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1. Introduction

In many application areas, such as demography, management science, hydrology, finance, etc., data are frequently posi-
tive and right-skewed. In the past four decades, the inverse Gaussian (IG) distribution has drawn much attention and the
inferences concerned with the IG distribution have also grown rapidly because IG is an ideal candidate for modeling and
analyzing the right-skewed and positive data. For instance, Wise [1,2] and Wise et al. [3] developed the IG population as
a possible model to describe cycle time distribution for particles in the blood and Lancaster [4] made use of the IG distribu-
tion in describing strike duration data. Furthermore, IG distribution can also serve as a convenient prior for scale in Bayesian
approaches to estimation with assumed Gaussian data [5]. The IG distribution can not only accommodate a variety of shapes,
from highly skewed to almost normal, but also shares many elegant and convenient properties with Gaussian models; e.g.,
the associated inference methods are based on the well-known t, 2, and F distributions as for the normal case. See Chhikara
and Folks [6], Seshadri [7,8] and Mudholkar and Tian [9] more details of Gaussian and IG analogies.

The probability density function (pdf) of IG distribution, IG (, 1), is defined as

172 5
> exp{— _ (x—,u)z}, x>0, £>0, >0, (1.1)

flxp,2) = ( 212%

where p is the mean parameter and 4 is the scale parameter. The inference methods of the IG model are closely analogous to
those of the Gaussian model; for example, a very common problem in applied fields is to compare the means of several
Gaussian populations, i.e.

27x3

Ho:py=p,=---=p, vs. Hj:notall y's are equal.

* Corresponding author. Address: 129 Sanmin Road Sec. 3, Taichung 404, Taiwan.
E-mail address: suelin@ntit.edu.tw (S.H. Lin).

0096-3003/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2010.12.019



S.H. Lin, LM. Wu/Applied Mathematics and Computation 217 (2011) 5480-5490 5481

If the variance of each population is homogeneous, the analysis of variance (ANOVA) can be used to perform the test. Sim-
ilarly, the analysis of reciprocals (ANORE) can be used to test the equality of means of several IG samples if all scale param-
eters among groups are assumed to be equal [6]. When the scale parameters are non-homogeneous, the ANORE fails to solve
the problem. Tian [10] proposed a method to test the equality of IG means under heterogeneity, based on a generalized test
variable. However, when the null hypothesis is not rejected, the inferences for the common mean remain unsolved. Recently,
Ye et al. [11] proposed a mixture method for the common mean problem based on generalized inference and the large sam-
ple theory. However, as the author has mentioned, if the sample sizes n; are not large and/or the scale parameter /; is not
large compared to y; the approximate distributions don’t fit well. Therefore, an alternate method which can be applied to
general cases deserves further research.

In this paper, we will estimate and construct the 100(1 — «)% confidence interval for the common mean of several non-
homogeneous IG populations based on a higher order likelihood-based method. This method, in theory, has a higher order
accuracy, O(n—>/?), even when the sample size is small. Reid [12] provided a review and annotated the development of his
method. The method has been applied to solve many practical problems involving interval estimation for a skewed distri-
bution, e.g., Wu et al. [13] presented a confidence interval for a log-normal mean based on this method; Wu and Wong
[14] used the method to improve the interval estimation for the two-parameter Birnbaum-Saunders distribution; and Tian
and Wilding [15] used the method to construct confidence interval for the ratio of means of two independent IG distribu-
tions. In our case, the likelihood-based method also gives a satisfactory result for the problem of interval estimation for
the common mean of several IG distributions.

The remainder of this article is organized as follows. In Section 2, we will briefly introduce the properties of IG distribu-
tion and the concepts of the signed log-likelihood ratio statistic and a higher order asymptotic method. The method is then
applied to construct a confidence interval for the common mean of several independent IG populations in Section 3. The gen-
eralized inference approach and the classical procedure under the assumption of identical scale are also described in Section
3. We present several simulation studies and two numerical examples in Section 4 to illustrate the merits of our proposed
method. Some concluding remarks are given in Section 5.

2. A general review
2.1. Some properties of IG distribution

For a random sample of n observations xi,x,,...,X, from IG (g, 1), the uniformly minimum variance unbiased estimators
(UMVUEs) of pand 2" arex =151 \x;and W = ;570 | (& — 1), respectively, and a minimum sufficient statistic of (x,4) is
(Z, XS X) It is easy to verify that

x~I1G(u,n2) and (n-— 1)W~11§717 (2.1
and that these two statistics are independently distributed.

