 963
US to Yen
Monthly 0.003211607 0.003176038 0.03419 0.034745 98

0.0155%
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56

36
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78

65
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Figure 1: Hedge Ratio Estimates of the S& P 500 I ndex in ter ms of Eq4
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Figure 2: Hedge Ratio Estimates of the Foreign Exchange Rates of
US Dollarsto UK Poundsin termsof Eq4
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Figure 3: Hedge Ratio Estimates of the Foreign Exchange Rates of
US Dollarsto Deutsche Marksin terms of Eq4
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Figure 4: Hedge Ratio Estimates of the Foreign Exchange Rates of
US Dollarsto Japanese Yensin terms of Eq4
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I have gone to the U. S. on November 13, 2002 to jointly in charge of the 13th Annual
Conference on Financial Economics and Accounting with Professors Lemma W. Senbet,
Gurdin Bakshi, Oliver Kim, and Lawrence A. Gordon. The 13th Conference on Finance
Economics and Accounting was held at the University of Maryland on November 15-16, 2002.
The result was both exciting and outstanding. This conference has become one of the most
prestigious academic conferences in finance and accounting nationally and internationally.

See the attached program for the details of the two-day event.

The fifteen-member executive committee (alphabetically) coordinated the program are as
follows: Walter G. Blacconiere, Indiana University; Lawrence Brown, Georgia State
University; Martin Gruber, New York University; D. Erich Hirst, University of Texas at Austin;
Bikki Jaggi, Rutgers University; Frank C. Jen, SUNY at Buffalo; Jayant R. Kale, Georgia State
University; E. Han Kim, University of Michigan; Oliver Kim, University of Maryland;
Cheng-few Lee (conference coordinator), Rutgers University; Joe Ogden, SUNY at Buffalo;
Joshua Ronen, New York University; Ehud I. Ronn, University of Texas at Austin; Lemma W.

Senbet, University of Maryland; and Charles A. Trizcinka, Indiana University.

The detailed program is as follows:

November 15, 2002

12:00 Noon — 1:30 p.m. Lunch and Check-in at Inn & Conference Center
2:00 p.m. —3:30 p.m.

Finance

0 Session |: Corporate Finance and Gover nance (1511 VM H)
Chairperson: Kose John, New York University

1. Corporate Governance Convergence by Contract: Evidence from Cross-Border
Mergers
Arturo Bris, Yale University
Christos Cabolis, Yale University

2. Horsesand Rabbits? Optimal Dynamic Capital Structure from Shareholder and
Manager Perspectives
Allen Poteshman, University of Illinois
Nengjiu Ju, University of Maryland
Robert Parrino, University of Texas-Austin
Michael Weisbach, University of Illinois

3. Organizational Form and Product Market Competition: Are Focused Firms
Weak Competitors?
Sheri Tice, Tulane University
Naveen Khanna, Michigan State University

Discussants:
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1. Toni Whited, University of lowa
2. Robert McDonald, Northwestern University
3. Gordon Phillips, University of Maryland

Accounting

0 Session I: Pro-forma Earnings and Other Voluntary Disclosure (1505 VMH)
Chairperson: Joshua Ronen, New York University

1. Voluntary Disclosures, I nformation Asymmetry and Reg FD
Stephen Brown, Emory University
Stephen Hillegeist, Northwestern University
Kin Lo, University of British Columbia

2. Earnings Quality and Strategic Disclosure:  An Empirical Examination of Pro
Forma Earnings
Carol Marquardt, New York University
Barbara Lougee, University of California, Irvine

3. Arelnvestors Misled by “Pro Forma” Earnings?
William Schwartz Jr., University of Arizona
Bruce Johnson, University of lowa

Session Discussant:
Bala Dharan, Rice University

3:30 p.m. —3:45p.m. Break (Grand Atrium, VMH)

3:30 p.m. —5:30 p.m.