Remark 1. Let x ~IG (i, 2) and A ~ 12 be two independent random variables, then ’(’;’fﬁj)z ~ ¥? and its distribution is

independent of 14 ~ y2. Let M = \/_g‘l)l"z), then the distribution of |M] is the truncated Student’s t variable with n degrees of

freedom and M? has the F distribution with 1 and n degrees of freedom [6].

nix—p?

From (2.1) and Remark 1, we know that *-L" ~ »2 which is independent of (n — 1)W ~ 12 | Let U = fx" 1 then the
distribution of |U] is the truncated Student’s t with n — 1 degrees of freedom and U? ~ Fy,,_;.

2.2. The likelihood-based inference

Let x = (x1,X2,...,X;) be an independent sample from some distribution and I(0) = [(0;x) be the log-likelihood function
based on the sample data. Suppose 6 is the p-dimensional vector of parameters that can be partitioned into (x, 1) with u
being the parameter of interest with dimension 1, and / being the nuisance parameters with dimensions p — 1. The signed
log-likelihood ratio statistic r(u) for inference on u is defined as

ris0) = sgn(e— w{2[10) - 10,)] ). 22)

where 0 = (fi, 1) is the overall maximum likelihood estimator (MLE) of ¢ and 8, = (i, 7,,) is the constrained MLE of ¢ for a
given p. Cox and Hinkley [16] verified that r(u) is asymptotically distributed as the standard normal distribution with
first-order accuracy O(n~'/2). A 100(1 — «)% confidence interval for u based on () can be obtained by

{ur(l < zoy2}s (2.3)

where z,, is the 100(1 — «/2)th percentile of a standard normal distribution. Since the log-likelihood ratio statistic is quite
inaccurate when the sample size is small, Barndorff-Nielsen [17,18] proposed a higher order likelihood-based method which
is known as the modified signed log-likelihood ratio,
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0 = (o + " tog { 5E1, 2.4)

where r(u) is the sign log-likelihood ratio statistic and q(u) is a statistic which can be expressed in various forms depending
on the information available. A widely applicable formula for q(u) that ensures the O(n—32) accuracy provided by Fraser et al.

[19] is defined as
Bl { o)

p,«.,i(ém]} ’ =

where j,,(0) is the p x p observed information matrix and j, (A .) is the (p — 1) x (p — 1) observed nuisance information ma-
trix. The vector array V = (¢,..., v}) in (2.5) is obtained from a vector pivot quantity R(x; 0) = (Ry(x; 0),...,Rn(x; 0)) by

1/2

—
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<
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==}

Ve <8Rg;; 0)) ! <8R((9):}; 0)>p

where the distribution of Ri(x; 0) is free of the nuisance parameters /. The quantity I.,{6) is the likelihood gradient with

(2.6)

0

d d n n
Lv(0) = {d %), d—plw;x)}—{gl;x,w)vuv.--lex,-(e)vp.j} @7)
= =
where il(() Xx) is the directional derivative of the log-likelihood function along v;={v;,...,2%n}, i=1,...,p, and
Iy, (0) =52, j=1,...,n. Moreover,
5 0l0) 5 Oly(6) o OLy(0)
I;V(Hll) - av 0“7 l/.i,V(e,‘/l) - EH [)“ and l@:V(H) - 90 [)

Note that r*(u) achieves third-order accuracy to a standard normal distribution [19]. Hence a 100(1 — «)% confidence interval
for u based on r*(u) is

{u: 1 (W] < 22} (2.8)

3. Inferences for the common mean of several independent IG populations
3.1. The likelihood-based confidence interval in the general case

Suppose X; = (Xi1,Xi2,...,Xin,), 1=1,2,...,1, are I random samples from IG (u,4;) populations. The parameters,
0=(u,A,-..,4), contain u being the parameter of interest and (4y,...,4;) being the nuisance parameters. The log-likelihood
function is

1 1 n;
l(@;xl,xz,...,x,):%z log %ZZlong zzzz)x,jJr Zn,, ZZZXU (3.1)
i=1 i=1

i=1 j=1 i=1 j=1

Differentiating the log-likelihood function (3.1) with respect to 0 for the first order yields the following results:

1 &
Z idi+—3 Z AiXjj
# [
al(0) 1 G2
M ; _2 i
on 24 Zx,] 2uzzxu’ =1k

The overall MLEs 6 = (ji, 41, . h can be uniquely obtained by solving the non-linear system (3.2) simultaneously. Further-
more, the constrained MLEs 0, = (i, A1, - - ., 44s) for a given u are

Ai = it i=1,...L (3.3)

(2nip =3 X — 123 )