Finance

0 Session Il: Asset Pricing (1511 VMH)
Chairperson: Craig MacKinlay, University of Pennsylvania

1.  Testing Portfolio Efficiency with Conditioning I nformation
Wayne Ferson, Boston College
Andrew Siegel, University of Washington

2.  Market Myopia, Market Mania, or Market Efficiency? An Examination of
Stock and Bond Price Reactionsto R&D Increases and Subsequent Performance
Allan Eberhart, Georgetown University
Akhtar Siddique, Georgetown University
William Maxwell, University of Arizona

3. Revenue Growth and Stock Returns
Narasimhan Jegadeesh, University of Illinois

4.  Testing Behavioral Finance Theories Using Trends and Sequencesin Financial
Performance
Richard Frankel, MIT
Wesley Chan, MIT
S.P. Kothari, MIT

Discussants:
1. Anthony Lynch, New York University
2. Guojun Wu, University of Michigan
3. Jonathan Lewellen, MIT
4. Tarun Chordia, Emory University

Accounting
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0 Session I1: Earnings Management (1505 VMH)
Chairperson: Walter Blacconiere, Indiana University

1. Managers Guidance of Analysts: International Evidence
Lawrence Brown, Georgia State University
Huong Ngo Higgins, Worcester Polytechnic Institute

2. TheRelation Between | ncentives to Avoid Debt Covenant Default and I nsider
Trading
Messod Beneish, Indiana University
Eric Press, Temple University
Mark Vargus, University of Texas, Dallas

3. Using Large Changesin Asset Turnover asa Signal of Potential Earnings
Management
Ivo Jansen, Georgetown University
Teri Yohn, Georgetown University

Session Discussant:
David Burgstahler, University of Washington

6:30 p.m. —7:30 p.m. Cocktail Reception

7:30 p.m. —9:00 p.m. Dinner and Keynote Address
(Inn & Conference Center —Main Ballroom)

Keynote Speaker: Michael J. Brennan, UCLA

November 16, 2002
8:00 am.-8:30 a.m. Continental Breakfast (Grand Atrium, Van Munching Hall)

8:30a.m. —-10:00 a.m.
Finance

0 Session I11: Contract Design and Financial I ntermediation (1511 VMH)
Chairperson: Anjan Thakor, University of Michigan

1.  Thelmpact of Organizational Form on Information Collection and the Value of
the Firm
Eitan Goldman, University of North Carolina
2. Optimal Contractsfor Teams of Money Managers
Pegaret Pichler, Boston College

3. Doesthe Source of Capital Affect Capital Structure?
Michael Faulkender, Washington University in St. Louis
Mitchell Petersen, Northwestern University

Discussants:
1. Simi Kedia, Harvard University
2. Amar Gande, Vanderbilt University
3. Hamid Mehran, Federal Reserve Bank of New York

Accounting

0 Session I11: The Role of Formal Modelsin Interpreting Empirical Evidence (1505
VMH)
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Chairperson: Thomas Hemmer, University of Chicago

1.  Accruals, Returns, and Earnings
Carolyn Levine, Carnegie Mellon University
Michael Smith, Duke University

2.  TheEffectsof True and Perceived Ability
Qi Chen, Duke University
Wei Jiang, Columbia University

3. On the Not so Obvious Relation between Risk and I ncentivesin
Principal-Agent-Relations
Thomas Hemmer, University of Chicago

Session Discussant:
Bharat Sarath, CUNY, Baruch College

10:00 a.m. —10:15 a.m. Break (Grand Atrium, VMH)
10:15am. —-11:45a.m.

Finance

0 Session IV: Market Microstructure (1511 VMH)
Chairperson: Charles Trzcinka, Indiana University

1.  Evidence on the Speed of Convergence to Market Efficiency
Avanidhar Subrahmanyam, UCLA
Tarun Chordia, Emory University
Richard Roll, UCLA

2. Liquidity of Emerging Markets
David Lesmond, Tulane University

3. Institutional Trading Costson Nasdag: Have They Been Decimated?
Ingrid Werver, Ohio State University

Discussants:
1. Elizabeth Odders-White, University of Wisconsin - Madison

2. Patrick Sandas, University of Pennsylvania
3. Charles Cao, Pennsylvania State University

Accounting

0 Session IV: Analyst Forecasts of Earnings (1505 VMH)
Chairperson: Lawrence Brown, Georgia State University

1.  WhoisAfraid of RegFD? The Behavior and Performance of Sell-Side
Analysts Following the SEC’'s Fair Disclosure Rules
Anup Agrawal, University of Alabama
Sahiba Chadha, University of Alabama