Choosing a vector pivot quantity R = {Ry1,...,Rp,} with Rj = il ,i=1,....I; j=1,...,n, then R; ~ ¥? with the distri-

12X

bution free of any unknown parameters. Differentiating R; with respect to x and 0, we have
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. 2x2 ! N
Ry _ (('u—”> , ifj=k; else 8—R”:O;

OXy Ai(x% — ﬂz) OXy

ARy —24(xy — 1)

ow @

Ry (xg—p> . Ry

T 1 ifj=k; else 7 =0. (3.4)
Furthermore, V = (¢/,...,v,,) = — (&)™ (& ‘ with

v 2x3, zx%m 2x}, 2Xjy,
PG ) i ) R ) X + 1) )
,0,—

X (X — Xin, (Xin, — )
Vi1 = (0,...,0,0,. aln =) K@ =l oo 0 0) iz,
Hﬂ/—’ H/—’ Ai(Xin + 1) Ai(Xin + 1) S~ >
1 i+1 1
The likelihood gradients, Ly () = {dj] 105%), ..., = 1(0; x)} L.v(0) and Iy, (0) are
I
Z lx!J ( ) V1 j(i-1)xn;_q
i=1 j=1
l:V(o) = .
I on
Z ZIX,J UI+1]+(1 T)xnj_q
i=1 j=1
r1r I on
Y by O vy, o 20 2 by (O Vit jiio1yen
i=1 j=1 i=1 j=1
Ly(0) = )
I n I n
>0 2 by (0) U i1y 2 2 Ly (0) U 1)
Li=1j=1 i=1 j=1
r 1 m I n I
Y by D v, 2 2 b () V11, > 2 by () V1 1)xm
i=1 j=1 i=1 j=1 i=1 j=1
b (0) = : z : s ,
I o [
20 2 by (O) Vgm0 > Loy (0) Vria i 1) > 2 by () Vi -1,
1:1 j=1 i=1 j=1 i=1 j=1

respectively. The observed Fisher information matrix and the observed nuisance information matrix are

[l & XIJ ! 2n; My wl X1 My & Xoi n L Xii |
DL E-NEE oW E-LE o oL
i=1 j=1 i=1 i=1 i=1 i=1
m < X1 m
2 > s 27 0 0 0
i-1
. n _ > Xoi 0 ny 0
Joo(0) = waw 22
0 0
0o . 0
n < Xii 0 0 0 n
W " 2
and
3 0
J..(0)= . Apply the above quantities to (2.5) and (2.4), q(u) and then r*(u) can be obtained.
0 o3
274
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Although the confidence intervals based on r(u) and r*(u) can be obtained here, in general, some simple numerical iter-
ation procedure is needed to solve the upper bound limit and lower bound limit. In this paper we use the so-called secant
method; the algorithm is summarized as follows:

Step 1: Give the tolerance ¢ for the purpose of accuracy;
Step 2: Select é for the purpose of numerical differentiation;
Step 3: Give the initial estimate po to start the iteration;
Step 4: Compute

[Zaj2 — (1))
(ko + 0) — 1ty — 0)]/20°

Step 5: If |i1 — ol > €, replace pp with iy and return to Step 4 again, otherwise take the latest z; as the lower bound limit of
the 100(1 — «)% confidence interval.

Hy = Ho + 3.5)

Replacing Z,, with Z;_; in (3.5), we can obtain the upper bound limit for the 100(1 — o)% confidence interval of the
common mean . Similarly, the confidence interval based on r*(u) can be obtained by substituting r*(u) for r(u) in (3.5).

3.1.1. The likelihood-based confidence interval when I =2
In order to express the proposed method in details, we present the derivation of the confidence interval for the common
mean of two independent IG populations. The log-likelihood function based on the observations is:

n 1”1 A 1 nm Ja 3 & lr &
1(0:x1,%2) = - log ﬁ ZZIOth o ZZ TRl ;E+71°gﬁ_§;1°gxz’_ﬁgxz'

ny
+)~2”2 _Aa 1 (3.6)
M 2 =7 X2i

Take R;j = X” " to be the pivot quantity as we mentioned earlier and differentiate R; with respect to x and 6, we then have

(g—ﬁ)’1 = diag(/l(’;le‘uz) e /](I:ZX‘TMZ) 3 (’g"%‘ﬂz) Ve (szz”}uz)) and (&) = (ry,r5,r3) with diag(-) being a diagonal matrix and
1ny 2V T2 2ny
_— =2 (X1 — W) =220 (X1n, — 1) —22(%21 — 1) 275 (Xon, — 1)
1 ‘Ll3 R ,u3 3 MB R ,113 )
Y (5T T L A
Hexn HXan,
2 2
rs= 07.“707(X212 1D ,...,(inzz DAY
HeX U Xon,
SOV = (v),...,v5) = (%) (%), is obtained with
. 2 2x3,, 2x3, %,
X+ )7 fXan, 4+ ) ,U(le ) (X, + 1))
Yy = _XA11(X11 —{1)7.“7 Xln] (X1n, — 57
21 (X1 + [0) 21 (X, + ,U
vs=(0....0- Xa1(Xa1 — ,u) . (Xan, —
X+ [0 Jo(Xam, + ,u

Moreover, the likelihood gradients are

m

2 5 5 L) 2
EL A A3 _,_ZAZXZAA
axitp) \ 26, 20 2% & it

n N s 5
3 Xoilft=Xoi) ( fp _ Jp 3
o it 2% 20 2%
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[n n
AT (6 WA U B o DU (O E
L xytf)  \ 2x2 202 L Uxgitf)  \2x2 242
i=1 1 i=1 2
)
Lv(0) = achoa. (L L 0 and
v (0) i Akt g, 2[
SA Xl
0 XilX) (1 1
i ; 42 (Xai+[L) 2"%,- 22
r 2 n 2 n n
DD ] i?ﬁ;. a1 Zzhz"%,ﬁ_ 1
el . R L fixqtp) \ 22 22 L ixgitf)  \ 2x2 22
i=1 j=1 i=1 ti i=1 2i
l 1Sh i) SN Xyl 1 1
v(0) = | — L1 X1iX1i— [ Xilf=g) (1 1 0
o (0) I o kit ; Wt \2q 20
ny N 1y N
_ 1N XX fY) 0 S XilfXgi) (1 _ 1
s = (Xgi+1L) b T2 (Xoi+il) 22, 22

Furthermore, the observed Fisher information matrix and the observed nuisance information matrix are

34151 240y +3).232 2ipnp  my $1 ny Sy n
T T AT T3 w2 T w3 T w3 —L O
. Iz ltn] S]u o w n W 0 H . 22 . n
Joo(0) = T 22 and j,(0)= |0 Iz |, respectively, where s =37"Xy; and
n_ 5 0 ny 2
W 273

S = >, Xo;. Finally, r*(u) is then obtained by applying these quantities to (2.5) and (2.4).
3.2. The generalized inference method [11]

Ye et al. [11] proposed a mixture of generalized inference method and the large sample theory. Their procedures for deriv-
ing two generalized pivot quantities, T; and T, are briefly introduced below.

Suppose X; = (X1, Xi2, ..., Xin;), i =1,2,..,1, are I independent populations with parameters (u,4;) for each population, from
(2.1) we know that x; = nl }’;]x,-j ~ IG(u,n;%;) and n; ;V; ~ Xﬁﬂ, where V; = nl }’;1 (Xl—j - Xl) Let X? and ¢? denote the observed
values of x; and V;, respectively. The author defined the first generalized pivot quantity (GP1) for common mean yu as

~ ZI: n:R:T;

Ty = 2t (38)

2 MiR;
where

maVi XA %0 X0

R =" xﬂlw/n,ol and T, = i a4 i (3.9)
n;v; nv; 142 /nidi(Xi—p) /X0 147 X

A ViR TR

are the generalized pivot quantities for 4; and y, respectively, based on the ith sample. It is noted that < denotes “approx-

imately distributed” and % 47 when the sample sizes n; are large and/or the scale parameter /; is large compared to
Wi Let Tl(rx) be the 100«th percentile Tl, the 100(1 — a)%generalized confidence interval for ¢ based on T1 is

{ﬁ(a/z),'ﬁu —oc/Z)}. (3.10)
The generalized p-value for testing Ho : (= o vs. Hy : t # Lo can be computed as

py = 2min {Pr(T; < i), Pr(Ty > 1)}, (3.11)

1 ,
Furthermore, if the scale parameters /;'s are known, then it = % is the MLE of u based on I independent IG populations
i1 i

daln ~ N (VN . e author provided a second generalized pivot quantity or i as
d i~ IG(1t, S nyjs) [6]. The auth ided d lized pi ity (GP2) for
~ R d R

T, = , (3.12)
14 \/ Z:,l'li)vi(ﬂ*/‘) R 142 / R
,u\/ﬁ Z:ﬁln,-R,- Zi—]”‘R‘

! 0
where R = M., Z ~ N(0,1) and R; is defined in (3.9). The 100(1 — o)% generalized confidence interval for ¢ and the gen-

iy MiRi
eralized p-value for testing Ho : ¢ = o vs. Hy @ jt # 1o based on T can be respectively obtained by substituting T- in place of
T, in (3.10) and (3.11).
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3.3. Simple t-test confidence interval