2. HasRegulation Fair Disclosure Affected Financial Analysts Ability to

Forecast Earnings?
Partha Mohanram, New York University
Shyam Sunder, New York University

3. Analysts Forecastsin “ Good-News’ and “ Bad-News’ Environments:
Evidence of Differential Timing of Information Arrival
Praveen Sinha, Cornell University

32



Pradyot Sen, University of Cincinnati

Session Discussant:
Eric Zitzewitz, Stanford University

12:00-1:30 p.m. Lunch (Grand Atrium, VMH)

Distinguished Speaker: Robert E. Verrecchia, The Wharton School
1:45p.m.-3:15p.m.
Finance

0 Session V: International Finance (1511 VMH)
Chairperson: Vojislav “Max” Maksimovic, University of Maryland

1. Institutions, Markets and Growth: A Theory of Comparative Cor porate
Governance
Kose John, New York University
Simi Kedia, Harvard University

2. Patternsof Industrial Development Revisited: The Role of Finance
Rqymond Fisman, Columbia University
Inessa Love, The World Bank

3. TheWorld Price of Earnigns Opacity
Utpal Bhattacharya, Indiana University

Discussants:
1. Sugato Bhattacharyya, University of Michigan
2. Reena Aggarwal, Georgetown University
3. Raj Aggarwal, Dartmouth College

Accounting

0 Session V: Extending the Analysis of the Earnings Retur ns Relation (1505 VM H)
Chairperson: Jeffery Abarbanell, University of North Carolina

1.  Earnings Quality and Price Quality
Ran Hoitash, Rutgers University
Murgie Krishnan, Rutgers University
Srinivason Sankaraguruswamy, Georgetown University

2. Rational Exuberance. The Fundamentalsof Pricing Firms, from Blue Chip
to “Dot-Com”
Mark Kamstra, Atlanta Federal Reserve Bank
3. LossReversalsand Valuation
Peter Joos, MIT
George Plesko, MIT

Session Discussant:
Sudhakar Balachandran, Columbia University

3:15p.m.—-3:30 p.m. Break (Grand Atrium, VMH)
3:45p.m.-5:45p.m.
Finance
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0 Session VI: Derivatives and Risk Management (1511 VMH)
Chairperson: Ehud Ronn, University of Texas - Austin

1.  Overconfidence and Speculative Bubbles
Wei Xiong, Princeton University
Jose Scheinkman, Princeton University

2. ldiosyncratic Risk and Creative Destruction in Japan
Yasushi Hamao, University of Southern California
Jianping Mei, New York University
Yexiao Xu, University of Texas - Dallas

3. Fed Funds Rate Targeting, Monetary Regimes and the Term Structure of
Interbank Rates: Explaining the Predictability Smile
Vassil Donstantinov, University of Wyoming

4. Modeing Credit Risk and Partial | nformation
Yildiray Yildirim, Syracuse University
Unut Cetin, Cornell University
Robert Jarrow, Cornell University
Philip Protter, Cornell University

Discussants:
1. Michael Gallmayer, Carnegie Mellon University
2. Burton Hollifield, Carnegie Mellon University
3. David Chapman, University of Texas - Austin
4. Greg Duffee, University of California - Berkeley

Accounting

0 Session VI: International Accounting (1505 VMH)
Chairperson: Larry Gordon, University of Maryland

1. (Non) Convergencein International Accrual Accounting: The Role of
Institutional Factors and Real Operating Effects
Peter Joos, MIT
Peter Wysocki, MIT

2. Economic Consequences from Mandatory Adoption of |ASB Standardsin the
European Union
Joseph Comprix, Arizona State University
Karl Muller, Pennsylvania State University
Mary Stanford-Harris, Texas Christian University

3.  Stock Exchange Disclosure and Market Liquidity: An Analysis of 50
I nternational Exchanges
Carol Frost, Dartmouth College
Elizabeth Gordon, Rutgers University
Andrew Hayes, Ohio State University

Session Discussant:

Christian Leuz, University of Pennsylvania

6:30—-8:00 p.m.  Optional Dinner (Inn & Conference Center - Chasen Family Room)
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