For the purpose of comparison, we calculate a simple t-test confidence interval that is inspired from the analysis of recip-
rocals (ANORE). This method can provide an exact confidence interval when the scale parameters are homogeneous. Suppose
Xi = (Xi1,Xi2, ..., Xi,), 1 =1,2, .., Larelindependent populations with parameters (u,4;) for each population. It can be shown
that x =131, X ~ IG(u,N4) and (N — )W ~ ]y}, are independent distributed, where N = S, %= A >oitx; and

is the truncated student’s t distribution with

_ 1 noy—1 _ 51 VN(x—p)
W =353 200 (k" —%1). Moreover, from Remark 1, we know ‘u(iW)”

N — I degrees of freedom. Therefore, the two-sided 100(1 — «)% for u is

1 (3.13)
{'(1—&-&,% ’%) ,oo}, otherwise.

4. Simulation studies and numerical examples
4.1. Simulation studies

To illustrate the merits of the proposed method, we present simulation studies of the confidence intervals and type I er-
rors applied to a variety of scale parameter configurations and different combinations of small sample sizes for two and three
populations. In the simulation, we exhibit the coverage probabilities, the average lengths of the.95 confidence intervals and
also evaluate the type I errors at the nominal significance level.05 based on (), (), two generalized pivot quantities (GP1
and GP2), and the simple t-test method (S.T.). The results given in Tables 1-4 below are based on 10,000 simulation runs for
each combination.

From Tables 1 and 2, we see that although the confidence intervals based on r(x) and GP2 have shorter average lengths
comparing to the other three methods, the coverage probabilities are too liberal to attain the proposed coverage probabilities
of.95 for each combination. The confidence intervals based on the simple t-test method have good coverage probabilities but
these coverage probabilities decrease when the heterogeneity increases. Moreover, when the scale parameter is small rela-
tive to u, the interval lengths constructed by the simple t-test are unbounded (i.e., a one-sided interval). In these cases, the
simple t-test method gives less information about the target value than those based on the other methods. The GP1 method
performs well in the coverage probabilities when the scale parameters are large compared to mu, but the performance grows
worse when the scale parameters decrease. On the other hand, the confidence intervals based on r(x) not only have almost
exact coverage probabilities in each combination (except for few exceptions), but the average lengths are also quite decent
and acceptable. Therefore, in terms of the overall comparisons, the higher order likelihood-based method outperforms the
other four methods.

Table 1
Simulation results of 95% confidence interval of u =1 for two populations.
(nq,n3) M 2 r(w) GP1 GP2 r(u) S.T.
CcP Length CcP Length CcpP Length CcP Length cpP Length
(5,10) 0.2 1 0.951 9.387 0.963 5.451 0.933 1.810 0.923 1.637 0.954 )
0.5 1 0.948 14.340 0.961 1.335 0.935 1.000 0917 1.554 0.945 oo
1 3 0.952 1.054 0.953 1.475 0.935 1.064 0.926 0.786 0.943 1.024
3 10 0.947 0.456 0.943 0.444 0.937 0.384 0.920 0.387 0.939 0.486
1 10 0.948 0.477 0.950 0.456 0.940 0.400 0.923 0.409 0.933 0.791
(10,5) 0.2 1 0.931 23.093 0.969 5.489 0.939 2.261 0.847 1.368 0.955 00
0.5 1 0.944 13.672 0.959 12.439 0.930 6.529 0.897 1.534 0.949 oo
1 3 0.949 1.958 0.955 2.633 0.935 1.481 0.906 0.967 0.950 1.506
3 10 0.948 0.598 0.945 0.746 0.938 0.603 0.903 0.464 0.949 0.623
1 10 0.947 0.840 0.945 0.845 0.934 0.679 0.925 0.573 0.951 1.361
(10,10) 0.2 1 0.951 7.914 0.968 2.803 0.944 1.309 0.929 1.659 0.958 oo
0.5 1 0.955 2.320 0.955 4332 0.933 1.561 0.933 1.363 0.948 oo
1 3 0.945 0.873 0.954 0.896 0.939 0.655 0.924 0.708 0.946 0.918
3 10 0.945 0.410 0.943 0.358 0.938 0.331 0.921 0.360 0.947 0.456
1 10 0.949 0.459 0.950 0.484 0.943 0.375 0.926 0.399 0.947 0.795

CP: coverage probability; length: average length.
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Table 2
Simulation results of 95% confidence interval of y =1 for three populations.
(ny,nz,n3) 1 J2 I3 () GP1 GP2 n) S.T.
CP Length CcP Length CcP Length CP Length CcP Length
(5,8,10) 0.1 0.1 1 0.949 4.865 0.972 6.162 0.937 2.856 0.923 1.611 0.965 0
0.1 0.5 1 0.949 3.382 0.966 21.096 0.934 7.197 0.922 1.456 0.959 0
1 1 5 0.948 0.671 0.952 0.807 0.934 0.580 0.923 0.542 0.948 0.807
1 1 10 0.949 0.467 0.958 0.606 0.939 0.429 0.925 0.396 0.943 0.766
1 5 10 0.948 0.393 0.944 0.497 0.931 0.402 0.921 0.337 0.938 0.511
(5,10,8) 0.1 0.1 1 0.952 5.964 0.972 8.408 0.937 6.293 0.917 1.589 0.963 )
0.1 0.5 1 0.948 3.784 0.970 7.983 0.930 2.515 0.918 1.492 0.952 )
1 1 5 0.945 0.754 0.958 0.618 0.938 0.433 0.919 0.586 0.951 0.873
1 1 10 0.950 0.537 0.957 0.559 0.939 0.380 0.919 0.435 0.947 0.844
1 5 10 0.945 0.413 0.947 0.591 0.929 0471 0917 0.350 0.938 0.524
(10,8,5) 0.1 0.1 1 0.930 7.016 0.975 7.526 0.932 2.687 0.839 1.306 0.967 0
0.1 0.5 1 0.946 5.952 0.970 11.160 0.934 5.868 0.889 1.467 0.965 0
1 1 5 0.943 0.957 0.950 0.977 0.930 0.500 0.901 0.668 0.950 0.974
1 1 10 0.945 0.720 0.945 1.063 0.935 0.544 0.898 0.518 0.953 0.956
1 5 10 0.946 0.521 0.946 0.507 0.933 0.441 0.902 0.406 0.948 0.711

CP: coverage probability; length: average length.

Table 3
Type I errors for Ho : it = yy vs. Hy : u# iy at I =2 and o = 0.05.
(21, 42) Tests n=5n=10 ny=10,n,=5
Ho Ho
0.2 0.8 1.2 2.0 5.0 0.2 0.8 1.2 2.0 5.0

(0.2,1) r(u) 0.0522 0.0528 0.0529 0.0493 0.0506 0.0550 0.0495 0.0567 0.0551 0.0524
GP1 0.0439 0.0432 0.0382 0.0310 0.0344 0.0514 0.0345 0.0275 0.0317 0.0259
GP2 0.0575 0.0700 0.0643 0.0610 0.0607 0.0658 0.0650 0.0605 0.0677 0.0714
(w) 0.0774 0.0746 0.0750 0.0686 0.0702 0.1027 0.0903 0.0989 0.0912 0.0912
S.T. 0.0615 0.0430 0.0489 0.0426 0.0324 0.0502 0.0378 0.0410 0.0381 0.0313

(0.5,1) (u) 0.0485 0.0562 0.0569 0.0553 0.0575 0.0528 0.0560 0.0522 0.0552 0.0530
GP1 0.0590 0.0363 0.0382 0.0337 0.0260 0.0495 0.0394 0.0340 0.0302 0.0244
GP2 0.0685 0.0632 0.0655 0.0662 0.0657 0.0624 0.0642 0.0687 0.0672 0.0714
r(w) 0.0832 0.0862 0.0844 0.0813 0.0808 0.0901 0.0950 0.0922 0.0922 0.0883
ST. 0.0555 0.0507 0.0514 0.0504 0.0509 0.0469 0.0515 0.0461 0.0434 0.0484

(1,3) r(u) 0.0526 0.0528 0.0500 0.0578 0.0564 0.0542 0.0548 0.0573 0.0570 0.0553
GP1 0.0574 0.0514 0.0440 0.0402 0.0352 0.0609 0.0554 0.0437 0.0417 0.0294
GP2 0.0619 0.0660 0.0627 0.0645 0.0679 0.0655 0.0655 0.0660 0.0670 0.0662
(w) 0.0783 0.0783 0.0744 0.0810 0.0790 0.0966 0.0985 0.0941 0.0939 0.0939
S.T. 0.0583 0.0545 0.0503 0.0539 0.0524 0.0514 0.0471 0.0464 0.0535 0.0424

(1,5) r(u) 0.0507 0.0566 0.0517 0.0551 0.0570 0.0585 0.0537 0.0558 0.0563 0.0575
GP1 0.0587 0.0467 0.0472 0.0404 0.0355 0.0602 0.0562 0.0502 0.0395 0.0347
GP2 0.0600 0.0595 0.0647 0.0575 0.0614 0.0609 0.0670 0.0674 0.0644 0.0684
r(w) 0.0788 0.0803 0.0768 0.0779 0.0790 0.1009 0.0936 0.0990 0.0980 0.0989
ST. 0.0634 0.0616 0.0610 0.0573 0.0499 0.0502 0.0471 0.0465 0.0460 0.0371

(1,10) r(u) 0.0528 0.0550 0.0484 0.0559 0.0487 0.0559 0.0538 0.0517 0.0582 0.0571
GP1 0.0559 0.0497 0.0497 0.0444 0.0357 0.0579 0.0452 0.0512 0.0444 0.0357
GP2 0.0622 0.0610 0.0609 0.0590 0.0540 0.0617 0.0565 0.0619 0.0595 0.0565
() 0.0751 0.0759 0.0727 0.0777 0.0697 0.1040 0.0977 0.0967 0.0997 0.0981
ST. 0.0775 0.074 0.0682 0.0589 0.0478 0.0532 0.0468 0.0507 0.0431 0.0344

Furthermore, from Tables 3 and 4, we can see the type I errors based on the simple t-test method are not stable since the
type I errors decrease as the mean parameter under the null hypothesis increases. Similarly, the type I errors obtained by the
GP1 methods do not perform well under those small sample sizes and small scale parameters configurations. The type I er-
rors based on the GP1 method are getting worse compared to the nominal level.05 as the mean parameters increase. The
type I errors based on GP2 and r(u) are respectively around 0.6 to.07 and.07 to.10 for each combination which are too large
compared to the nominal level.05. By contrast, the type I errors based on (1) are not only stable, but the values are also very
close to the nominal level .05. Thus, we can say that the proposed procedure can well tolerate heterogeneity among popu-
lations and give robust and reliable results under different scenarios.
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Table 4
Type I errors for Ho : pt = o vs. Hy : i # py at I =3 and o = 0.05.
(21,72,73) Tests (ny,n2,n3)=(5,8,10) (nq,n2,n3)=(5,10,8)
Ho Ho
0.2 0.8 1.2 2.0 5.0 0.2 0.8 1.2 2.0 5.0
(0.1,0.1,1) r(u) 0.0481 0.0564 0.0542 0.0563 0.0551 0.0550 0.0539 0.0516 0.0576 0.0549
GP1 0.0424 0.0274 0.0268 0.0270 0.0260 0.0388 0.0274 0.0224 0.0200 0.0234
GP2 0.0656 0.0600 0.0620 0.0648 0.0638 0.0640 0.0654 0.0608 0.0558 0.0668
() 0.0716 0.0774 0.0748 0.0796 0.0729 0.0845 0.0789 0.0769 0.0814 0.0787
S.T. 0.0483 0.0391 0.0336 0.0258 0.0187 0.0472 0.0355 0.0290 0.0247 0.0194
(0.1,0.5,1) r(u) 0.0539 0.0572 0.0528 0.0548 0.0554 0.0516 0.0563 0.0534 0.0570 0.0525
GP1 0.0558 0.0314 0.0282 0.0254 0.0146 0.0452 0.0364 0.0300 0.0240 0.0156
GP2 0.0684 0.0666 0.0642 0.0682 0.0666 0.0614 0.0684 0.0658 0.0656 0.0672
r(u) 0.0812 0.0832 0.0749 0.0761 0.0769 0.0778 0.0841 0.0804 0.0804 0.0791
S.T. 0.0594 0.0462 0.0395 0.0377 0.0283 0.0558 0.0450 0.0422 0.0378 0.0271
(1,1,5) r(p) 0.0520 0.0505 0.0560 0.0567 0.0558 0.0517 0.0525 0.0542 0.0548 0.0577
GP1 0.0610 0.0470 0.0464 0.0424 0.0284 0.0582 0.0504 0.0412 0.0372 0.0316
GP2 0.0646 0.0670 0.0682 0.0724 0.0634 0.0650 0.0708 0.0668 0.0658 0.0740
r(u) 0.0782 0.0755 0.0797 0.0824 0.0768 0.0843 0.0840 0.0839 0.0800 0.0864
S.T. 0.0572 0.0594 0.0557 0.0510 0.0436 0.0544 0.0516 0.0524 0.0472 0.0409
(1,1,10) r(p) 0.0485 0.0516 0.0494 0.0564 0.0557 0.0549 0.0541 0.0528 0.0543 0.0581
GP1 0.0570 0.0478 0.0482 0.0400 0.0294 0.0584 0.0536 0.0436 0.0408 0.0304
GP2 0.0620 0.0640 0.0662 0.0648 0.0614 0.0640 0.0682 0.0608 0.0668 0.0648
r(u) 0.0746 0.0724 0.0730 0.0792 0.0767 0.0853 0.0852 0.0797 0.0820 0.0864
S.T. 0.0579 0.0534 0.0537 0.0522 0.0394 0.0588 0.0496 0.0484 0.0458 0.0399
(1,5,10) r(p) 0.0517 0.0514 0.0514 0.0537 0.0524 0.0518 0.0534 0.0540 0.0557 0.0525
GP1 0.0642 0.0540 0.0556 0.0448 0.0410 0.0566 0.0520 0.0476 0.0490 0.0398
GP2 0.0688 0.0682 0.0680 0.0658 0.0656 0.0624 0.0658 0.0646 0.0684 0.0666
r(u) 0.0779 0.0777 0.0775 0.0815 0.0766 0.0800 0.0828 0.0827 0.0865 0.0806
S.T. 0.0638 0.0659 0.0660 0.0553 0.0544 0.0634 0.0625 0.0611 0.0603 0.0477
Table 5
Data for Example 1.
Population i 1 2 3
0.7312 1.3932 1.6999
1.7314 0.5934 1.2698
0.7109 1.6046 0.7887
0.0303 2.0649 1.0535
0.7044 1.2238 0.7973
0.0538 1.4988
1.4685
X; 0.7816 1.1556 1.2252
w; 31.3779 17.7229 0.4820
wi =0 (x5! %),
Table 6
The 95% confidence intervals for the common mean.
Method Point estimate [t Interval estimate Length
r(u) 1.221 (0.961,1.728) 0.767
GP1 1.817 (0.972,2.089) 1.117
GP2 1.258 (0.952,1.691) 0.739
r(u) 1.221 (0.980,1.605) 0.625
S.T. 1.078 (0.553,20.711) 20.158
Table 7
Data for Example 2 (n;=10,i=1,2,3,4).
X 2.635 2.055 1.748 2.023
w; 4.5147 107.7351 3.1558 67.4330
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Table 8

The 95% confidence intervals for the common mean.
Method Point estimate jt Interval estimate Length
() 2.110 (1.484,4.384) 2.900
GP1 3.249 (1.511,7.740) 6.229
GP2 2.232 (1.446,3.736) 2.290
() 2.110 (1.480,3.653) 2.173
ST. 2.116 (1.031,00) 00

4.2. Two numerical examples

Example 1. We first present a three population IG simulated data with (ny,n,n3) =(5,6,7) and (u, 41,22, 43) =(1,0.2,1,10) as
illustrative example. The original data and the summary data are depicted in Table 5. The interval estimations based on five
methods are given in Table 6. Four confidence intervals based on r*(u), r(u), GP1 and GP2 give satisfactory result under the
heterogeneous data set when compared with that based on the simple t-test method. Although the one based on () is a
little wider than those of GP2 and (), in general, it gives better coverage probabilities compared with them.

Example 2. The data is available in p.462, Nelson [20]. In this data, there are 60 “times-to-breakdown” in minutes of an
insulating fluid subjected to high voltage stress. Since IG distribution is widely applied as a lifetime model in reliability anal-
ysis, here we consider the failure time of the insulating fluid for each group as an IG distributed random variable. If the
experiment was under control, the mean of each group should be the same. For illustrative purpose, we pick the first four
groups as demonstration and apply the procedure induced by Tian [10] to test the equality of the means for the first four
groups. The resulting p-value is.8693; we can follow up by constructing the confidence interval for the common mean
parameter. The summary data and the results are given in Tables 7 and 8, respectively.

From Table 7, we see w;, i =1, 2, 3, 4 the estimators of the reciprocal of the scale parameters are quite different among
groups implying the existence of heterogeneity.

In Table 8, all five intervals cover the corresponding point estimates and those based on r*(u), (1) and GP2 give satisfac-
tory interval lengths compared to GP1 and the simple t-test. In this case, the simple t-test only provides a one-sided interval.

5. Conclusions

In this paper, we presented a higher order likelihood-based procedure to construct the confidence interval of the common
mean of several independent IG populations. In our simulation, we compared this procedure with four alternative methods.
The numerical examples showed that the proposed method gives nearly exact coverage probabilities and the type I errors
calculated are close to the nominal level.05 even for small sample sizes and small scale parameters. The method is able
to integrate the information of several heterogeneous IG populations, and therefore is useful for a variety of practical
applications.
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